Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics

Blaize A. Denfeld1)*, Marcus B. Wallin1)2), Erik Sahlée2), Sebastian Sobek1), Jovana Kokic1), Hannah E. Chmiel1) and Gesa A. Weyhenmeyer1)

1) Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden (*corresponding author’s e-mail: blaize.denfeld@ebc.uu.se)
2) Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden

Received 1 Dec. 2014, final version received 4 May. 2015, accepted 4 May. 2015

Global carbon dioxide (CO₂) emission estimates from inland waters commonly neglect the ice-cover season. To account for CO₂ accumulation below ice and consequent emissions into the atmosphere at ice-melt we combined automatically-monitored and manually-sampled spatially-distributed CO₂ concentration measurements from a small boreal ice-covered lake in Sweden. In early winter, CO₂ accumulated continuously below ice, whereas, in late winter, CO₂ concentrations remained rather constant. At ice-melt, two CO₂ concentration peaks were recorded, the first one reflecting lateral CO₂ transport within the upper water column, and the second one reflecting vertical CO₂ transport from bottom waters. We estimated that 66%–85% of the total CO₂ accumulated in the water below ice left the lake at ice-melt, while the remainder was stored in bottom waters. Our results imply that CO₂ accumulation under ice and emissions at ice-melt are more dynamic than previously reported, and thus need to be more accurately integrated into annual CO₂ emission estimates from inland waters.

Introduction

Inland waters play an important role in the global carbon cycle, receiving, transporting and processing carbon and emitting carbon dioxide (CO₂) and methane (CH₄) into the atmosphere (Battin et al. 2009). Several global CO₂ emission estimates from lakes and streams are available (Cole et al. 2007, Tranvik et al. 2009, Aufdenkampe et al. 2011) with temporal, in particular seasonal variations, based on simple assumptions rather than evidence. Most of the lakes in the northern hemisphere are however covered by ice during substantial parts of the year (Weyhenmeyer et al. 2011) where ice acts as a barrier to atmospheric exchange causing high concentrations of CO₂ to accumulate in lakes (Striegl and Michmerhuizen 1998, Kortelainen et al. 2006). Most commonly global lake CO₂ emission estimates compensate for CO₂ accumulation (i.e. the lack of CO₂ emitted) during the ice-cover period by assuming that a rapid outburst of CO₂ to the atmosphere at ice-melt accounts for all the CO₂ that has accumulated during winter (Cole et al. 2007). More recently, Butman and Raymond (2011) attempted to account for the ice-cover period of running waters by calculating annual CO₂ emissions for the open-water season only.

* Editor in charge of this article: Harri Koivusalo
Raymond et al. (2013) offered another approach in the currently most comprehensive estimate of CO₂ emissions from global inland waters. They discounted periods during which running waters were ice-covered from the emission calculations, while they assumed linear accumulation of CO₂ under the ice followed by complete and rapid emission at ice-out for lakes and reservoirs (Raymond et al. 2013). However, all these methods neglect the dynamics and importance of under ice CO₂ accumulation and CO₂ outburst at spring ice-melt, which in lakes can be substantial: Karlsson et al. (2013), for example, estimated that up to 56% of the total annual CO₂ emission can occur at ice-melt alone. Such estimates are, however, based on manual samples that do not capture CO₂ dynamics at an hourly and daily time scales. Since CO₂ emission at ice-melt can occur within days (Huotari et al. 2009), improved estimates of CO₂ emissions during this period are needed.

It is well established that lakes are supersaturated with CO₂ caused by net heterotrophy, where respiration exceeds primary production (Cole et al. 1994). Moreover, high CO₂ accumulation in lakes under ice has been attributed to respiration of terrestrial organic-carbon inputs (Striegl et al. 2001) and of organic carbon produced by benthic algae the previous summer (Karlsson et al. 2008). In addition to respiration, variations in lake water CO₂ are a result of photosynthesis, photo-transformation, methane oxidation, catchment contribution and water column mixing. To some extent, ice and snow-cover dynamics alter these processes, preventing atmospheric inputs and gas exchange (Striegl et al. 2001), limiting solar radiation (Belzile et al. 2001), and reducing the effect of turbulent heat flux on lake mixing (Rouse et al. 2005). Thus, the seasonal dynamics of snow and ice cover greatly influences the magnitude of these mechanisms (Gunn and Keller 1985), which consequently may lead to spatial and temporal variations in lake water CO₂ during the ice-cover period.

One way to improve estimates of CO₂ emissions is to increase the frequency of CO₂ measurements (Sellers et al. 1995). Recent advancements in technology have allowed for the development of in situ CO₂ sensors (e.g. Johnson et al. 2010). However, at present, only a very limited number of in situ continuous CO₂ measurements under ice and at ice-melt are available for lakes and reservoirs (Baehr and DeGrandpre 2002, 2004, Huotari et al. 2009, Demarty et al. 2011). These studies highlight the complexity of CO₂ dynamics at ice-melt but are limited in their ability to account for the spatial variability of CO₂ across the entire lake or reservoir basin. A recent study by Schilder et al. (2013) suggests that surface water CO₂ concentrations during the open-water period can vary across the lake. Additionally, CO₂ emissions can vary vertically in the lake during stratification periods, with CO₂-rich bottom waters contributing to high CO₂ emission during turnover periods (Kortelainen et al. 2006). Thus, in order to improve the accuracy of CO₂ emission estimates, during the understudied ice-melt period, continuous CO₂ concentration measurements should be combined with spatially distributed CO₂ concentration measurements in ice-covered lakes.

This study aimed to explore the current assumptions global CO₂ emission estimates make for ice-covered lakes, i.e. that CO₂ accumulates linearly under ice and that at ice-melt all CO₂ that has been accumulated is rapidly emitted into the atmosphere. Further, we aimed to quantify the spatial and temporal variability of CO₂ in lake water from ice-on to ice-off. We hypothesized that (1) CO₂ accumulates linearly under ice during the whole winter, (2) CO₂ accumulates faster in bottom than in surface waters, and finally (3) the amount of CO₂ that is emitted to the atmosphere at ice-melt is comparable to the amount of CO₂ that has been accumulated during the winter.

Methods

Study area

To test our hypotheses we sampled Lake Gädde- tjärn, a small boreal lake (6.8 ha) located in mid-Sweden (59.86°N, 15.18°E) with a maximum depth of 10 m, mean depth of 3.8 m, and a volume of 260 000 m³ at an altitude of 254 m a.s.l. The lake has two main inlets, which drain a catchment area of 226 ha comprising 84% boreal forest, 12% wetlands and 4% water (draining three very small headwater lakes). About 20%
of the total catchment area drains directly into the lake, while 80% drains via two streams (Kocic et al. 2015). The lake has a theoretical water residence time of ~2 months (calculated as mean discharge at the outlet divided by the lake volume) and drains into a larger lake further downstream. According to the Swedish Meteorological and Hydrological Institute, the long-term mean (1961–1990) annual temperature is 4.5 °C and annual precipitation is 900 mm. Ice formation usually begins in mid-November to early December and ice-melts in mid-April. Six sampling sites on the lake were chosen to represent varying lake depths from 1.4 to 9.5 m (Fig. 1).

Continuous measurements

We automatically monitored CO₂ concentration (µM), dissolved oxygen (DO, mg l⁻¹), pH, water temperature (°C) and light intensity (lux) above the deepest basin of the lake (depth of 9.5 m), during the ice-cover and ice-melt periods between 22 Jan. and 7 May 2013. Hourly partial pressure of CO₂ ($p_{CO₂}$) was measured (and converted into CO₂ concentration) using the Submersible Autonomous Moored Instrument for CO₂ (Sunburst Sensors, SAMI2) suspended in the water column at 2 m depth. SAMI2 was factory calibrated towards NIST (National Institute of Standards and Technology) traceable NDIR (Nondispersive Infrared Sensor) and has an accuracy of ±3 µatm and precision < 1 µatm. We applied correction factors supplied by sunburst sensors when calculating CO₂ concentration, since our CO₂ measurements (mean 2800 µatm) surpassed the NIST-approved validity range of calibration (300–1300 µatm). DO and pH were measured hourly with an autonomous sonde (YSI, Model 6600V2-03; ROX DO probe, Model 6450 AF) suspended at 4 m depth (deployed as part of a separate project). Light intensity was measured hourly with a pendant light logger (HOBO, Model UA-002-64) attached to the top of a subsurface float placed 0.1 m below the surface water. Water temperature was recorded every 4 hours at every meter throughout the total depth of the water column (9 m) with temperature loggers (onset HOBO, Model Pro V2).

Manual measurements

In addition to automatic measurements, between 13 Dec. 2012 and 7 May 2013, we collected water samples five times during the ice-on and once at ice-off. Water was collected using a Ruttner water sampler from five surface-water sites (sampled at 0.5 m) and one vertical profile site (sampled at 0.5, 2, 4, 6 and 8 m depth) located at the deepest point of the lake (Fig. 1). Bubble-free water was drained from the Ruttner into a 60 ml polypropylene syringe and a 12 ml glass vial, for CO₂ and dissolved inorganic carbon (DIC) analyses, respectively. Additional water was collected for dissolved organic carbon (DOC) analysis. All water samples were stored dark and cool until analyzed. Further, at each location, temperature, DO and specific conductivity were measured using an HQ40d Portable Multi-parameter sonde (HACH). Upon returning from the field, water samples for DOC were filtered through a precombusted 0.7 µm Whatman GF/F glass fiber filter. A total carbon analyzer (Sievers 900) equipped with a membrane-based conductivity detector was used to measure DOC and DIC. For each water sample, DOC and DIC were reported as means of three measurements.
taken by the total carbon analyzer. DIC and DOC samples were analyzed within two and seven days of sampling, respectively. CO₂ measurements were made immediately upon returning from the field using the headspace equilibration technique, where 40 ml of water was replaced with ambient air and equilibrated with the lake water by vigorously shaking. \(p_{\text{CO}_2} \) of the extracted headspace gas phase and ambient air were measured with a portable infrared gas analyzer (IRGA) (EGM-4, PP Systems Inc, USA) which has an accuracy of < 1% of the calibration range (0–5000 µatm). Headspace \(p_{\text{CO}_2} \) was taken as the average of three measurements and CO₂ concentration was calculated according to Henry’s law presented by Weiss (1974) correcting for temperature and the amount of CO₂ added to the syringe by the ambient air (e.g. Sobek et al. 2003, Demarty et al. 2011, Karlsson et al. 2013).

Using manually sampled CO₂ from the vertical profile site, i.e. above the deepest point of the lake, we quantified temporal changes in CO₂ concentrations (\(\Delta \text{CO}_2 \), µM d⁻¹) for 0.5 m (surface water) and at 8 m (bottom water). We received a rate of change by taking the CO₂ concentration difference between sampling occasions divided by the number of days between the sampling. \(\Delta \text{CO}_2 \) was calculated for the early winter (13 Dec. 2012–4 Feb. 2013), late winter (4 Feb.–15 Apr.), and the ice-melt (15 Apr.–7 May) periods. We also estimated whole-lake CO₂ accumulation and loss rates (\(r \), mol CO₂ d⁻¹) by considering the whole-lake CO₂ storage (CS, mol CO₂). CS was calculated as the sum of the measured CO₂ depth profile integrated with the volume of each corresponding depth layer (Michmerhuizen et al. 1996). Lake volume at each depth was obtained by digitizing lake contour maps for each 1 m depth. Whole-lake \(r \) was then calculated as:

\[
r = \frac{\text{CS}_n - \text{CS}_i}{n},
\]

where \(\text{CS} \) is the whole-lake CO₂ storage at sampling time \(t \), and \(n \) is the number of days between sampling occasions \(t_i \) and \(t_n \). Positive values of \(r \) indicate CO₂ accumulation in the lake while negative ones CO₂ loss from the lake.

The relative amount of CO₂ accumulated under ice that was released during spring melt (\(C_{\text{release}} \% \)) was calculated as:

\[C_{\text{release}} = \frac{\text{CS}_n}{\text{CS}_i} = \frac{\text{CS}_{\text{last ice}} - \text{CS}_{\text{no ice}}}{\text{CS}_{\text{first ice}} - \text{CS}_{\text{last ice}}}, \tag{2} \]

where \(\text{CS}_i \) is the amount of CO₂ leaving the lake during the ice-off season, \(\text{CS}_n \) is the amount of CO₂ accumulated in the lake during the sampling period below the ice cover, \(\text{CS}_{\text{first ice}} \) is the CS on 13 Dec., \(\text{CS}_{\text{last ice}} \) is the CS on 11 Mar., and \(\text{CS}_{\text{no ice}} \) is the CS on 7 May.

Since sampling began after the ice had been formed and we did not capture the exact time of ice-off we also made an estimate of \(C_{\text{release}} \) for the whole ice-cover period by accounting for the full duration of the ice cover. We assumed ice-on to occur on the lake after air temperatures below 0 °C persisted for four consecutive days, corresponding to 28 Nov. 2012. We further assumed ice-off to begin on 15 Apr. 2013, corresponding to a sudden and apparent increase in continuously-measured underwater light conditions. Thus, \(\text{CS}_{\text{last ice}} \) was the CS on 28 Nov., calculated as the CS on 13 Dec. minus early winter whole-lake \(r \) (13 Dec. 2012–4 Feb. 2013) times 15 days (28 Nov. 2012–13 Dec. 2013). \(\text{CS}_{\text{first ice}} \) was the CS on 15 Apr., calculated as the CS on 11 Mar. plus late winter whole-lake \(r \) (4 Feb.–15 Apr.) times 35 days (11 Mar.–15 Apr.).

CO₂ emission at ice-melt

Continuous CO₂ concentrations were used to estimate CO₂ emission (\(\text{CO}_2 \), mmol m⁻² d⁻¹) during ice-melt using the following equation:

\[\text{CO}_2 = k_{\text{CO}_2} \times (\text{CO}_2 - \text{CO}_2), \tag{3} \]

where \(k_{\text{CO}_2} \) is the gas transfer velocity (cm h⁻¹) and \((\text{CO}_2 - \text{CO}_2) \) accounts for the difference between CO₂ concentrations in the water and in the air. CO₂ was measured with the SAMI2 instrument at 2 m depth below the surface. CO₂ was set to 406 µatm, the average ambient atmospheric \(p_{\text{CO}_2} \) manually measured at the lake. To account for the difference between CO₂ concentrations just below the water surface we applied a correction factor of –19% to the continuous CO₂ concentration measurements made with the SAMI2 instrument at 2 m depth. This correction is based on the observed CO₂ concentration
difference between 0.5 m and 2 m during the ice-melt period (7 May). The correction results in lower CO$_2$ concentrations at the water–atmosphere interface, thus our CO$_2$ emission estimates are conservative. k_{600} was estimated from k_{600} normalized to a temperature-dependent Schmidt number for CO$_2$ (600 at 20 °C) according to Jähne et al. (1987). k_{600} was derived from wind speed based on the relationship from Cole and Caraco (1998). Since the Cole and Caraco (1998) model was based on measurements from a small, wind-sheltered lake comparable to ours, it is well suited to estimate CO$_2$ emission for this study. Hourly wind speed data were acquired from the nearby meteorological station Kloten site A (59.52°N, 15.15°E). In addition, for validation purposes, k_{600} was also estimated using 6 floating chambers which were placed in the lake to measure k_{600} on 7 May 2013 (Krenz 2013). The floating chamber derived k_{600} for the lake ranged from 1.9 to 4.2 cm h$^{-1}$ with a median of 2.3 cm h$^{-1}$, and the Cole and Caraco (1998) model for the same day corresponded to an estimated median k_{600} of 2.4 cm h$^{-1}$ and range from 2.1 to 3.1 cm h$^{-1}$. Thus, the two k_{600} estimates agreed relatively well. To avoid overestimation of k_{600} at high wind speeds we set the wind speed derived k_{600} to a maximum threshold of 4.2 cm h$^{-1}$ since this was the maximum k_{600} directly measured with floating chambers; again, by doing so we calculate a conservative CO$_2$ emission estimate. The mean ± standard deviation (SD) were calculated for k_{600}, CO$_2$ and CO$_2E$.

Results

Hourly surface-water CO$_2$ patterns

The surface-water (2 m depth) CO$_2$ concentration (continuous measurements) change comprised four distinct phases between ice-on and ice-off: an increase from 22 Jan. to 9 Feb., rather constant concentrations from 10 Feb. to 15 Apr., and two peaks after 15 Apr. (Fig. 2). During 22 Jan.–9 Feb., the ice cover steadily built up, and surface water CO$_2$ concentrations rapidly and significantly increased by 3 µM d$^{-1}$ (Mann-Kendall test: $\tau = 3$, $p < 0.01$, $n = 19$). This increase continued until the ice reached its maximum thickness in early February (Table 1 and Fig. 2). Surface-water CO$_2$ concentration reached a maximum of 187 µM on 9 Feb. and plateaued thereafter until ice-melt began on
15 Apr. During this period (10 Feb.–15 Apr.), surface-water CO$_2$ concentrations did not show a significant change (Mann-Kendall test: $\tau = -0.008$, $p = 0.85$, $n = 65$). As ice-melt began (16 Apr.–20 Apr.), surface-water CO$_2$ concentrations rapidly increased within only two days from 179 µM to 286 µM (on 17 Apr.), which corresponded to an apparent increase in light intensity (Fig. 3C), and was followed by an equally rapid decline to 157 µM within the next two days. This steep first CO$_2$ concentration peak was followed by a more gradual CO$_2$ concentration peak (21 Apr.–4 May) of 197 µM on 30 Apr., followed by a decline to 137 µM within four days (Fig. 2).

Table 1. Ice and snow conditions on the lake, water temperature and chemistry measured at spatially-sampled surface-water sites (Fig. 1, $n = 6$). Mean ± SD for each sampling date is reported. Whole-lake CO$_2$ storage (CS) was estimated from integrating CO$_2$ depth profiles (see Methods); m.d. = missing data, n.a. = not applicable.
CO₂ spatial variability from ice-on to ice-melt

We found that the CO₂ concentrations in the surface and bottom waters (0.5 and 8 m, respectively) at the site with the continuous CO₂ measurements (site Station in Fig. 1) differed significantly (matched pairs t-test result: \(t = 4.1, p < 0.01 \), number of pairs = 6). The largest difference between surface and bottom water CO₂ concentrations (181 µM) at that site occurred in May. The difference remained significant when we considered only the ice-cover period, i.e. five sampling occasions from 13 Dec. to 11 Mar. (matched pairs t-test result: \(t = 4.2, p < 0.05 \), number of pairs = 5). We observed that the difference in the CO₂ concentrations between the surface and bottom waters at the site Station increased below the ice cover from 18 µM on 13 Dec. to 122 µM on 11 Mar. The increase was substantially faster during early winter with mean \(\Delta \text{CO}_2 \) of 1.1 µM d⁻¹ in the surface water and 2.6 µM d⁻¹ in the bottom water as compared with that during late winter when \(\Delta \text{CO}_2 \) equaled 0.5 µM d⁻¹ in the surface water and 1.2 µM d⁻¹ in the bottom water. During the ice-melt period \(\Delta \text{CO}_2 \) was 2.7 µM d⁻¹ in the surface water and 0.2 µM d⁻¹ in the bottom water.

Applying a two-way ANOVA to test the CO₂ concentration variability in the surface water across six sampling sites during the ice-cover period we found that time had a significant effect on the CO₂ variability while site had not (\(F = 7.0, p < 0.0001 \) for time and \(p > 0.05 \) for site, \(n = 30 \)). Thus, the variation in the horizontal CO₂ concentration below the ice cover was insignificant in comparison with the temporal variation in the CO₂ concentration.

Whole-lake CO₂ storage from ice-on to ice-melt

During the sampled ice-cover period (13 Dec. 2012–11 Mar. 2013), whole-lake CS increased by 61% from 27 938 mol to 45 905 mol (Table 1). Whole-lake CO₂ accumulation (Eq. 1) rap-
Denfeld et al. • BOREAL ENV. RES. Vol. 20

686

idly increased in early winter (13 Dec. 2012–4 Feb. 2013) with \(r = 338 \) mol d\(^{-1}\). Thereafter, from 4 Feb.–11 Mar., whole-lake CO\(_2\) storage remained relatively stable until ice-melt (\(r = 1.3 \) mol d\(^{-1}\)). During the ice-cover period (28 Nov. 2012–15 Apr. 2013), whole-lake CS increased by 50\% from 22 868 mol to 45 951 mol. While during the three-week spring ice-melt period (i.e. 15 Apr.–7 May), 33\% of the total whole-lake CO\(_2\) was released, reducing CS to 30 618 mol. This whole-lake CO\(_2\) loss was rapid with \(r \) reaching 665 mol d\(^{-1}\). In total, 18 000–23 000 mol of CO\(_2\) was accumulated in the lake during winter of which 15 000 mol was released at ice-melt, and 3000–8000 mol remained in the lake, mainly in the bottom waters (Fig. 4A). Thus, for the sampled period, \(C_{\text{release}} \) was 85\%, i.e. 85\% of

the total CO\(_2\) accumulated during winter was released at ice-melt. \(C_{\text{release}} \) estimated for the whole ice-cover period equalled 66\%.

CO\(_2\) emission at ice-melt

Although the spring emission of CO\(_2\) at ice-melt has the potential to be strong, with a maximum of 88 mmol m\(^{-2}\) d\(^{-1}\), the spring turnover was short and incomplete. During the spring CO\(_2\)-emission period (16 Apr.–4 May), the daily mean ± SD \(k_{600} \) was 2.6 ± 0.5 cm h\(^{-1}\), and the daily mean ± SD CO\(_2\) concentration 144 ± 23 \(\mu \)M, which corresponds to a daily mean CO\(_2\) emission of 38 ± 11 mmol m\(^{-2}\) d\(^{-1}\). During the first peak, accounting for 28\%–36\% of the total spring CO\(_2\) emissions, the daily mean ± SD \(k_{600} \) equalled 2.7 ± 0.7 cm h\(^{-1}\), the daily mean ± SD CO\(_2\) concentration 167 ± 33 \(\mu \)M, and the daily mean ± SD CO\(_2\) emission 44 ± 16 mmol m\(^{-2}\) d\(^{-1}\). During the second peak which accounted for 64\%–72\% of the total spring CO\(_2\) emissions, the daily mean ± SD \(k_{600} \) was 2.6 ± 0.4 cm h\(^{-1}\), the daily mean ± SD CO\(_2\) concentration 136 ± 11 \(\mu \)M, and the daily mean ± SD CO\(_2\) emission 36 ± 7 mmol m\(^{-2}\) d\(^{-1}\).

Water temperatures below the ice cover

On 13 Dec. (first sampling), the temperature difference between the bottom (8 m) and surface (0.5 m) water layers was greater than 2 °C (Fig. 5A), and this temperature difference remained similar throughout the whole ice-cover season (Fig. 5B). A similar gradient persisting during the entire ice-cover period was observed for oxygen with its content decreasing from the top to bottom waters (data not shown). The temperature difference remained unchanged between the beginning of the ice melt (15 Apr.) and 26 Apr. (Fig. 5C). Thus, water mixing began around 11 days later than the ice-melt.

Discussion

The surface-water CO\(_2\) concentrations measured continuously at 2 m depth from ice-on to ice-off,
showed four distinct phases (Fig. 2). Contradictory to our hypothesis and previous studies (e.g. Huotari et al. 2009), continuous CO₂ concentration measurements and whole-lake CO₂ storage estimates below lake ice revealed that CO₂ did not steadily increase throughout the winter (Fig. 2). Rather, CO₂ concentration and whole-lake CO₂ storage increased only in early winter but in late winter the concentrations remained relatively constant after maximum ice thickness had been reached (Table 1 and Fig. 2).

Previous studies in ice-covered lakes found lower concentrations of CO₂ under the ice in late winter, which was attributed to under-ice primary production (Baehr and DeGrandpre 2004, Huotari et al. 2009). However, in our lake primary production under ice was highly unlikely, as light intensity was below the detection limits (Fig. 3C) due to thick snow and ice cover (Table 1). Also Sobek et al. (2003) found low nutrient concentrations (total phosphorus = 10.8 µg l⁻¹, total nitrogen = 190 µg l⁻¹) and chlorophyll a concentrations being under the detection limit in ice-covered Lake Gäddtjärn.

Since the study lake is small, with a relatively short water residence time (~2 months), and thus substantially affected by the catchment, we suggest that catchment CO₂ inputs (surface and subsurface flow) and biological in-lake CO₂ production are the drivers of surface-water CO₂ accumulation in early winter. Similarly, Karlsson et al. (2013) and Striegl et al. (2001) found decomposition of organic matter and CO₂ inputs from the catchment to be important in early winter. Once ice reaches maximum thickness and surrounding soils freeze, water flow from the catchment to the lake is minimized, reducing catchment inputs and mixing of water masses below ice. This is indicated by the stable temperature profile during the entire ice-cover season (Fig. 5B). Dissolved organic matter in waters under ice in late winter has been suggested to have low aromaticity and represent more heavily-degraded material (Mann et al. 2012) indicating that substrate availability may be a limiting factor for bacterial respiration in the water column during late winter. This is likely in our lake, since bacterial respiration has been suggested to be limited by temperature and substrate availability (Pomeroy and Wiebe 2001), and surface water temperatures remain constantly low during the ice-cover period (Fig. 5B) while the amount of DOC available to bacterioplankton is decreasing during the ice-cover period (Table 1), and probably also the bioavailability of the remaining DOC is progressively reduced.

Sediments are probably an important source of CO₂ to the water column, as indicated by CO₂ increasing with water depth, and by its accumulation rates in the bottom water being higher than in the surface water (Fig. 4A), which is in line with earlier reports of sediment respiration being...
the main source of CO$_2$ emissions from boreal lakes (Kortelainen et al. 2006). The sediments of Lake Gäddtjärn are organic-rich and contain ~25% organic carbon (data not shown), and thus represent an environment that is highly enriched in both substrate and nutrients for microbial growth and respiration, leading to substantial CO$_2$ production. Microbial respiration in sediments is positively and exponentially related to temperature (Gudasz et al. 2010, Bergström et al. 2010), hence sediment respiration can be expected to be higher in deeper parts of the lake where water temperature is higher (4–5 °C) than in surface water (1–2 °C), contributing to the observed higher CO$_2$ accumulation rates in the bottom waters in certain periods (Fig. 4A). The decreasing rate of whole-lake CO$_2$ accumulation (Table 1) may be related to increasing CO$_2$ concentrations in the bottom water over time (Fig. 4A), since the CO$_2$ concentration gradient between the sediment and water is reduced when the CO$_2$ concentration in bottom water increases, thereby reducing the rate of diffusion of CO$_2$ from the sediment to the bottom water. In other words, increasing bottom-water CO$_2$ limits further CO$_2$ diffusion from the sediment. Thus, in this small boreal lake we can divide the ice-cover period into two phases determined by the interplay between biological and physical factors. Similar was proposed by Bertilsson et al. (2013).

During late winter, it is likely that localized small-scale physical processes, i.e. water movements, give rise to small-scale oscillations observed in the continuous surface-water CO$_2$ concentration measurements, rather than biological processes. However, investigation of microbial activity (e.g. respiration rates, isotope analysis) under ice is further needed to confirm this. Nevertheless, physical processes can largely differ among lakes depending on lake morphometry (e.g. Riera et al. 1999). In larger and deeper lakes, large-scale physical processes (e.g. internal seiches and deep water turnover) were observed below the ice cover (Baehr and DeGrandpre 2002, and Baehr and DeGrandpre 2004, respectively). However, such processes are less likely to occur in wind-sheltered, small, moderately-shallow lakes such as ours. Hence, differences in physical processes as a result of differences in lake morphometry might explain why CO$_2$ accumulation below ice can show very different patterns among lakes.

This is the first study showing that two CO$_2$ concentration peaks can occur as ice-melt begins, resulting in two potentially distinct events of high CO$_2$ emission. In contrast, Baehr and DeGrandpre (2004), and Huotari et al. (2009) recorded only one CO$_2$ peak at ice-melt which they attributed to a combination of deep water mixing and net production. However, our continuous CO$_2$ concentration measurements revealed an unexpected initial peak in surface-water CO$_2$ on 17 Apr. that was not driven by bottom-water convective turnover, here indicated by temperature differences of more than 2 °C between bottom and surface waters at the time of the first CO$_2$ concentration peak (Fig. 5C). As ice-melt begins, cold, low-density, lateral catchment inputs of melting snow and stream water (Bengtsson 1996) can increase water column stability and thereby inhibit mixing to deeper layers (Kirillin and Terzhevik 2011). During spring thaw, snow meltwater and stream water have been shown to contain high concentrations of CO$_2$ (Dinsmore et al. 2011, Dinsmore et al. 2013, Wallin et al. 2013). Thus, we suggest that the first and highest CO$_2$ concentration peak during ice-melt was a result of small-scale, upper water column mixing of CO$_2$ transported laterally from the surrounding catchment. CO$_2$-rich surface and subsurface inflows and CO$_2$ mobilized from catchment soils by meltwater enriches littoral zones of a lake with CO$_2$ and organic matter which is then transported to the central part of the lake. Since this incoming water is cold it will only mix at similar temperature gradients in the upper water column of the lake. During the second CO$_2$ concentration peak on 30 Apr., however, convective turnover of deep waters becomes important, seen in our data as weakening in thermal stratification beginning on 26 Apr. (Fig. 5C). Thus, in addition to deep-water mixing, our study highlights the importance of lateral CO$_2$ transport at ice-melt, particularly in small lakes, which have relatively large littoral zones and catchment-to-lake-area ratios, and are the most common lake type worldwide (Downing et al. 2006). Studies that investigate lateral CO$_2$ transport into the lake at ice-melt are valu-
able and these measurements should be included in future studies to estimate their contribution to CO₂ emissions.

During the rapid decline in the CO₂ concentration at ice-off, the maximum CO₂ emission reached 88 mmol m⁻² d⁻¹, and the daily mean ± SD CO₂ emission was 38 ± 11 mmol m⁻² d⁻¹, which were comparable to the values found for a small boreal lake in Finland after ice breakup (maximum and mean ± SD of 55.6 mmol m⁻² d⁻¹ and 30.9 ± 16.7 mmol m⁻² d⁻¹, respectively; see Huotari et al. 2009). Although maximum CO₂ emission rates from our lake can be considered high, spring turnover was incomplete due to rapid warming of surface waters. Thus, as already suggested by Miettinen et al. (2015), and indicated by the continuous surface-water CO₂ measurements, high CO₂ emissions at ice-melt during a year with incomplete spring turnover provide some evidence that external sources of CO₂ enter the lake at ice-melt. Further, incomplete turnover resulted in CO₂ remaining in the bottom waters of the lake (Fig. 4A), as not all of the CO₂ accumulated under ice was able to leave the lake at ice-out. We estimated that during the ice-cover period (13 Dec. 2012–11 Mar. 2013), 85% of the total CO₂ accumulated below ice in the lake was released at ice-melt. This value was reduced to 66% when the whole ice-cover period (28 Nov. 2012–15 Apr. 2013) was taken into account. Either way, CO₂ remains in the lake and is not released at ice-melt, representing a non-negligible fraction of CO₂ accumulation under ice. These results indicate that the current assumption regarding CO₂ emission estimates that all CO₂ accumulated during the ice-cover period is emitted at ice-melt (e.g. Raymond et al. 2013) may not always be true. In our lake, 15%–34% of accumulated CO₂ remained, thus the whole-lake CO₂ storage was 3000–8000 mol higher at ice-off than it was at ice-on. Albeit, the storage of this remaining CO₂ may only be temporary, as CO₂ may be transported downstream or released to the atmosphere during autumn turnover which was shown to be strong (Bellido et al. 2009). Alternatively, CO₂ may be internally processed if it is consumed by phytoplankton or undergoes dark carbon fixation (Santoro et al. 2013). This result should be interpreted with caution as patterns can differ across lakes and years. For example, the stability of stratification and the depth of water column mixing at ice-melt have been found to vary between years (Huotari et al. 2009, Miettinen et al. 2015). Thus, future studies should measure the whole-lake CO₂ storage seasonally over many years to establish long-term patterns.

As compared with the open-water season, identified regulators of winter CO₂ accumulation, biological processes and thermal stratification, are similar. During summer, thermal stratification, and biological processes have been shown to mainly affect CO₂ distribution in the water column of lakes (Weyhenmeyer et al. 2012). Our results further suggest that biological processes and thermal stratification affect water-column CO₂ distribution in early and late winter, respectively. Although Schilder et al. (2013) found horizontal CO₂ surface water variability during the open-water season, with lower CO₂ concentrations found near-shore than in the middle of the lake, we did not find significant horizontal CO₂ surface water variability under ice (Fig. 4B). In-lake spatial variation during the ice-cover period may be lower than during the open-water season because ice cover creates a cold, dark environment in the lake which reduces variations in physical (e.g. lake mixing) and biological (e.g. metabolism) processes. Also, organic matter degradation in shallow, littoral sediments is greatly reduced at temperatures < 2 °C close to the ice (Gudasz et al. 2010). Whereas, during the open-water season, physical and biological processes can greatly vary within the lake (e.g. Hofmann 2013). In addition, we found that the difference in the CO₂ concentrations between the surface and bottom waters increased throughout winter with greatest variability at spring melt when CO₂ was emitted from surface waters. Since horizontal variability was low and vertical variability was large, repeated or continuous measurements at one point but at several depths may be sufficient to calculate whole-lake CO₂ accumulation during the ice-cover period.

In summary, this study showed that (1) CO₂ accumulation is not simply linear under ice, (2) CO₂ was accumulated faster in bottom waters than in surface waters, and (3) at ice-melt, a non-negligible fraction (15%–34%) of CO₂ that
was accumulated under ice was not emitted and remained stored in the bottom waters. These results provide new understanding of lake-water CO2 distribution patterns under ice and at ice-melt and need to be taken into consideration when estimating annual CO2 emissions. If up-scaling approaches assume that CO2 accumulates linearly under ice and that all CO2 accumulated during the ice-cover period leaves the lake at ice-melt, present estimates may overestimate CO2 emissions from small, ice-covered lakes. Likewise, neglecting CO2 at ice-melt will result in an understimation of CO2 emissions from small ice-covered lakes. Comparative studies are further needed to advance our understanding of difference in CO2 accumulation patterns across lake type and region. How much changes in the duration of the ice-cover period in a warmer climate will affect the balance between winter CO2 accumulation and spring CO2 outburst remains to be studied.

Acknowledgements: Financial support was received from the NordForsk approved Nordic Centre of Excellence “CRAICC”, the Swedish Research Council (VR) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS). This work is part of and profited from the networks financed by NordForsk (DOMQUA), Norwegian Research Council (Norklima ECCO), US National Science Foundation (GLEON) and the European Union (NordForsk approved Nordic Centre of Excellence). We thank Marie-Eve Ferland for providing lake contour maps and Jan Johansson and numerous others at Uppsala University limnology group for assistance in the field. We would also like to thank two anonymous reviewers.

References

