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1 Introduction
The application space is increasingly well protected, with various new devel-
opment, testing, and runtime security mechanisms being able to detect and
prevent several security-critical bugs. Therefore, the kernel, with its power
to circumvent any application security, has become an increasingly attractive
target. We look at two aspects of Linux kernel security, both related to
memory safety. First, we look at use-after-free errors due to integer overflows
in the handling of shared objects. Second, we look at preventing kernel
buffer-overflows and similar errors using Intel Memory Protection Extensions
(MPX) hardware. We propose solutions for both. The former leading to
the introduction of the new refcount_t type, to which we contributed with
API additions and kernel-wide conversions (Section 2). The latter leading to
MPXK (MPX in Kernel), a proposed in-kernel pointer bounds checker with
low memory and performance overheads (Section 3).

1.1 Linux Security

Linux is traditionally considered one of the more secure operating systems.
This distinction has recently waned due to security improvements by com-
petitors and the spread of Linux itself. In particular, the prevalence of Linux
in embedded, Internet of Things (IoT) and mobile devices has significantly
increased availability and interest in Linux systems, and thus shone new
light on its security woes. The growing number of Android devices1 has
undoubtedly been a contributor to both favorable and malicious interest in
Linux.

User-facing applications, such as mobile phone applications and desktop
applications, are typically easy to upgrade with minimal to no user interaction.
However, embedded devices and the growing IoT horde do not share this
ease of upgrade and are typically either cumbersome or downright impossible
to upgrade. On mobile phones, app stores ensure that applications on mobile
devices get updates, but the operating system itself is often non-trivial to
update. Due to costs Android OEMs, therefore, offer updates for only a
relatively short period. In November 2016 only 24, 4% of active Android
devices were running an operating system newer than or equal to Android
Marshmallow, released in May 2016 [16]. Based on the Android Open Source
Project, Marshmallow runs v3.18 of the Linux kernel [17a], meaning that
over 75% of devices at that time were running a Linux kernel older than two
years.

Embedded devices, IoT, and mobile phones are long-lived, which, coupled
with lack of updates, means that there is a growing number of devices running
on aging software. Many low-cost devices also use unsecured mainline kernels
without available security patches or tools. Updates for the underlying Linux

1The Android market share in the first quarter of 2017 was 85% according to IDC [17i]
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kernel are typically not available despite possible application updates. Kernel
vulnerabilities thus provide long-lived exploits for these devices. Kernel
vulnerabilities can also be used to target a multitude of devices ranging from
IoT devices to servers.

Kernel bugs themselves exhibit troublesome longevity. According to a
2011 examination of Linux kernel vulnerabilities [Cor10], a vulnerability
has an average lifetime of about five years, i.e., there will be five years
between the introduction of a vulnerability and its eventual discovery and
patching. Another similar analysis based on Ubuntu Common Vulnerabilities
and Exposures (CVE) tracker data from 2011 to 2016, found 33 high-risk
CVEs based on bugs with an average lifetime of 6.4 years [Coo16]. Moreover,
based on data from CVE Detail, the total rate of Linux Kernel related CVEs
is also on the rise [17c].

The patching and vulnerability patterns suggest that the Linux kernel
cannot rely solely on a retroactive approach to fixing security issues. There-
fore, to provide wide-reaching protection, the mainline kernel should itself
be as secure as possible. Kernel security development must also focus on
security improvements that prevent whole classes of bugs, not individual
cases. These conclusions motivated the 2015 introduction of the Kernel Self
Protection Project (KSPP) [Coo15]. The KSPP is an upstream project, i.e.,
its goal is to introduce improvements directly to the mainline kernel itself.
PaX/Grsecurity [17h] is a long-standing security patch-set separate from
the mainline kernel. It inspired KSPP and served as an initial source for
upstreamed features. The first part of our work is done under the KSPP and
has its roots in PaX/Grsecurity.

1.2 Memory Safety

A fundamental security aspect of any programming language is its memory
safety, i.e., its susceptibility to memory errors. Languages with lacking
memory safety can be protected using several approaches, ranging from
probabilistic mitigation and detection systems to full-fledged memory safety
solutions offering complete mediations of memory access [SPW13]. Memory
safety is viewable from two perspectives: the temporal and spatial. A typical
temporal memory error is the use-after-free error, i.e., using a freed pointer,
whereas the stack buffer overflow is the classic example of a spatial memory
error.

In a stack buffer overflow attack a stack-based array is overflown to
overwrite other stack-based data, including function return addresses. The
attack thus allows the insertion and execution of arbitrary code. Use-after-
free errors happen when a freed pointer is used and can be exploited to achieve
arbitrary code execution. Modern systems typically prevent code injection
with W⊕X memory schemes, i.e., ensuring memory regions are either writeable
or executable but not both. The Linux kernel has since 1997 prevented the
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execution of stack-based memory [Sol97b]. Return Oriented Programming
(ROP) attacks circumvent this mechanism by reusing existing program code
for needed behavior [Sha07]. Later techniques mitigate ROP attacks. Address
Space Layout Randomization (ASLR), for instance, obscures the memory
layout to prevent an attacker from locating specific code needed for ROP
attacks [PaX03a; XKI03].

The protections above, despite being crucial in mitigating vulnerabilities
and reducing attack surface, do not prevent all memory errors. There have
however been many proposals to achieve this, from early proposals such as
Shadow Guarding [PF97; PF95], CCured [Nec+05] and Cyclone [Jim+02]
to more recent contenders such as Baggy Bounds Checking [Akr+09] and
SoftBound [Nag+09]. Unfortunately, these tools typically are either incom-
patible with existing code and libraries or provide poor runtime performance.
Some systems, such as the AddressSanitizer [Ser+12] and Valgrind [NS07b],
are in frequent use, although mainly in development and testing, again due
to performance concerns. A later contender, featuring acceptable runtime
performance, is Intel MPX [Int16] which we use in the second part of our
work.

1.3 Structure of Thesis

In this thesis, we will look at some aspects of both spatial and temporal
memory safety. In Section 2 we look at reference counters, a technique used
to manage the lifetime of shared objects [Col60; Kro04]. Reference counters
by themselves are not a security mechanism, but recent related CVEs, CVE-
2014-2851 [cve14a], CVE-2016-4558 [cve16b] and CVE-2016-0728 [cve16a],
show that they are a source of critical security bugs. Section 2.1 provides
necessary background information and Section 2.2 details our requirements.
We present both our initial proposal and the eventually used solution, in
Sections 2.3 and 2.4, respectively. Section 2.5 evaluates the solution based
on our requirements.

The latter part of our work is focused on preventing in-kernel spatial
memory errors using Intel MPX and is presented in Section 3. The presen-
tation is similar: Section 3.1 provides background, Section 3.2 details the
requirements, Sections 3.3 and 3.4 present the solution and challenges, which
are evaluated in Section 3.5. Related work is discussed in Section 4, and
finally the conclusions in Section 5.
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2 Preventing Reference Counter Overflows
Memory-safe languages typically manage the lifetime of objects with little to
no intervention from the programmer. Garbage Collection, which automati-
cally frees an object’s memory when it is no longer needed, has been around
since early proposals for Algol-68 [BL70]. Another basic technique, in C++
for instance, is using smart pointers that detect and free orphaned objects.
Neither of these techniques is readily available in the Linux kernel, not only
due to language limitations — the kernel implementation language is C —
but also because the kernel needs fine-grained control and timing of memory
operations. The kernel thus employs reference counters to track the lifetime
of objects.

A reference count is a value that keeps track of how many references,
i.e., pointers, to an object are in use. Reference counters are error-prone
because they require direct updating by the programmer. They are used to
manage shared objects, which on multi-threaded systems means that they are
also subject to concurrency issues. Due to the concurrency issues, reference
counters are implemented using the atomic_t type [McK07]. The atomic_t,
as an all-purpose integer, leaves ample room for errors, which prompted
the introduction of the kref type [Kro04]. Unfortunately, both types are
vulnerable to reference counter overflows, i.e., an integer overflow in the
underlying implementation. An overflow can cause a counter to inadvertently
reach zero, thereby causing the object’s memory to be freed while still in use.
In this part of our work we focus on the overflow vulnerability in particular,
but also consider the performance, maintainability, and usability of our
solution.

This work was proposed to us by the KSPP and was initially directly
based on an existing PaX/Grsecurity feature. We discuss reference counters
and their security considerations in Section 2.1, based on which we formulate
the requirements for our work (Section 2.2). We initially proposed and
implemented HARDENED_ATOMIC, a solution based on prior work (Section 2.3).
This approach was ultimately discarded but prompted the introduction of
refcount_t to the mainline kernel. Our contributions to the latter include
kernel-wide analysis of reference counters, an extension to the refcount_t
Application Programming Interface (API), and kernel-wide conversion of
existing reference counting schemes (Section 2.4). We evaluate the solution
against our requirements in Section 2.5.

2.1 Background

Reference counters are, on the surface, a simple mechanism used to maintain
object lifetimes. They are, however, inherently tied to concurrency issues
(Section 2.1.1) and hide surprising nuance in the details (Section 2.1.2).
Reference counters in the Linux kernel (Section 2.1.3) are typically imple-
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mented using atomic integers or the kref type, both of which can overflow
(Section 2.1.4). Our initial work was based on an existing PaX/Grsecurity
solution (Section 2.1.5).

2.1.1 Concurrency

Reference counters are needed for shared objects in particular. On multi-
threaded systems, this means that concurrency is an inherent part of reference
counters. Therefore, it is useful to briefly consider these issues before diving
into the details of reference counters themselves. High-level languages often
provide concurrency mechanisms, such as locks and semaphores, that hide
issues such as compiler and CPU optimizations. These can, however, cause
various problems in low-level C. While some of these mechanisms and are
implemented in the Linux kernel, they must often be avoided for performance
considerations.

Some concurrently accessed kernel objects, such as reference counters,
have minimal critical sections and exhibit only brief periods of concurrency.
In such cases, locking mechanisms can introduce substantial overheads when
compared to the execution of the critical section itself. For example, atomic
integers typically have critical sections consisting of a single instruction.
One way to avoid blocking and context switches is the spinlock, which
continuously keeps checking the lock instead of blocking. Moreover, using
atomic operations can minimize the need for locking in the first place. All
functions, however, do not have native atomic implementations.

Data-types that support an atomic compare-and-swap operation can use
it to create a thread-safe implementation of any arbitrary value-changing
function. On Linux, the compare-and-swap is typically named cmpxchg,
which is also the name of the same x86 instruction. The cmpxchg is shown
in Algorithm 1. The function takes a target, atomic, a compare value, comp,
and a potential replacement value, new. The value of atomic is replaced
with new only if its prior value was comp. Whether or not atomic is changed
cmpxchg always returns its prior value. The function is, on Linux, guaranteed
to be available on all supporting architectures, whether natively supported
by the hardware or not. On x86 architectures, it is implemented as a single
inline instruction.

The cmpxchg can be used to build a compare-and-swap loop. Intuitively
the idea is to take a local copy of the value, modify that local copy as
needed, and finally, unless concurrent modifications took place, write the
temporary value into the original object. The last part is enforced by using
cmpxchg to ensure that the initial local copy still matches with the value
of the original. Algorithm 2 shows an example where a compare-and-swap
is used to atomically apply func on an object. func can be an arbitrary
long non-atomic function because the cmpxchg ensures that the value of
atomic, i.e., old, is equal to its initial value val. The loop is iterated until the
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1: old ← atomic.value
2: if old = comp then
3: atomic.value ← new
4: end if
5: return old

Algorithm 1: cmpxchg(atomic, comp, new) sets the value of atomic to
new if, and only if, the prior value of atomic was equal to comp. It
always returns the prior value of atomic. On x86 it is implemented as a
single inline CPU instruction.

1: old ← atomic.value
2: repeat
3: val ← old
4: new =func(val)
5: old ←cmpxchg(atomic, old, new)
6: if old = val then
7: return
8: end if
9: until false

Algorithm 2: cmpxchg_loop(func, atomic). This function uses a
compare-and-swap loop to atomically perform the non-atomic func-
tion func on an object atomic that supports the cmpxchg function. Only
the cmpxchg function must be atomic.

cmpxchg succeeds and thus potentially requires several executions of func.
However, if the func is fast, for instance only a few arithmetic operations,
it is likely that the loop will be executed only once. In the Linux kernel,
this pattern is often used to implement various functions that lack direct
hardware support for atomicity.

In addition to more traditional challenges with concurrency, the compiler
and CPU might introduce some more esoteric concurrency issues related to
memory ordering. Memory ordering refers to the order in which write opera-
tions are actually committed to memory, as opposed to where they appear
in the source code. Compiler optimizations can remove statements that are
deemed unnecessary and change code structure in ways that do not change
the end result. Other concurrently executing code might, unfortunately,
depend on intermediate states. The CPU itself can cause related problems
due to the relaxed memory consistency models used by modern CPUs, such
as the Intel and ARM CPUs [Int16; ARM]. A relaxed memory consistency
model means that the CPU does not always guarantee a specific ordering
for any sequence of instructions. This allows the CPU to optimize the order
of writes and reads, as long as the resulting values stay the same. This can,
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again, produce unexpected results when concurrently running threads rely
on the same data [AG96].

Consider the code snippets in Listing 1. For a reader familiar with
concurrency issues it should be evident that the output of the printf can be
either 3, 12 or 30, depending on which CPU executes first. What might be
surprising is that the result could also be 21; this could happen because the
CPU optimized and swapped the ordering of the read and write instructions.
This re-ordering would not be a problem in serialized execution environments
but does necessitate further protections when concurrent execution is possible.
The solution for this is memory barriers, i.e., instructions that ensure that
writes or reads are all visible before the barrier. Because memory ordering
is architecture dependent, related Linux APIs (e.g., atomic types) provide
common guarantees which are then enforced by the architecture-specific
implementations.

These specific intricacies of reference counter implementations will be
further discussed where pertinent to our work. It is worth reiterating that
while many of the discussed concurrency problems could be easily remedied
with common high-level constructs, such as locks, mutexes, and semaphores,
low-level methods allow much greater flexibility in implementing efficient
and highly specific solutions. However, with this great power comes great
responsibility, and low-level solutions can indeed be more error-prone.

2.1.2 Reference Counters

A reference counter is, at its core, an integer tracking the number of references
to a specific object. The purpose is to manage the lifetime of the reference
object, i.e., to ensure memory is not freed while in use and to free memory
as soon as it is no longer used [Col60]. This is typically a problem for shared
objects; when acquiring a shared object, often via an object-specific get
function, the object might or might not be allocated. Similarly, when a code
path stops using the shared object, it must ensure that either the object
is in use elsewhere, or that it is freed. Again, this is typically done in an
object-specific function, often with a name such as put. Readers familiar
with object-oriented programming probably recognize that these are similar
to constructor and destructor functions. Algorithm 3 shows a simplified get
function, which is called when an object is taken into use. The get function
checks the counter, allocates the object if needed, and updates the counter if
not.

7



1 /∗ g l o b a l shared d e f i n i t i o n s ∗/
2 int var_A = 1 ;
3 int var_B = 2 ;
4
5 /∗ S p l i t e xecu t i on i n t o two threads on d i f f e r e n c t CPUs ∗/
6 /∗ CPU 1 ∗/ /∗ CPU 2 ∗/
7 var_A = 10 ; int x = var_A ;
8 var_B = 20 ; int y = var_B ;
9 p r i n t f ( "%d" , x+y ) ;

10
11 /∗ P o s s i b l e outcomes : ∗/
12 /∗ x : 1 10 10 1 ∗/
13 /∗ y : 2 2 20 20 ∗/
14 /∗ output : 3 12 30 21 ∗/

Listing 1: Example code to illustrate issues resulting from relaxed
memory consistency models. The three first outcomes are intuitively
clear, but it is surprising that execution on some CPUs might also result
in the fourth option of 21. Code is loosely based on [Tor, Linux v4.9,
Documentation/memory-barriers.txt].

When an object is no longer used, a put function, similar to the one
in Algorithm 4, is called. This function decrements the object’s reference
counter, and if it reaches zero, also deallocates the object. Note that both
Algorithm 3 and 4 are simplified, particularly in that they ignore concurrency
issues. A practical thread-safe implementation must, for instance, guarantee
that memory allocation and freeing is performed only once, and that reference
counter updates are thread-safe.

Reference counting is not typically needed in memory-safe, where garbage
collection or other mechanisms automatically call associated constructors and
destructors without any direct input from the programmer. In the context of

1: if obj.refcount > 0 then
2: obj.refcount = obj.refcount + 1
3: return obj;
4: end if
5: obj =allocate_and_init_obj()
6: obj.refcount = 1
7: return obj;

Algorithm 3: A simplified get function, called when a user wants to
get a shared object obj. The function checks whether the associated
reference counter obj.refcount is zero, and if so it allocates the object.
In other cases the reference counter is non-zero, and therefore assumed
to be allocated and in use.
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1: obj.refcount = obj.refcount − 1
2: if obj.refcount = 0 then
3: free_and_cleanup_obj(obj)
4: end if
5: return

Algorithm 4: A simplified put function, called when a user stops using
a shared object obj. The function decrements the associated reference
counter and if it reaches zero, performs necessary cleanup and frees
associated memory.

the Linux kernel, implemented in C, such mechanisms are simply unavailable,
thus justifying the heavy reliance on reference counters. Reference counters
are used to manage many different objects in the kernel, some of which are
apparent; specific hardware resources must, for instance, be initialized and
shut down only once, despite potentially being shared extensively between
different systems. Other use cases are less obvious; consider something
as specific as an in-kernel data structure containing the mandatory access
control (MAC) group membership for running processes. The data-structure
is shared with descendant processes to avoid needless duplication and ensure
consistency, hence requiring a reference counter to keep track of its use.

Reference counters must ensure not only consistency but also the timeli-
ness of the counters and related operations. Using atomic integers ensures
consistency of the counters, but does not guarantee that object construction
and destruction is thread-safe. Consider for instance the code in Listing 2.
Although individual operations are atomic, i.e., the atomic variable itself
remains correctly updated, the execution order could otherwise be such that
the object gets freed by Thread 1 before it is used by Thread 2. Value
checks and corresponding value changes must therefore typically be executed
atomically. A typical solution for this timeliness problem is to use atomic
functions that combine the value check and modification into a single atomic
call. For example, increments can be executed with an atomic function that
prevents and reports increment on zero.

As mentioned, the reference counter operations, including object alloca-
tions and releases, are typically encapsulated in object specific get and put
functions. These functions then, transparently to the caller, manage both
the object lifetime and its reference counter. In practice, implementations
prefer using atomic operations for performance reasons and only employ
heavy-weight locking when strictly necessary. Either way, these are typically
issues related to specific objects and their implementation, with one major
exception: Reference counting schemes rely on the programmer manually
calling the put and get functions. Not only must these functions be called,
but users must ensure that put is called upon release exactly as many times

9



1 shared_object = { . r e f count = 1 , . data = . . . } ;
2
3 /∗ Thread 1 ∗/ /∗ Thread 2 ∗/
4 a = get_shared_object ( ) ; b = get_shared_object ( ) ;
5 atomic_dec (a−>re f count ) ; i f ( ! i s_zero ( a−>re f count ) ) {
6 i f ( i s_zero ( a−>re f count ) atomic_inc (a−>re f count ) ;
7 f r e e ( a ) ; use_shared_object (b ) ;
8
9 /∗ p o s s i b l e execu t i on order ∗/

10 /∗ Thread 1 Thread 2 ∗/
11 a = get_shared_object ( ) ;
12 b = get_shared_object ( ) ;
13 i f ( ! i s_zero ( a−>re f count ) ) {
14 atomic_dec (a−>re f count ) ;
15 i f ( i s_zero ( a−>re f count ) )
16 f r e e ( a ) ;
17 atomic_inc (a−>re f count ) ;
18 use_shared_object (b ) ;

Listing 2: Example of a unsafe reference counter use. Code such as this
would introduce a potential race condition causing already freed memory
to be used in Thread 2, and is thus a clear programming error.

as get. The put, in particular, is problematic because it must be called in
all instances, such as potential error handlers or other abnormal code paths.

A final issue of concern is compiler and CPU optimizations, discussed
in Section 2.1.1. In particular, reference counter implementations must use
memory barriers to ensures that reference counters, when needed, operate on
timely data. These issues are partially avoided by using atomic types that
provide full memory ordering. However, users must still be careful on object
destruction and creation. For instance, an object must be initialized only
once and must not be exposed, i.e., shared, before it is fully initialized.

2.1.3 Reference Counters in Linux

The use of reference counters is quite widespread in the Linux kernel and
they are used in all parts of the kernel. The kernel, by its very nature, needs
to manage a huge number of shared resources, everything from files, user-
data, memory allocations to hardware resources. Even in situations when not
strictly necessary, it is often more efficient to share data rather than duplicate
and recreate it. The specific performance and thread-safety requirements
for different shared objects are also quite varied, further diversifying the
reference counter landscape. We also found several cases with an unclear
distinction between reference counters and statistical counters.

Typical Linux kernel reference counters follow the common get+put
pattern, where the counter, memory allocations, and memory releases are
hidden in the get and put functions. As an example, consider the MAC
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groups of a process. The data structure for these groups is stored in the
struct group_info data structure and is managed by the Linux credential
management system. The data is shared between descendant processes and
therefore uses a reference counter to ensure safe removal after all processes
are dead. The put_group_info preprocessor macro, shown in Listing 3, en-
capsulates the required logic, allowing users to simply call it when discarding
the local reference to the data. A process can then just call put_group_info
upon termination, it need not concern itself with counter values, nor even if
the data is freed or not.

The diverse use-cases for reference counters is evident when, for instance,
contrasting the used group_info data structure with struct sock socket
data structure. The struct sock is part of the networking subsystem and is
defined in include/net.sock. It is used to store information on a network
socket and uses a reference counter to track its uses. In contrast to the
sporadically used group_info, the network sockets need to potentially serve
thousands of requests per second, thus imposing very different performance
requirements.

Linux kernel reference counting mechanisms can be divided into different
categories depending on atomicity guarantees, value-check schemes, and
memory barriers [McK07]. The plain counter, essentially a bare int or long
integer, is appropriate in a situation where concurrent access is limited by
other means. In such trivial cases reference counter related concurrency
issues are typically non-existent and can thus be ignored. We have observed
that Linux kernel reference counting schemes rely on atomic integer types to
provide atomicity, timely value-checks, and required memory barriers. To be
specific, most in-kernel reference counting schemes directly use one of the
atomic types, or in, some cases, the kref type.

2.1.3.1 Atomic Types as Reference Counters

The atomic_t type is an integer data-type with an atomic API for access-
ing and modifying it. The type is frequently used in reference counting
schemes and therefore provides several reference counter specific accessors,
including atomic functions that combine value checks with modifications.

1 #define put_group_info ( group_info ) \
2 do { \
3 i f ( atomic_dec_and_test (&( group_info)−>usage ) ) \
4 groups_free ( group_info ) ; \
5 } while (0 )

Listing 3: Example of a reference counter put function that
decrements and potentially frees related resource [Tor, Linux v4.8,
include/linux/cred.h].
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For example, the atomic_dec_and_test function, which atomically decre-
ments the variable and returns true if the resulting value is zero, or the
atomic_inc_not_zero, which atomically increments a non-zero value and
returns true when the resulting value is non-zero. Listing 4 shows a typical
use of these functions and essentially provides a concrete implementation for
the put and get (Algorithms 3 and 4).

Due to performance requirements, different architecture support, and
concurrency issues, the atomic types are quite challenging in their imple-
mentations. To further complicate matters the atomic integers constitute
a suite of types — atomic_t, atomic_long_t, atomic64_t, and local_t —
all with architecture-dependent differences. The atomic_t type is defined
as a C integer, as shown in Listing 5, and thus is of architecture-specific
size. atomic_long_t is similarly defined as an architecture-specific C long,
thus typically being either 32bit or 64 bits of size. The atomic_long_t type
was introduced to provide a way to use 64bit atomic integers on supporting
platforms while cleanly falling back to 32bit integers for platforms that do
not [Lam05]. The atomic64_t, on the other hand, provides an atomic integer
guaranteed to be of 64bits size. Finally, local_t provides a single-CPU
atomic integer, i.e., one that guarantees atomicity only when used by a single
CPU.

What makes these types confusing is that they are cross-dependent. As
shown in Listing 6, atomic_long_t is on architectures with a 64bit long
defined as an atomic64_t, otherwise as an atomic_t. This way of defining
the atomic types provides the described type sizes with minimal code duplica-
tion. From a performance and implementation perspective, architectures can
implement only atomic_t and atomic64_t, and still guarantee that both
atomic_t and atomic_long_t use native types. In contrast, atomic64_t
guarantees the size but might default to a generic, non-architecture specific,
implementation and thus provide lower performance.

Linux provides generic, i.e., not architecture-specific, implementations
for most atomic API calls. These implementations can, and typically are,
replaced by architecture-specific implementations. Because the generic im-
plementation must rely on commonly available functionality, they are often
slower than their architecture-specific counterparts. Consider for instance the
generic implementation for atomic_add, shown in Listing 7. The function
uses the compare-and-swap loop, described in Section 2.1.1, which requires
only an atomic cmpxchg function. Architecture-specific implementation can,
despite the elegance of the compare-and-swap loop, typically offer a faster
architecture-specific implementation. The x86, for instance, implements the
same atomic_add function with a single instruction, as shown in Listing 8.
The compare-and-swap loop, by contrast, requires at least four instructions to
complete, as it must separately read the original value, calculate the updated
value, perform the compare-and-swap, and finally conditionally break out of
the loop.
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1 obj ∗ shared ;
2
3 void r e l ea se_shared ( ) {
4 i f ( atomic_dec_and_test ( obj−>re f c n t ) )
5 f r e e ( shared ) ;
6 }
7
8 obj ∗ acquire_shared ( ) {
9 i f ( atomic_add_unless ( obj−>re f cn t , 1 , 0 ) )

10 return shared ;
11 /∗ e l s e a l l o c a t e new one and re turn i t ∗/
12 . . .

Listing 4: Example usage of atomic_dec_and_test and
atomic_add_unless. The combined atomic value checks and
writes of atomic_t allow safe implementation of reference values checks.

1 typedef struct {
2 int counter ;
3 } atomic_t ;

Listing 5: Definition of atomic_t [Tor, Linux v4.9,
include/linux/types.h].

1 #i f BITS_PER_LONG == 64
2
3 typedef atomic64_t atomic_long_t ;
4
5 #define ATOMIC_LONG_INIT( i ) ATOMIC64_INIT( i )
6 #define ATOMIC_LONG_PFX(x ) atomic64 ## x
7
8 #else
9

10 typedef atomic_t atomic_long_t ;
11
12 #define ATOMIC_LONG_INIT( i ) ATOMIC_INIT( i )
13 #define ATOMIC_LONG_PFX(x ) atomic ## x
14
15 #endif

Listing 6: Definition of atomic_t [Tor, Linux v4.9,
include/asm-generic/atomic-long.h].
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As an astute reader might have realized most of the various cross-
dependencies — convoluted inheritance between atomic_t, atomic_long_t
and atomic64_t and generic implementations with optional architecture-
specific implementations — cannot rely on language-provided object-oriented
mechanisms; the Linux kernel is implemented in C. This means that all of
this is implemented using pre-processor macros controlled by various options
and configuration flags. The declarations for the four types and their APIs
also span several different header files, some mixing definitions for different
types. The actual source code, as is typical in the Linux kernel, also heavily
employs pre-processor macros to reduce code duplication; for example, the
verbatim implementing for the generic atomic_add is shown in Listing 9.

The main atomic functions guarantee full memory ordering, i.e., all prior
memory operations are committed to memory before the function call and
subsequent operations after the call. The atomic API also provides functions
with less stringent ordering. The relaxed variants give no guarantees on
whether individual memory operations on the atomic variable are perceived
as having happened before or after calling the atomic function. The relaxed
variants are not used for reference counting in the Linux kernel. For more
discussion on memory ordering and memory barriers see Section 2.1.1.

The Linux atomic types are convenient to use for reference counting
because they sidestep any concurrency issues related to optimizations and
memory ordering. They nonetheless leave ample room for incorrect and unsafe
implementation of reference counting schemes. The seemingly simple acquire
and release pattern, shown in Listing 4, is seldom as cleanly separated from
other program logic. For example, in some cases frequently used objects might
be recycled instead of repeatedly freed and reallocated. In Section 2.1.4 we
will explore other subtleties that have historically caused reference counting
errors.

1 stat ic i n l i n e void atomic_add ( int i , atomic_t ∗v )
2 {
3 int c , o ld ;
4
5 c = v−>counter ;
6 while ( ( o ld = cmpxchg(&v−>counter , c , c + i ) ) != c )
7 c = old ;
8 }

Listing 7: The atomic_add implementation. While written concisely the
function employs the already familiar compare-and-swap loop pattern
which requires only the cmpxchg call to be atomic. This listing shows
pre-processor macros expanded for readability, the actual source code is
shown in Listing 9.
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1 stat ic __always_inline void atomic_add ( int i , atomic_t ∗v )
2 {
3 asm volat i le (LOCK_PREFIX " addl %1,%0"
4 : "+m" (v−>counter )
5 : " i r " ( i ) ) ;
6 }

Listing 8: The x86 implementation of atomic_t, defined in inline assem-
bly [Tor, Linux v4.9, arch/x86/include/asm/atomic.h].

1 #define ATOMIC_OP_RETURN(op , c_op) \
2 stat ic i n l i n e int \
3 atomic_##op##_return ( int i , atomic_t ∗v ) \
4 { \
5 int c , o ld ; \
6 \
7 c = v−>counter ; \
8 while ( ( o ld = cmpxchg(&v−>counter , c , c c_op i ) \
9 ) != c ) \

10 c = old ; \
11 \
12 return c c_op i ; \
13 }
14 /∗ cut to l i n e 120 ∗/
15 ATOMIC_OP_RETURN(add , +)
16 /∗ cut to Line 186 ∗/
17 stat ic i n l i n e void atomic_add ( int i , atomic_t ∗v )
18 {
19 atomic_add_return ( i , v ) ;
20 }

Listing 9: The source code implementing the generic atomic_add [Tor,
Linux v4.9, include/asm-generic/atomic.h] is a representative exam-
ple of code organization in Linux, and the atomic subsystem specifically.
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2.1.3.2 The kref Reference Counter Object

To avoid error-prone reference counting schemes, kref — a dedicated ref-
erence counter type — was introduced in 2004 [Kro04]. The type replaces
direct use of atomic_t reference counters, although it is itself internally
implemented using atomic_t, as shown in Listing 10. By using atomic_t,
the implementation provides efficient and secure functionality with minimal
need for architecture-specific implementation details in kref itself. Thus, in
contrast to atomic_t, kref provides a maintainable implementation with a
tightly focused API.

The kref API provides only put and get functions, not functions for
setting, adding or subtracting arbitrary values. Listing 11 shows the definition
of kref_put. The API enforces safe value checks and object releases by
requiring a pointer to a release function, i.e., a destructor. The release
function is called when the reference counter reaches zero. By combining the
release and decrement, kref avoids implementation pitfalls associated with
atomic_t schemes, e.g., faulty schemes such as in Listing 2 (in Section 2.1.2).

The increment functions — kref_get and kref_get_unless_zero — are
shown in Listings 12 and 13. Both of these function also promote safe use, the
former by issuing a kernel WARN if called on a kref with a value less than two.
The latter by refusing to increment the counter if it is zero, and also issuing
a compile-time warning if the return value of the function is not checked.
The compile-time warning is triggered by the __must_check attribute, which
is defined as the GCC specific __attribute__((warn_unused_result))
attribute. In a typical case, either kref_get or kref_get_unless_zero is
used to increment of an object before using it. Note that only the latter
notifies the caller of a failed attempt, hence the runtime warnings for the
former.

kref provides clear semantics coupled with safe and, in comparison to
bare atomic counters, relatively high-level API. Unfortunately, the API is
also restrictive, which limits its deployability. This trade-off is understandable
as it prevents unsafe and easily error-prone implementations. It should be
stressed that since kref is built upon atomic_t, it suffers from some of
the same underlying implementation problems, in particular, it exhibits the
same integer overflow behavior our work is looking to address. The security
implications are discussed further in Section 2.1.4.

1 struct k r e f {
2 atomic_t r e f count ;
3 }

Listing 10: Definition of kref [Tor, Linux v4.9, include/linux/kref.h].
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1 stat ic i n l i n e int kref_put (
2 struct k r e f ∗ kre f ,
3 void (∗ r e l e a s e ) ( struct k r e f ∗ k r e f ) )
4 {
5 i f ( atomic_dec_and_test(&kre f−>re f count ) ) {
6 r e l e a s e ( k r e f ) ;
7 return 1 ;
8 }
9 return 0 ;

10 }

Listing 11: Simplified definition of kref_put [Tor, Linux v4.10,
include/linux/kref.h]. The second argument, release, is a pointer
to a object specific destructor function.

1 stat ic i n l i n e void kre f_get ( struct k r e f ∗ k r e f )
2 {
3 WARN_ON_ONCE( atomic_inc_return(&kre f−>re f count ) < 2 ) ;
4 }

Listing 12: Definition of kref_get [Tor, Linux v4.10,
include/linux/kref.h]. Note the WARN_ON that causes a warn-
ing if the kref is close to being freed. The warning indicates that
calling code should instead use kref_get_unless_zero to detect failed
increments.

1 stat ic i n l i n e
2 int __must_check kref_get_unless_zero ( struct k r e f ∗ k r e f )
3 {
4 return atomic_add_unless(&kre f−>refcount , 1 , 0 ) ;
5 }

Listing 13: Definition of kref_get_unless_zero [Tor, Linux v4.10,
include/linux/kref.h], implemented using atomic_add_unless for
conditional increments. Callers are encourage to actually check the
return value by enabling compile-time warnings for omitted checks, using
the __must_check compiler attribute.
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2.1.4 Security Implications

A reference counter is essentially a simple integer, and thus, poses little direct
threat. They are, however, used to govern the lifetime of objects, which in C
are implemented via direct memory pointers. Reference countering errors
are therefore a source of temporal memory errors. Two typical errors are
use-after-free and double-free. These can be the result of a programming
error, i.e., some piece of code retains and uses a pointer after it has been
freed, or some code incorrectly frees the pointer after it has already been
freed. Both types of errors corrupt memory management structures and can
be used to achieve arbitrary memory read and writes [SPW13].

The obvious reference counter errors are incorrect counter updates. Con-
ceptually there are three types of attacks that unbalance a reference counter.
First, by causing a reference counter to be too high, an attacker can cause a
memory leak by preventing the reference counter from reaching zero. Second,
by causing the counter to be too low, an attacker can cause the reference
counter to prematurely reach zero, thus causing a use-after-free error. Third,
by managing to modify reference counters with a value of zero an attacker
can cause either use-after-free or double-free errors. However, there is a
fourth option. Because the counter is an integer, an attacker can cause the
value to grow high enough to overflow and thereby reach zero the other way
around, again causing a use-after-free error.

We are specifically focusing on overflows for several reasons. First,
underflow, i.e., missing increments or extra decrements, are typically easy to
catch in testing. Even one incorrect iteration causes observable effects by
triggering a use-after-free error. Second, there is no immediate remedy for
an underflow. When an underflow or below-zero decrement is detected, the
state of the associated object is unknown. It might be in use or it might be
freed, or both. In addition, the underflow does not necessary indicate an
error at the call site, i.e., it could be an unrelated code path that incorrectly
decremented the counter to zero. Overflows, by contrast, require an excessive
number of faulty iterations, i.e., up to INT_MAX or LONG_MAX, before causing
side-effects. Also, overflows can be remedied; when the overflow happens
it is clear that the object is still both in use and in a consistent state, the
counter can thus be saturated: perpetually leaving it at its maximum value,
which ensures that it will never be freed, hence never subject to use-after-free.
Because the object will not be freed, this turns a potential use-after-free into
a memory-leak.

While it is theoretically possible to overflow a counter without underlying
programming errors, memory restrictions make it infeasible to hold enough —
more than INT_MAX or LONG_MAX — references to cause an overflow. Therefore,
the attacker needs to find a faulty code path that releases a reference without
decrementing the counter. The faulty release allows the attacker to increment
the counter by repeatedly acquiring and releasing the reference.
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As an example, CVE-2014-2851 [cve14a] is a vulnerability that leverages
two reference counter errors in the IPv4 implementation on Linux v3.14.
The exploit uses an erroneous code path that allows object references to
be dropped without decrementing the counter. The referenced object, in
this case, is the struct group_info object, which holds the MAC group
information. The specific vulnerability is in the ping_init_sock function
in [Tor, Linux v3.14, net/ipv4/ping.c]. The object is typically acquired
by invoking the get_current_groups macro, shown in Listing 14. What is
not immediately apparent is that the get_group_info function (Listing 15)
increments the reference counter for struct group_info, and therefore
requires a corresponding put_group_info call. It was this put_group_info
that was missing and caused the CVE.

The CVE above is an archetypical example of why kref and other efforts
have tried to standardize reference counting schemes, or at the least make
errors less subtle and thus easier to find via audit or other techniques.
The reference counter overflow substantially increases the exploitability of
missing-decrement errors by promoting them from memory leaks to potential
use-after-free vulnerabilities. This leaves us with two major security concerns:
first, the maintainability and usability issues that make reference counting
schemes error-prone, and second, the reference counter overflows that increase
the exploitability and severity of resulting vulnerabilities.

Vulnerabilities due to reference counter overflow are not limited to the
one described here. Other recent cases are CVE-2016-0728 [cve16a], where
an attacker can abuse error conditions in security/keys/process_keys.c
to cause an overflow, use-after-free and finally privilege escalation. And,
CVE-2016-4558 [cve16b] in which a reference counter in the Berkeley packet
filter subsystem could be caused to overflow and cause a use-after-free.

2.1.5 PaX/Grsecurity and PAX_REFCOUNT

The PaX/Grsecurity patch is a monolithic patch that adds various security
features to the Linux kernel. It is maintained by Open Source Security inc.,
whom recently removed public access to their patches [Pax17]. Therefore,

1 #define get_current_groups ( ) \
2 ({ \
3 struct group_info ∗__groups ; \
4 const struct cred ∗__cred ; \
5 __cred = current_cred ( ) ; \
6 __groups = get_group_info (__cred−>group_info ) ; \
7 __groups ; \
8 })

Listing 14: Definition of the get_current_groups macro [Tor, Linux
v3.14, include/linux/cred.h].
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1 stat ic i n l i n e
2 struct group_info ∗get_group_info ( struct group_info ∗ g i )
3 {
4 atomic_inc(&gi−>usage ) ;
5 return g i ;
6 }

Listing 15: Definition of the get_group_info function [Tor, Linux v3.14,
include/linux/cred.h].

the discussion below is based on patches dating to late 2016 and the available
PAX_REFCOUNT documentation [Bra15]. Due to recent mainstream kernel
changes, this description might not reflect the current state of this feature;
unfortunately, we cannot confirm this due to the lack of public patches.

Of interest here is the PAX_REFCOUNT feature that prevents reference
counter overflows. It uses the saturation mechanism and provides architecture-
specific implementations of the feature. On x86 architectures the CPU
overflow flag is used to detect an overflow and revert the increment. Listing 16
shows the x86 implementation of the overflow detection logic in the addition
function. On other supported platforms — ARM, MIPS, PowerPC, and
SPARC — the increment is prevented before it is allowed to overflow.

An astute reader might notice a potential problem in the x86 saturation
implementation, namely a race condition. The problem is that while the
addition itself is properly atomic, the overflow check and subsequent value
revert is not. Unless the counter is saturated or overflows, this does not
matter. However, if multiple threads simultaneously increment the counter
before either revert, then the overflow and revert happens only on one of the
threads. PaX/Grsecurity recognizes the race condition but to quote their
documentation: “PaX considered this to be such an impractical case that it
never implemented this additional logic” [Bra15].

1 asm volat i le (LOCK_PREFIX " addq %1,%0\n"
2
3 #ifde f CONFIG_PAX_REFCOUNT
4 " jno 0 f \n "
5 LOCK_PREFIX " subq %1,%0\n"
6 " i n t $4\n0 : \ n "
7 _ASM_EXTABLE(0b , 0b)
8 #endif

Listing 16: The PAX_REFCOUNT detection logic implemented on
x86 [Bra15], located in arch/x86/include/asm/atomic64_64h. The
individual operations are atomic but the compound statement statement
is not.
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2.2 Problem Statement

The motivation for this work is to prevent use-after-free vulnerabilities
caused by reference counter overflows in the Linux kernel. In addition
to preventing the specific overflow vulnerability, the solution must also
minimize the impact on the usability and maintainability. Any changes to
current reference counting schemes must also incur minimal performance
cost, which is of particular importance when considering networking and
other performance-sensitive systems. Our requirements are thus:

1. Protected reference counters must not be allowed to overflow
and thereby cause use-after-free errors.

2. Reference counter protections should not cause undue per-
formance degradation.

3. The protection mechanism should accommodate existing ref-
erence counting schemes.

4. The implementation must be maintainable.

The main goal of our work is to prevent the overflow itself (Requirement 1)
while introducing negligible performance cost (Requirement 2). However, the
solution must not increase the likelihood of other problems via usability or
maintainability issues. To achieve this, the API should be self-documenting,
user-friendly, and minimal (Requirement 3). Moreover, upstream changes to
the mainline Linux kernel must be reasonably maintainable and conform to
Linux development standard (Requirement 4).
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2.3 Approach I: Hardening the Underlying Type

Our initial proposal, HARDENED_ATOMIC, was based on existing KSPP plans,
with initial work started in 2015 by David Windsor [Edg15]. This solution is
based on the PAX_REFCOUNT feature by PaX/Grsecurity (see Section 2.1.5).
The idea is to protect the underlying atomic_t types and thereby cover all
reference counting schemes built around the atomic_t. While this work
is built on a preliminary port of PAX_REFCOUNT, the work nonetheless was
substantial. The available PAX_REFCOUNT source code touched an older
kernel version and PaX/Grsecurity in general targets a restricted subset of
available mainline architectures and configurations. Therefore, our solution
had to update the available patch for the most recent mainline Linux kernel
version. Moreover, our patch must ensure compatibility with all possible
Linux architectures and configurations.

HARDENED_ATOMIC prevents overflow by saturating the counter upon over-
flow (Section 2.1.4). This prevents overflows, but introduces a problem for
atomic_t instances that rely on normal integer behavior. Statistical or se-
quential counters could in some cases even rely on specific overflow behavior2.
This work, thus consisted of not only protecting the atomics, but also of pro-
viding a workaround and ensuring that it is used wherever needed. First, we
provided the implementations for the hardened atomic types, i.e., atomic_t,
atomic_long_t, atomic64_t, and local_t. Second, we ensured that al-
ternate non-protected types, i.e., atomic_wrap_t, atomic_long_wrap_t,
atomic64_wrap_t, and local_wrap_t, are used where required.

2.3.1 Implementation

The implementation of HARDENED_ATOMIC is conceptually simple: harden the
atomic types and apply workarounds for cases where overflow is needed. New
features to the mainline kernel must, however, typically be split into smaller
individual patches, each of which must be applicable one-by-one without
breaking intermediate compilations. New features should be configurable and
allow easy integration with potential architecture-specific implementations.
The PAX_REFCOUNT feature we built on, by contrast, is part of a monolithic
patch-set that explicitly limits architecture support. The situation is further
complicated due to the already complex implementation of the atomic types
(Section 2.1.3). To provide an overarching protection and avoid inconsistency,
we provide hardened versions for all the four basic atomic types, shown in
Table 1.

To ensure the consistency across different architectures, both those im-
plementing HARDENED_ATOMIC and those not, we needed to provide config-
uration options for Kbuild, the Linux kernel build system. The generic

2Kbuild uses compilation flags to specify overflow behavior, which in the C standard is
undefined.
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atomic_t atomic integer of int size
atomic_long_t atomic integer of long size
atomic64_t 64-bit atomic integer
local_t long sized integer with single-CPU atomic operations

Table 1: The atomic types protected by HARDENED_ATOMIC

(i.e., architecture-independent) implementation is presented in Section 2.3.1.1
along with necessary Kbuild configuration. We provide only x86 support,
which is presented in Section 2.3.1.2. The workaround for overflowing atomic
variables is presented in Section 2.3.1.3. Our added tests are presented in
Section 2.3.1.4.

2.3.1.1 Generic Implementation

To ensure that HARDENED_ATOMIC can be both completely disabled (e.g., to
accommodate untested third-party code) and to differentiate between sup-
ported architectures we added appropriate Kbuild configuration variables.
The Kbuild configuration variables are defined in various Kconfig files and
specify the possible configurations when compiling the Linux kernel. The
HARDENED_ATOMIC configuration is added to the security/Kconfig file and
consists of the HAVE_ARCH_HARDENED_ATOMIC and CONFIG_HARDENED_ATOMIC
options (Listing 17). The former is not user configurable but set by architec-
tures that implement HARDENED_ATOMIC. The latter is user-configurable and
allows the whole feature to be disabled or enabled.

While our focus is on x86, our generic implementation must not adversely
affect other architectures, regardless of their support for HARDENED_ATOMIC.
Therefore, it must accommodate a multitude of different configurations,
architectures, and combinations thereof. The Linux 4.9 implementations
for the types covered by HARDENED_ATOMIC are defined across several files
(shown in List 1). All of these need to be updated to accommodate any valid
configurations and architecture setup.

The workaround types (or, wrapping types) are suffixed with _wrap.
These wrap functions are identical to the non-hardened atomics and must
be used whenever an atomic variable should allow overflow. They must
also be available whether or not HARDENED_ATOMIC is enabled. Our imple-
mentation provides asm-generic headers that define the wrapping types
for kernel builds not using HARDENED_ATOMIC. Kbuild transparently uses
either architecture-specific headers or the asm-generic headers depending
on availability. HARDENED_ATOMIC explicitly requires hardware support; the
asm-generic headers thus need to accommodate only configurations where
HARDENED_ATOMIC is unused, i.e., when the non-wrap functions are unpro-
tected and identical to the wrap functions. These asm-generic headers
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atomic_long_t
atomic64_t
local_t
security/Kconfig


1 c on f i g HAVE_ARCH_HARDENED_ATOMIC
2 bool
3 help
4 The a r c h i t e c t u r e supports CONFIG_HARDENED_ATOMIC
5 by prov id ing trapping on atomic_t wraps , with a
6 c a l l to hardened_atomic_overflow ( ) .
7
8 c on f i g HARDENED_ATOMIC
9 bool " Prevent r e f e r e n c e counter over f l ow in atomic_t "

10 depends on HAVE_ARCH_HARDENED_ATOMIC
11 depends on !CONFIG_GENERIC_ATOMIC64
12 s e l e c t BUG
13 help
14 This opt ion catches counter wrapping in atomic_t ,
15 which can turn r e f c oun t i ng over f l ow bugs in to
16 r e sou r c e consumption bugs in s t ead o f e xp l o i t a b l e
17 use−a f t e r−f r e e f l aws . This f e a tu r e has a n e g l i g i b l e
18 performance impact and t h e r e f o r e recommended to be
19 turned on for s e c u r i t y reasons .

Listing 17: The security/Kconfig file specifies the added KBuild con-
figuration options.

include/linux/types.h
Defines various types, including the atomic_t and atomic_long_t.

include/asm-generic/atomic.h
Defines generic implementation for atomic_t functions.

include/asm-generic/atomic-long.h
Defines generic implementations for atomic_long_t functions.

include/asm-generic/atomic64.h
Defines generic implementations for atomic64_t functions.

include/asm-generic/local.h
Defines both the type local_t and its related functions.

include/linux/atomic.h
Defines generic function implementations for all of the atomic types,
including function with relaxed memory ordering.

List 1: List of main files related to the implementation of the atomic
types and related functions.
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1 stat ic __always_inline void atomic_add ( int i , atomic_t ∗v )
2 {
3 asm volat i le (LOCK_PREFIX " addl %1,%0\n"
4
5 #ifde f CONFIG_HARDENED_ATOMIC
6 " jno 0 f \n "
7 LOCK_PREFIX " sub l %1,%0\n"
8 " i n t $4\n0 : \ n "
9 _ASM_EXTABLE(0b , 0b)

10 #endif
11
12 : "+m" (v−>counter )
13 : " i r " ( i ) ) ;
14 }

Listing 18: Definition of the atomic_add, located in the x86 specific file
arch/x86/include/asm/atomic.h.

simply define the wrap functions as aliases to the atomic functions. The
atomic_t, atomic64_wrap_t, and local_wrap_t types have similar fall-
back definitions for builds with HARDENED_ATOMIC disabled, but because
atomic_long_t is defined via either atomic_t or atomic64_t, it does not
require special attention here.

2.3.1.2 x86 Implementation

x86 specific Kbuild configuration is specified in arch/x86/Kconfig, which is
also where HAVE_ARCH_HARDENED_ATOMIC is set to indicate support for this
feature. Other architectures would similarly indicate their support by setting
the same variable in their corresponding Kconfig files. All atomic functions
must then, depending on CONFIG_HARDENED_ATOMIC, be either protected
or not protected. The wrap variants must also be provided but because
they are identical to the non-protected functions their implementation is
trivial. The implementation of atomic_add (Listing 18), and indeed most
x86 implementations, use the CONFIG_HARDENED_ATOMIC preprocessor macro
to determine whether to include the overflow protections or not.

The protected atomic_add on x86 is inlined and consists of just four
assembler instructions and at best executes only two instructions. The first
instruction, present in both the hardened and regular definition, performs
the addition. The latter three instructions, present only when hardened,
check if the CPU overflow flag (OF) is set (i.e., whether the preceding
instruction caused an integer overflow) and if so, reverts the addition. The
atomic64_t on 64bit builds is similar to the atomic_t implementation, but
32bit builds require some additional work to support the 64bit integers.
Since atomic_long_t is defined using either atomic_t or atomic64_t, it
does not require any implementation specific work. The single CPU atomic
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local_t on x86 has a separate implementation and therefore also requires
HARDENED_ATOMIC definitions. Due to its relaxed concurrency requirements,
the implementation does not require a lock prefix but is otherwise similar
to the other atomic types. For instance, the only difference between the
local_add (Listing 19) and atomic_add is the lock labels3.

The availability of the x86 CPU overflow flag improves the efficiency and
size of the protection. Unfortunately, it is vulnerable to a race-condition
when two or more simultaneous additions overflow the counter. While the
additions remain atomic, the subsequent saturation mechanism does not.
Only one of the threads would, therefore, encounter the OF flag, leaving
the others free to work on the now overflown value. Considering single
increments, this means that the non-overflowing thread would increment the
counter to MAX+2 and the other thread revert by decrementing to MAX+1.
This issue is recognized by PaX/Grsecurity (Section 2.1.5) and is discussed
further in Section 2.3.3.

2.3.1.3 Wrapping Atomic Types

One major task, beyond the implementation of the HARDENED_ATOMIC types,
is ensuring that no unintended behavior is introduced by the changed seman-
tics of the atomic types. The specific problem is that several use cases, in
fact, allow or expect that the atomic variable is going to overflow, and thus
need to be converted to our alternate _wrap atomic variant. Although the
C standard specifies overflow behavior as undefined, the kernel uses GCC
compiler flags to enforce specific behavior on overflow; -fwrapv tells the
compiler that overflows follow the semantics of two’s-complement integers
and the -fno-strict-overflow disables compiler optimizations that rely

3The asm lock labels are inherent to CPU instructions and in particular do not incur
overheads comparable to locks commonly used in high-level concurrent programming.

1 stat ic i n l i n e void local_add ( long i , l o ca l_t ∗ l )
2 {
3 asm volat i le (_ASM_ADD "%1,%0\n"
4 #ifde f CONFIG_HARDENED_ATOMIC
5 " jno 0 f \n "
6 _ASM_SUB "%1,%0\n"
7 " i n t $4\n0 : \ n "
8 _ASM_EXTABLE(0b , 0b)
9 #endif
10 : "+m" ( l−>a . counter )
11 : " i r " ( i ) ) ;
12 }

Listing 19: Definition of the local_add, located in the x86 specific file
arch/x86/include/asm/local.h.
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1 void lkdtm_OVERFLOW_atomic_add(void )
2 {
3 atomic_set(&atomic_var , INT_MAX) ;
4
5 pr_info ( " attempting good " " at omic_add " " \n " ) ;
6 atomic_dec(&atomic_var ) ; atomic_add (1 , &atomic_var ) ;
7
8 pr_info ( " attempting bad " " atomic_add " " \n " ) ;
9 atomic_add (1 , &atomic_var ) ;

10 }

Listing 20: Definition of the lkdtm_OVERFLOW_atomic_add function
that executes the OVERFLOW_atomic_add provided test. The definition
is located in drivers/misc/lkdtm_bugs.c.

on overflows never happening. Moreover, because all supported Linux archi-
tectures use two’s-complement to represent integers, the kernel can rely on
overflows having predictable behavior.

In practice this part of our work was based on the PaX/Grsecurity
implementations and initial conversions by David Windsor. However, due
to intermediate kernel version changes most of these changes were manually
inspected and modified to work with our targeted kernel version, Linux
v4.9. The actual code changes consist of swapping out atomic_t and
atomic_long_t declarations and function calls with the equivalent wrap
variants. The conversion work is largely trivial because the wrap function
signatures are equivalent to their non-wrap variants; the challenge being
mainly to ensure that all required instances and uses are converted.

2.3.1.4 Testing Facilities

Testing facilities for HARDENED_ATOMIC are provided via ldktm, the Linux
Kernel Dump Test Module. Testing is valuable because the feature is
expected to be implemented for other architectures. The implemented
tests use the ldktm direct input mechanism that allows tests to be run by
writing commands into the /sys/kernel/debug/provoke-crash/DIRECT
pseudo file. Such tests typically provoke a system crash and can be observed
in the kernel log. The HARDENED_ATOMIC tests exercise code that results in
overflowing the various atomic types. The test definitions rely on preprocessor
macros to decrease code duplication. For readability, Listing 20 shows an
expanded version of the lkdtm_OVERFLOW_atomic_add function.

The lkdtm tests do not provide testing of actual reference counting
schemes. They only verify the implementation behavior on overflow. Because
HARDENED_ATOMIC by default does not crash the kernel, the related ldktm
tests could be used for automated testing. The full lkdtm additions test the
most common functions for all the four covered atomic types.
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2.3.2 Challenges

The related PAX_REFCOUNT feature is separate from the mainline kernel, as
such, it need not consider kernel development guidelines, upstream main-
tainers, nor by PaX/Grsecurity unsupported architectures. In contrast, our
work had to consider all of these. From a maintainability standpoint, this
means HARDENED_ATOMIC must not interfere with other architectures and
should accommodate the addition of new architecture-specific implementa-
tions (Section 2.3.2.1). The percpu-refcount is, as the name implies, a
reference counter, yet it exhibits some surprising behavior that makes it
challenging to protect or convert to atomic_t (Section 2.3.2.2).

2.3.2.1 Generic Definitions and Architecture support

A surprising challenge in the implementation of HARDENED_ATOMIC was the
complex cross-dependencies between the atomic types and their numer-
ous different implementations. All of the complexity is managed by pre-
processor macros and Kbuild overloading asm-generic header files with
architecture-specific files. Even the purely generic types are spread across
several files — atomic_t, for instance, has various generic implementa-
tions in include/asm/atomic.h, include/asm/atomic-long.h, include/
asm/atomic64.h and include/linux/atomic.h — not to mention all the
architecture-specific additions. The Kbuild and preprocessor functionality
is necessary to provide a flexible API backed up by a myriad of optimized
architecture-specific implementations. Unfortunately, HARDENED_ATOMIC in-
troduces massive changes to the implementations and essentially duplicates
the whole APIs for the wrapping atomic variants.

To limit the noise introduced into the generic headers, we added com-
pletely new wrap headers. Because the wrap functions need separate defini-
tions only when HARDENED_ATOMIC is enabled, and because HARDENED_ATOMIC
requires architecture-specific implementations, these generic wrap head-
ers can be kept minimal. Unfortunately, the generic and architecture-
specific implementations are not always cleanly separated. For example,
include/linux/atomic.h provides some convenience functions that might
be used even when architecture-specific atomics are available.

These are not one-off problems; the resulting code base must be maintain-
able and robust amidst API updates and implementation changes. During
our work, we encountered several occasions where generic changes worked on
default x86 configurations, but produced errors on other architectures and
configurations. To prevent problems like this we needed extensive macro def-
initions to manage dependencies between different implementations. We also
collaborated with a simultaneous work to provide an ARM implementation
for HARDENED_ATOMIC.
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1 #define CPU_COUNT_BIAS (1LU << (BITS_PER_LONG − 1) )

Listing 21: Definition of the PERCPU_CPUNT_BIAS macro.

2.3.2.2 The percpu-refcount counter

Because HARDENED_ATOMIC accommodates existing use cases – provided they
do not rely on overflow — we can mostly leave reference counters as they are.
The wrap use cases do not require any further modifications since they are
exactly identical to the original atomics. However, one particularly tricky
reference counter is the per-CPU reference counter percpu-refcount. This
type allows for the reference counter to be either in atomic joint mode or in
a per-CPU mode where the individual CPUs manage their separate counters.
When in per-CPU mode the individual counts do not trigger any resource
freeing, nor are they guaranteed to be balanced (i.e., one CPU could have
all the decrements, whereas another has all the increments). The problem
arises when the joint counter must be checked, and the individual counts
must be added together to a single atomic variable. However, because the
individual counts can be imbalanced or even negative, they cannot safely be
added together without potentially incorrectly reaching zero and triggering
a user-after-free.

The percpu-refcount implementation prevents this issue by offsetting
the true value of the counter during the mode switch. The used offset,
PERCPU_COUNT_BIAS, is effectively set to a value as far away from zero as
possible, i.e., right by the MIN/MAX barrier (Listing 21). The offset is then
removed only after all individual values have been added to the underlying
atomic variable, i.e., when the type operates again in atomic mode. With
HARDENED_ATOMIC this will often trigger pointer saturation because the value
already starts at LONG_MAX. To solve this, and still protect the counter, the
PaX/Grsecurity patch decreased the offset so that the acceptable values are
in the range [1,LONG_MAX], thereby decreasing the available range from the
initial [1,LONG_MAX] ∪ [LONG_MIN,−1]. Unfortunately, while this prevents the
overflow, it does not prevent the counter from prematurely reaching zero. At
the time of writing, we have no satisfactory solution to this problem and
have simply documented the vulnerable counter type.

2.3.3 The End of Line

The HARDENED_ATOMIC approach underwent four Request for Comments
(RFC) cycles on the kernel-hardening mailing list, starting with the orig-
inal RFC in October 2016, and ending with the final one in November
2016 [Res16b; Res16c; Res16d; Res16e]. The initial response was enthusiastic
and accompanying work on an ARM implementation was also started within
the KSPP community. In hindsight, it was a mistake not to involve the
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maintainers of the existing atomic types. As it is, the maintainers were
included only in the last RFC v4. Although the problem of reference counter
overflows was accepted due to the abundance of related CVEs (Section 2.1.4);
HARDENED_ATOMIC as a solution received several valid objections:
Usability: The changes to the atomics and the wrap APIs have usability
problems. First, the _wrap names do not make sense for all functions, e.g.,
wrapping is meaningless for functions such as cmpxchg. Second, the changes
to the all-purpose atomic types are not indicated by API or other changes.
While naming changes could alleviate the former problem, it is not clear how
to solve the latter without a complete overhaul of HARDENED_ATOMIC.
Race condition: The race condition in the saturation mechanism is prob-
lematic, despite PaX/Grsecurity deeming it unlikely enough to be ignored.
It is highly dubious for an atomic type to exhibit non-atomic properties. Not
only could the race-condition cause the saturation to fail, but it would also
corrupt, i.e., imbalance, the counter value. If two or more CPUs increment
the variable simultaneously, it is possible for the variable to be incremented
twice before the saturation mechanism kicks in, at which point only one of
the increments would be undone, thus leaving the variable in an overflowed
state.
Maintainability: The changes to the atomic implementation and the added
wrap APIs make an absolute mess of the already complex atomic subsystem.
Some of this is due to design choices (e.g., use of preprocessor macros) and
is trivial to change. Substantial changes and added complexity are however
unavoidable regardless of implementation details.
Deployability: It is not possible to deploy HARDENED_ATOMIC piecemeal.
Because it modifies all atomic variables, the required wrap changes must be
completed beforehand. Moreover, the wrap changes specifically touch source
code not affected by the overflow problem. Technically this is not a problem,
but it is problematic for the upstreaming process that typically consists of
incremental and focused changes.

HARDENED_ATOMIC was ultimately discarded but prompted productive dis-
cussions and motivated the eventual refcount_t implementation, discussed
in Section 2.4. Because this approach was discarded, we have not completed
extensive performance measurements. Based on early measurements by
David Windsor [Win16] the impact was however negligible, with a 2.8%
overhead on dbench and a 0.01% overhead when compiling the kernel.
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2.4 Approach II: Providing a New Hardened Type

After HARDENED_ATOMIC was discarded, Peter Zijlstra, one of the maintainers
of the Linux atomic types, implemented a new reference counter specific type,
refcount_t [Coo17a; Zij17]. We contributed to this work by providing kernel-
wide analysis and conversion of reference counting schemes [Coo17b]. Based
on this analysis we also proposed additions to the refcount_t API [Res16a];
these extensions ensure that refcount_t is usable as a replacement for prior
atomic_t reference counters. The conversion efforts consist of 233 patches,
of which 125 are already merged into the mainline kernel, and the remaining
on the way.

As opposed to HARDENED_ATOMIC, refcount_t has the benefits of being
self-contained and possible to apply piecemeal. Because the API focuses
on reference counting, it is minimal. The specific functions can also pre-
vent functionality that would be needed in general-purpose types, but in
reference counting indicates programming errors (e.g., increment on zero).
refcount_t uses the same saturation mechanics as HARDENED_ATOMIC. The
generic implementation is also sound from a technical standpoint and avoids
the race-condition in HARDENED_ATOMIC (Section 2.3.3). In Section 2.4.1 we
present the evaluation from the initial refcount_t API to our extended API
extensions, including implementations and other ongoing reference counter
work. Section 2.4.2 provides insights on the challenges we faced. Finally, in
Section 2.5 we evaluate the solution from a usability, security and performance
perspective.

2.4.1 Implementation

The complete refcount_t API was submitted by Peter Zijlstra and landed
in Linux v4.12 [Zij17]. The API is reference counter specific, which avoids
confusion with general-purpose types (like the atomic types) and allows
several distinguishing features:

• It is saturated instead of overflown, i.e., a value change that would
overflow instead sets the counter at its maximum value and a counter
at its maximum value is not modified.

• It emits runtime warnings on saturation, thus ensuring that such
otherwise potentially unnoticed situations are logged and remedied.

• It refuses to increment on zero, i.e., none of the functions modify
a counter that is zero.

• Its return value indicates a non-zero value, not whether it
was changed, allowing the use of an object with a saturated counter.
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1 typedef struct r e f count_st ruc t {
2 atomic_t r e f s ;
3 } re fcount_t ;

Listing 22: The definition of the refcount_t type atomic_t [Tor, Linux
v4.12, include/linux/refcount_t.h].

• It causes compile-time warnings if return values are not checked,
thus promoting either safe use or a conscious decision to use the void
variant of the functions.

The type itself is defined, as shown in Listing 22, as a struct encom-
passing an atomic_t counter. In contrast to atomic_t, the refcount_t
is unsigned. This design decision also simplifies to reasoning and imple-
mentation of reference counting schemes. For instance, refcount_t does
not allow counterintuitive additions with negative values, which are typical
for many atomic_t reference counting schemes. Another subtle difference
is the memory ordering of refcount_t. All atomic_t reference counting
schemes employ full memory ordering; refcount_t, in contrast, does not.
The incrementing refcount_t functions provide no memory ordering (see
Section 2.1.1), whereas the decrementing ones provide release ordering. The
memory ordering change is typically unnoticed for refcount_t users but
gives some leeway to architecture-specific implementations and CPU opti-
mizations.

2.4.1.1 Initial API

The initial refcount_t provided a focused API and included a generic (i.e.,
not architecture-specific) implementation built on top the atomic_t. This
initial API was focused on correct reference counter use, and as such provided
only a minimal API, shown in List 2. The API is intended to enforce safe
reference counting schemes, and in particular, allows only single decrements
and increments.

Basic use cases (e.g., Listing 23) are straightforward to convert from

void r e f count_set ( refcount_t , unsigned int )
unsigned int re fcount_read ( re fcount_t )
void re f count_inc ( re fcount_t )
__must_check bool refcount_inc_not_zero ( re fcount_t )
__must_check bool refcount_dec_and_test ( re fcount_t )
__must_check bool refcount_dec_and_mutex_lock (

refcount_t , struct mutex ∗)
__must_check bool refcount_dec_and_lock ( refcount_t , spin lock_ ∗)

List 2: Initial bare refcount_t API.
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1 /∗ i f ( ! atomic_inc_not_zero ( obj−>atomic , 1 , 0)) { ∗/
2 i f ( ! refcount_inc_not_zero ( obj−>re f count ) ) {
3 /∗ Counter zero , o b j e c t f r e e d ! ∗/
4 /∗ Create new o b j e c t i n s t e a d : ∗/
5 obj = a l l o ca t e_ob j ( ) ;
6 /∗ a l l o c a t e _ o b j i n i t i a l i z e s r e f coun t to 1 ∗/
7 }
8
9 use_obj ( obj ) ;

10
11 /∗ i f ( atomic_dec_and_test ( obj−>atomic ) ) { ∗/
12 i f ( refcount_dec_and_test ( obj−>re f count ) ) {
13 /∗ Counter reached zero ! ∗/
14 /∗ Let ’ s f r e e the o b j e c t : ∗/
15 f ree_obj ( obj ) ;
16 }

Listing 23: Example of refcount_t use, with the analogous atomic_t
implementation commented out.

atomic_t due to the corresponding calls. However, there are some caveats
even in trivial cases. For instance, some reference counters are initialized to
zero and then incremented in the object constructor, whereas refcount_t
must be initialized to one without the increment. Alternatively, refcount_set
can be used to change a zero reference counter after its initialization. While
this is not a challenging modification, it demonstrates a problem with auto-
mated conversion from atomic_t to refcount_t.

The API implementation is found in lib/refcount.c and heavily utilizes
the compare-and-swap loop, discussed in Section 2.1.1. As an example,
consider the refcount_dec_and_test implementation shown in Listing 24.
The atomic_cmpxchg_release function at line 17 ensures atomicity, the
return at line 7 ensures saturated values remain unchanged, and the return
at line 12 prevents value changes from zero. The security implications will
be further examined in Section 2.5.2.

As discussed in Section 2.1.4 reference counter underflows cannot be
cleanly remedied; refcount_t therefore returns false to indicate that the
object is not safe to free and thus prevents additional double-free or use-after-
free errors. An underflow nonetheless means that use-after-frees have likely
already happened and refcount_t therefore also emits runtime warnings to
indicate this.

2.4.1.2 Deploying refcount_t

A major part of our contribution to the refcount_t work was the kernel-wide
analysis and conversion of reference counting schemes. The conversion, from
atomic_t to refcount_t, was built upon the analysis but implemented by
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1 bool refcount_dec_and_test ( re fcount_t ∗ r )
2 {
3 unsigned int old , new , va l = atomic_read(&r−>r e f s ) ;
4
5 for ( ; ; ) {
6 i f ( un l i k e l y ( va l == UINT_MAX))
7 return f a l s e ;
8
9 i f ( va l == 0) {

10 WARN_ONCE( va l == 0 ,
11 " underf low ; use−a f t e r−f r e e . \ n " ) ;
12 return f a l s e ;
13 }
14
15 new = val − 1 ;
16
17 o ld = atomic_cmpxchg_release(&r−>re f s , val , new ) ;
18 i f ( o ld == val )
19 break ;
20
21 va l = old ;
22 }
23
24 return ! new ;
25 }

Listing 24: Implementation of refcount_dec_and_test.
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hand. The analysis was conducted using Coccinelle [Pad+08; 17b], which is
used by specifying code patterns to search or replace. Coccinelle is integrated
to Kbuild, the Linux kernel build system, and can be used to automatically
detect potential problems or apply semantic patches. We are currently in the
process of merging our reference counter Coccinelle patterns to the mainline
Linux kernel, which will allow automated testing systems and interested
developers to test new code for potential refcount_t use cases.

Coccinelle patterns are defined using the Semantic Patch Language
(SmPL). Patterns can use regular expressions to identify functions of interest,
and then define specific relationships or code patterns using these functions.
The system can be used to transform code, but due to numerous small
variations on reference counters and subtle semantic changes, we used it only
for detection. We used three specific patterns, all of them using a combination
of regular expressions and static analysis. The regular expressions are used
to find specific atomic_t API calls, and other function calls typically related
to object lifetimes (e.g., function-names containing the words destroy and
allocate). Our patterns (Appendix A.1) specifically looked for three distinct
use cases:

• Using the return value of atomic_dec_and_test to determine whether
an object should be freed.

• Using atomic_add_return to decrement a counter (by adding a nega-
tive value), and based on the return value determine how to handle
the object.

• Using atomic_add_unless to conditionally modify a counter only when
it is larger than one.

Using these patterns, we found 266 potential reference counting schemes,
of which we have patches covering 233 cases. The remaining are either
unsuitable for conversion, or simply too complicated to convert without
major modifications to the affected code bases. For example, the inode
conversion spanned a total of 10 patches4 and has yet to be accepted due to
its complexity. The latter two patterns also present problems with the initial
refcount_t API. Namely, the API cannot accommodate them because
it lacks required functionality (e.g., there is no way to perform atomic
modifications while checking for a value of one). The two latter patterns
are typical for object pool patterns, where objects are recycled rather than
freed. Recycling avoids repeated freeing and allocating of the objects and
is an important optimization for systems that may need to rapidly handle
massive amounts of similar objects. Based on these findings we worked with
Peter Zijlstra to include additions to the refcount_t API [Res16a].

4http://lkml.org/lkml/2017/2/24/599

35

http://lkml.org/lkml/2017/2/24/599


2.4.1.3 API Extension

Our refcount_t API extensions (List 3) include functions allowing addition
and subtraction of arbitrary values and functions behaving conditionally
on counters with the value zero [Res16a]. It should be noted that some of
these functions could be worked around using the basic API, e.g., perhaps by
using a lock and then performing individual operations to reach same results.
However, as is evident, such workarounds would be prone to implementation
errors, cause code bloat, and induce performance overheads.

The refcount_dec_not_one and refcount_dec_if_one functions are
needed for implementing object pool patterns. The value of one is needed to
indicate recyclable objects in the pool, i.e., objects that are still valid but
unused. The networking subsystem, in particular, often uses this pattern for
frequently used data structures. Our patches include six cases of this pattern.
The arbitrary additions and subtractions are needed to accommodate cases
where multiple references need to be dropped at once. The sk_wmem_alloc
variable, for example, serves as both a reference counter and transfer queue
size, thus requiring larger-than-one additions and subtractions. Finally, the
void variants avoid redundant return value checks. The btrfs filesystem,
for instance, sometimes handles nodes that are known to be cached. The
reference held by the cache is therefore guaranteed, making return value
checks redundant.

The generic implementations for the functions in the extended API are
also constructed using the compare-and-swap loop. As an example consider
the implementation of refcount_add_not_zero shown in Listing 25. No
locking mechanism is needed, and only the atomic_try_cmpxhg_relaxed
function is atomic (line 18). This specific cmpxchg variant incorporates value
updates and success checks with the basic compare-and-swap operation (i.e.,
the return value tells whether the swap succeeded, and the conditional value
val is set to the value of &r->refs before it was potentially changed). The
return on line 8 ensures that only non-zero values are changed, whereas
the return on line 11 ensures that saturated values remain unchanged. The
assignment to UINT_MAX, on line 15, saturates values instead of allowing
overflow. Finally, a warning is issued when the counter is initially saturated
(line 20). Unless the prior value was zero or UINT_MAX, the function eventually
modifies the value and returns at line 23. Note, again, the return values; only
a counter value of zero results in a false return value. A saturated value,
while constituting a memory leak, nonetheless indicates that the object is
safe to use.

2.4.1.4 Other refcount_t Efforts

At the time of this writing, there are ongoing efforts to introduce options to
limit refcount_t protections and offer high-performance architecture-specific
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void refcount_add (unsigned int , re fcount_t )
__must_check bool refcount_add_not_zero (unsigned int , re fcount_t )
__must_check bool refcount_sub_and_test (unsigned int , re fcount_t )
void re fcount_dec ( re fcount_t )
__must_check bool refcount_dec_if_one ( re fcount_t )
__must_check bool refcount_dec_not_one ( re fcount_t )

List 3: Initial bare refcount_t API.

1 bool
2 refcount_add_not_zero (unsigned int i , re fcount_t ∗ r )
3 {
4 unsigned int new , va l = atomic_read(&r−>r e f s ) ;
5
6 do {
7 i f ( ! va l )
8 return f a l s e ;
9

10 i f ( un l i k e l y ( va l == UINT_MAX))
11 return t rue ;
12
13 new = val + i ;
14 i f (new < val )
15 new = UINT_MAX;
16
17 } while ( ! atomic_try_cmpxchg_relaxed (
18 &r−>re f s , &val , new ) ) ;
19
20 WARN_ONCE(new == UINT_MAX,
21 " sa turated ; l e ak ing memory . \ n " ) ;
22
23 return t rue ;
24 }

Listing 25: refcount_add_not_zero [Tor, Linux v4.12,
include/linux/refcount_t.h] increments the refcount_t un-
less it was zero, or saturated. The return is false if, and only if,
refcount_t was zero. The implementation utilizes the a compare-and-
swap pattern, thus requiring only the atomic_try_cmpxchg_relaxed
on line 18 to be atomic.
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implementations [Coo17b]. The protections, and thus performance overhead,
can be controlled via the new REFCOUNT_FULL kernel configuration option,
which at present is disabled by default. A fast x86 implementation, via a
new FAST_REFCOUNT option, is targeted for inclusion in v4.14 of the Linux
kernel but is yet to be merged. The architecture-specific implementations are
intended to provide a compromise between the two by dropping some of the
stringent checks while still preventing the overflow. Both FAST_REFCOUNT
and REFCOUNT_FULL are helpful in promoting adoption of the refcount_t,
which even without protections offers an API safer than atomic_t.

Of particular interest, due to its parallels to our HARDENED_ATOMIC work,
is the x86 FAST_REFCOUNT implementation by Kees Cook [Coo17c]. It treats
refcount_t as a signed integer and uses any negative value to indicate
saturation. The counter is modified with single-instruction additions and
subtractions. Overflow and saturation are detected using the JS instruction.
JS is a conditional jump that checks the CPU SF flag, which is set whenever
the preceding instruction resulted in a negative value. On saturation the
value is set to −INT_MAX/2. This approach theoretically suffers from a race-
condition similar to HARDENED_ATOMIC (see Section 2.3.3) but exploitation
would require a single addition or subtraction of ±INT_MAX/2. The regular
refcount_t value-range is reduced from [0, UINT_MAX−1] to [0, INT_MAX−1]
but this is not a practical problem because the amount of valid reference
counters is already limited by memory-constraints.

As an example consider the x86 fast refcount_add implementation (List-
ing 26). The implementation is almost identical to the atomic_t equivalent
but with an added REFCOUNT_CHECK_LT_ZERO check. The check simply uses
the JS instruction to jump to an error handler if a negative value is detected.
The CPU overflow flag (OF) tells the error handler whether the running pro-
cess caused the value to saturate, or whether it simply encountered an already
saturated value (i.e., in which case the value was already negative and the OF
flag not set). Note that there are no checks that detect increment-on-zero,
which is a conscious trade-off for performance.

1 stat ic __always_inline
2 void refcount_add (unsigned int i , re fcount_t ∗ r )
3 {
4 asm volat i le (LOCK_PREFIX " addl %1,%0\n\ t "
5 REFCOUNT_CHECK_LT_ZERO
6 : [ counter ] "+m" ( r−>r e f s . counter )
7 : " i r " ( i )
8 : " cc " , " cx " ) ;
9 }

Listing 26: The implementation for the x86 specific fast refcount_add
function [Tor, Linux v4.13-rc1, arch/x86/include/asm/refcount.h].
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At the time of writing, there is ongoing work on fast refcount_t im-
plementations for other architectures such as ARM64 [Bie17]. These fast
implementations are imperative for the adoption of refcount_t and even by
themselves offer a substantial security improvement. Performance sensitive
subsystems have been, and are, reluctant to approve patches that affect
performance without any means to mitigate the impact.

2.4.2 Challenges

The refcount_t related challenges are mostly related to our kernel-wide
adoption efforts and discussions on how permissive the refcount_t API
should be. The ongoing work on various architecture-specific fast refcount_t
implementations do naturally pose some more specific challenges, but our
work does not directly touch upon these.

2.4.2.1 Object Pool Patterns

One common problem for direct conversions was the object pool pattern,
i.e., cases where unused objects, instead of being completely freed, were put
in a pool, or graveyard, for later reuse. This type of recycling avoids costly
memory allocations by reusing the memory of frequently used but short-lived
objects. The reference counter for recycled objects must thus be able to
distinguish between freed objects and unreferenced but recyclable objects.
atomic_t schemes typically use zero or one to indicate recyclable objects
and zero or −1 to indicate freed objects.

refcount_t supports neither increments on zero or negative values, which
makes most of these schemes incompatible for direct conversion. Instead,
the schemes must be modified to use zero only for freed objects and one for
objects not in use. One example of these kinds of conversions is the struct
inet_peer data structure in the net subsystem. It used the reference counter
value of zero to indicate objects in a deletion queue, and −1 for deleted, i.e.,
freed, objects. Our refcount_t conversion incremented the whole scheme
by one, thereby keeping zero for freed objects while using the value one for
recyclable objects. The extended API was designed to accommodate schemes
such as this. Conceptually this modification uses regular reference counter
semantics but requires that the object pool itself keeps an explicit reference.
While such changes can be relatively straightforward, there is room for subtle
errors due to the added refcount_t restrictions when the counter is zero.

2.4.2.2 Unconventional Reference Counters Redux

Some challenging refcount_t conversions are best described as unconven-
tional reference counters. These include reference counters that serve purposes
beyond traditional reference counters. One example is the sk_wmem_alloc
field of the struct sock data structure in the net subsystem. The field,
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according to the in-line documentation, holds the “transmit queue bytes
committed” but also functions as a reference counter. It is questionable
whether such instances should be converted to refcount_t in the first place.
We have mostly erred on the side of conversion and relied on the maintainers
to decide whether the conversions make sense or not.

In Section 2.4.2.2, we discussed the percpu-refcount, and why we could
not protect it with HARDENED_ATOMIC. Because refcount_t is unsigned we
do not hit the same problem here. Using an offset of UINT_MAX/2 would
still effectively halve the usable range but would otherwise work correctly
until saturation. An imbalance between the counts on individual CPUs is
expected and acceptable as long as the joint counter, i.e., the sum of all CPU
counters, is correct. In other words, one CPU could have more increments,
whereas the other more decrements. If one CPU, however, is saturated,
this imbalance would no longer be corrected because the saturation would
consume and loose added increments. The percpu-refcount thus remains
built upon atomic_long_t. Moreover, FAST_REFCOUNT and potentially other
implementations are incompatible with the percpu-refcount.

2.5 Evaluation

This evaluation will focus on the refcount_t part of our work. Because the
HARDENED_ATOMIC approach was discarded when refcount_t was introduced,
we have not performed extensive measurements nor evaluations of it beyond
the summary in Section 2.3.3. We will focus on the generic refcount_t
implementations, not upcoming architecture-specific implementations such
as FAST_REFCOUNT.

2.5.1 Security

Our security requirement (Requirement 1) is to prevent reference counter
overflows. Overflow and saturation are mechanisms related to the increment
and decrement functions (i.e., refcount_set is affected by neither overflow
nor saturation). We, therefore, define invariants for the other functions in
groups. Namely, the incrementing functions maintain the invariants that:

The resulting value will not be smaller than the original (I1).

A value of zero will not be modified (I2).

Similarly, the decrementing functions maintain the invariants that:

The resulting value will not be larger than the original (D1).

A value of UINT_MAX will not be modified (D2).
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Let us first consider the incrementing functions by looking at the imple-
mentation for refcount_add_not_zero (Listing 25). Algorithm 5 shows the
same function without implementation details. We see that Algorithm 5 has
four possible outcomes:

1. If refcount = 0, then the function returns false without modifying
the counter value (line 4), satisfying both I1 and I2.

2. If refcount = UINT_MAX then the function returns true without mod-
ifying the counter value (line 7), enforcing I1 and trivially satisfying
I2.

3. If refcount ∈ [1, UINT_MAX− 1] and refcount + summand ≥ UINT_MAX
(i.e., the addition would overflow), then the function returns true and
sets the value of refcount to UINT_MAX (line 11), thus satisfying both
I1 and I2.

4. If refcount ∈ [1, UINT_MAX− 1] and refcount + summand < UINT_MAX,
then the addition is performed and the function returns true, trivially
satisfying both I1 and I2.

Since these four cases exhaustively cover all situations, we can conclude
that the two invariants are satisfied in all situations. This description was
specific to refcount_add_not_zero, but other incrementing functions are
similar, i.e., they all employ the compare-and-swap loop and use similar
checks to maintain the same security invariants.

All of the decrementing functions are implemented using the compare-
and-swap loop, and in particular, maintain the same invariants. To analyze
the decrement function invariants let us consider the refcount_dec function
shown in Algorithm 6. The function has three possible outcomes:

1. If refcount = UINT_MAX, then the function returns without modifying
the counter value (line 4), satisfying D1 and enforcing D2.

2. If refcount = 0, then the function emits a runtime warnings and returns
without modifying the counter value (line 8), enforcing D1 and trivially
satisfying D2.

3. Otherwise refcount ∈ [1, UINT_MAX − 1] the counter is decremented,
trivially satisfying D1 and D2.

The other decrement functions are again similar, with the main difference
being the presence of return values and checks to accommodate arbitrary
subtractions. For non-void functions, a return value of true indicates that
the referenced object is safe to free. Algorithm 6 omits runtime warnings
that the Linux implementation uses to log error conditions (e.g., a decrement
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Ensure: retval = true⇔ refcount > 0
Ensure: value_unchanged ⇔ refcount /∈ {1, UINT_MAX− 1}
1: val ← refcount {use local copy}
2: while true do
3: if val = 0 then
4: return false {counter not incremented from zero}
5: end if
6: if val = UINT_MAX then
7: return true {counter is saturated, thus not zero}
8: end if
9: new ← val + summand {calculate new value}
10: if new < val then
11: new ← UINT_MAX {saturate instead of overflow}
12: end if
13: old ←cmpxchg(refcount, val, new)
14: if old = val then {if refcount was unchanged, then}
15: break {value was updated by cmpxchg}
16: end if
17: val ← old {update val for next iteration}
18: end while
19: return true {value incremented or saturated}

Algorithm 5: refcount_add_not_zero(refcount, summand) adds
summand to refcount. It saturates on overflow, does not modify zero,
and returns true if the prior value was non-zero. A compare-and-swap
loop (using cmpxchg at line 13) provides atomicity.
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Ensure: retval = true⇔ refcount = 0
Ensure: value_unchanged ⇔ refcount /∈ {1, UINT_MAX− 1}
1: val ← refcount {use local copy}
2: while true do
3: if val = UINT_MAX then
4: return {counter is saturated, thus not zero}
5: end if
6: new ← val + 1 {calculate new value}
7: if new > val then
8: return {counter not decremented beyond zero}
9: end if
10: old ←cmpxchg(refcount, val, new)
11: if old = val then {if refcount was unchanged, then}
12: break {value was updated by cmpxchg}
13: end if
14: val ← old {update val for next iteration}
15: end while
16: return {value incremented or saturated}

Algorithm 6: refcount_dec(refcount) performs a single decrement on
the counter, without any return values. The compare-and-swap pattern
is used to preserve atomicity, and neither 0 or UINT_MAX is modified.

43



to zero with a void function indicates a memory leak and a decrement on
zero indicates a reference counter underflow and a use-after-free error).

All the implementations, both for increment and decrement functions,
include similar runtime warnings that help with the detection of errors.
The warnings are particularly useful because errors often manifest as hard-
to-detect memory leaks but can when exploited lead to use-after-free or
double-free errors. During the conversion efforts, some erroneous reference
counting scheme errors5 were detected and fixed due to the refcount_t
restrictions and warnings.

2.5.2 Performance

There are no standardized measurements, payloads or acceptable overheads
for low-level Linux kernel utilities such as refcount_t. Moreover, because
refcount_t is a highly optimized and has relaxed memory ordering its
performance could be highly dependent on use-case. We decided to use the
networking subsystem as a test case because the networking conversions
encountered much concern over performance overheads. The concerns are
well-founded because the networking subsystem heavily relies on reference
counters for efficient data management. We used the Netperf [17k] network
performance measurement suite to measure the processing overhead and
throughput loss due to refcount_t.

The Netperf benchmarking results (Table 2) were taken using dedicated
physically connected Ubuntu server and client machines equipped with
Haswell-EP6 processors. The base measurements were taken using a default
v4.11-rc8 kernel measuring traffic between the two machines, whereas
the refcount_t results used the same kernel with the refcount_t patches
applied and all 78 reference counters in the networking subsystem converted.
We ran each test case three times with individual durations of 300 seconds.
The CPU utilization measurements use the TCP_STREAM and UDP_STREAM
test cases, whereas throughput uses the TCP_SENDFILE and TCP_RR tests.

Based on these results refcount_t introduces a measurable processing
overhead. This overhead is negligible for systems with abundant processing
resources and where network use is sporadic, such as typical desktop comput-
ers. Networking systems, like routers, however, have different traffic patterns
and could be considerably affected by this processing overhead. While
the network performance, both regarding TCP transactions per second and
throughput, itself was unaffected, the relatively low CPU utilization indicates
that bottlenecks were elsewhere. The results justify the REFCOUNT_FULL and
FAST_REFCOUNT efforts (Section 2.4.1.4) that allow performance-critical sys-
tems to benefit from the new API without performance loss. FAST_REFCOUNT,
in particular, is set to provide architecture-specific performance on par

5http://lkml.org/lkml/2017/6/27/409, http://lkml.org/lkml/2017/3/28/383
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Test Base refcount_t ∆ (stddev)

UDP CPU use (%) 0.53 0.75 0.22 (0.18)
TCP CPU use (%) 1.13 1.28 0.15 (0.03)
TCP throughput (Mbps) 9358 9305 −53 (0)
TCP throughput (tps) 14909 14761 −148 (0)

Table 2: refcount_t performance measurements using Netperf. The
CPU use indicates system CPU utilization (i.e., low values are better).
The other two measure throughput, TCP_SENDFILE in Mb per second,
and TCP_RR in transactions per second.

with atomic_t while still providing the overflow protection. The generic
refcount_t does, however, impose a trade-off between security and perfor-
mance (Requirements 1 and 2).

2.5.3 Usability

The usability of kernel source code is ultimately decided by its acceptance and
use. In general, additions should be minimal, focused and self-documenting.
The refcount_t API unambiguously denotes its use for reference counting
through its naming, thus avoiding any confusion with general purpose integers.
It is also focused and consists of only 14 functions, whereas the atomic_t
API consists of over 100 functions. As noted in our security evaluation,
some erroneous use cases cannot even be implemented with refcount_t.
The various runtime and compile-time warnings also promote safe use and
easy error-detection. Independent work has also adopted the refcount_t
API[Zab17], lending further credence to its usability. The continued accep-
tance of our patches — currently 125 patches merged to mainline — indicate
that the usability goals have been reached.

2.5.4 Maintainability

While maintainability can be challenging to measure, we can provide an
estimate based on code size and cross-dependency. The generic refcount_t
implementation is self-contained and depends only on the stable atomic_t
API. Architecture-specific implementations (e.g., FAST_REFCOUNT) can be
provided, but are not needed. The maintenance overhead is thus restricted to
the implementations in code/refcount.c, the include/refcount.h header
and the dependency to the stable atomic_t API. This is a marked im-
provement to the HARDENED_ATOMIC approach that touched numerous files
and added several header files with complex macro-defined inheritance and
cross-dependencies.
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2.5.5 Summary of Evaluation

Table 3 shows a summary of our requirements. The primary goal — prevent-
ing reference counter overflows — is fulfilled by refcount_t. Performance
overheads, while small, can be problematic for some systems. Nonethe-
less, coupled with ongoing efforts such as FAST_REFCOUNT, we regard the
performance requirements met to a reasonable degree. The usability and
maintainability concerns are also largely met due self-contained and minimal
refcount_t. Moreover, these assessments are supported by the continued
uptake of refcount_t patches into the remaining subsystems.

Requirements

Req. 1 Security Overflows completely prevented.
Req. 2 Performance Minimal overhead, none with FAST_REFCOUNT.
Req. 3 Usability Clean and minimal API.
Req. 4 Maintainability Self-contained implementation and API.

Table 3: Evaluation of refcount_t against our requirements.
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3 Preventing Pointer Bound Violations
The second part of our work focuses on spatial memory errors in the Linux
kernel. Spatial memory errors include the infamous buffer overflow and
happen when a pointer is used to dereference memory outside the bounds of
the object referenced by the pointer [SPW13]. Memory-safe languages are
not prone to these problems. The Linux kernel, however, is implemented in C
and thus susceptible to memory errors. The kernel employs various tactics to
restrict the exploitability of spatial memory errors, including probabilistic fea-
tures such as Kernel Address Space Layout Randomization (KASLR) [Edg13].
However, full spatial memory safety requires complete mediation of pointer
access, which can be achieved by pointer bounds checking [SPW13]. Linux
provides built-in support for pointer bounds checking via the Kernel Address
Sanitizer (KASAN) [17j]. KASAN is mainly used as a testing tool because
the performance overheads make it unsuitable for most production use.

Intel recently introduced the Memory Protection Extensions (MPX) CPU
extension. It provides efficient hardware-assisted pointer bounds check-
ing [Int16]. We set out to explore whether MPX could be used to prevent
in-kernel spatial memory errors in Linux. While MPX is is a promising new
technology, its existing software components are geared towards user-space,
thus making its use for kernel-space code non-trivial. In Section 3.1 we
provide background on pointer bounds checking and Intel MPX specifically.
In particular, we look at implementation aspects of MPX, including the GCC
compiler instrumentation and Linux kernel GCC-plugins. In Section 3.2 we
present a detailed formulation of our problem statement. In Section 3.3 we
dive into the design and implementation of MPXK, our solution for using
MPX to protect the Linux kernel from spatial memory error vulnerabilities.
Finally, in Section 3.5 we will evaluate the current state of MPXK, including
security and performance considerations.

3.1 Background

Pointer bounds checking is a method for mitigating or preventing spatial mem-
ory errors (Section 3.1.1). In our work we are using Intel MPX specifically
(Section 3.1.2). Intel MPX consists of both hardware and software compo-
nents (Sections 3.1.3). It is supported by the GCC compiler (Section 3.1.4)
and uses it for compile-time instrumentation (Section 3.1.5). To adapt it for
MPXK we use the Linux kernel GCC plugin system (Section 3.1.6).

3.1.1 Pointer Bounds Checking

Pointer bounds checking, when used for complete mediation of pointer use,
guarantees the spatial memory safety of an application. The size and memory
address of the pointed-to data defines the bounds of a pointer. For pointers
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to static data, the bounds are [address, address + size_of_type] and
to dynamic memory [address, address + size_of_allocation]. Pointer
bounds checking means that each memory access is checked against those
bounds, with failed checks resulting in a bound violation (Figure 1).
The bounds of a pointer: A pointer bounds checking mechanism tracks
pointers and checks their values before use, typically through compile-time or
binary instrumentation [SPW13]. Bounds are defined on pointer assignment
or allocation. However, the extent of the bounds is clouded by varied pointer
use. Consider dynamically allocated memory regions containing several
distinct objects, e.g., a nested data structure, or an array. It is no longer
clear whether a pointer to the inner elements should have bounds defined
based on the outer or inner structure. The problem is not purely theoretical;
for instance, pointers to array items are often used as iterators and must thus
have bounds defined by the containing array. On the one hand, restricting
the bounds to the innermost structure, i.e., narrowing the bounds, provides
finer granularity and can catch more errors.
Source and binary compatibility: A related aspect is that of source
compatibility, i.e., whether existing source code can be used as is. Source
compatible schemes infer the correct semantics for pointer bounds based
on existing source code and must often make choices such as narrowing
based on incomplete data, typically necessitating instrumentation that favors
compatibility over security. Another practical distinction is binary compati-
bility, i.e., whether it is possible to combine instrumented code with legacy
(i.e., non-instrumented) code. Binary compatibility is required when using
system libraries or proprietary code that cannot be recompiled. Pointers
manipulated by legacy code are by definition unknown to the instrumenta-
tion. Binary compatible systems therefore typically assign infinite bounds to
pointers originating or manipulated by legacy code [SPW13].
Storing the bounds: In practice, any bounds checking mechanism needs
means to track the bounds of specific pointers. In trivial cases, such as locally
used, scoped and isolated pointers, this can be accomplished by hard-coded
bounds or by storing the bounds directly on the stack. In many cases, this
is however not feasible. Consider for instance pointers in a dynamically
sized array; because the compiler does not know the size of the array, it
cannot reserve space for the bounds associated with the contained pointers.
Existing systems solve this problem by storing bounds in some external data

void *ptr = kmalloc(size, flags)

ptr[size+1] = 1; // bound violation!

Figure 1: The pointer bounds of a malloc allocated pointer.
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structure, in shadow-memory or using fat-pointers. Fat-pointer systems,
such as CCured [Nec+05], change the pointer implementation to include
the bounds in the pointers themselves, thus changing the memory layout
of pointers and making the systems binary-incompatible. Shadow memory
systems (e.g., Valgrind [NS07a] and AddressSanitizer [Ser+12]) maintain
a parallel memory mapping — the shadow memory — to track pointer
bounds. They typically suffer from high memory use, e.g., AddressSanitizer
reports memory overheads between 140% and 2455%. Pointer bounds can
also be stored in a separate data-structure without using fat-pointers or
shadow-memory; for example, SoftBound [Nag+09] and Intel MPX [Int16]
does this. This approach can reduce memory overheads, e.g., a comparison
between MPX and AddressSanitizer reported total memory utilization of
190% and 280%, respectively [Ole+17].
Pointer- and object-based bounds: A final distinction is whether bounds
are pointer- or object-based (Figure 2). That is, whether the bounds are
loaded based on the address of the pointer or the address of the pointed-
to object, i.e., the pointer’s value. Object-based bounds must rely on the
pointer addressing the correct object. Consider for instance the scenario
in Listing 27. Because the bounds depend on the value of the pointer, the
mechanism cannot detect if the pointer is corrupted to point into another
valid object. However, exploiting object-based bounds is non-trivial and in
particular necessitates that the attacker can overwrite the pointer using some
other vulnerability (i.e., overflow or indexing errors would not trigger this
behavior).

3.1.2 Intel Memory Protection Extensions

Intel MPX is a pointer-based bounds checking mechanism that prevents
spatial memory errors. It is both source and binary compatible. MPX
at its core is a hardware extension to the x86 architecture, with support
available from Intel Skylake and Atom Goldmount onwards. As a pointer-
based mechanism, MPX associates each pointer with appropriate bounds
and then checks those bounds before dereferencing said pointers. In addition
to the hardware, MPX requires software support form the operating system,
compiler and MPX libraries. This section provides a high-level overview
of MPX, whereas Section 3.1.3 provides a more in-depth look of MPX in
user-space, and finally Section 3.1.5 looks at some of the implementation
details of GCC compiler support for MPX.

The MPX ecosystem is designed, not only for performance and security
but also to support easy adoption and usability via binary compatibility.
MPX enabled binaries are backward compatible with legacy systems and will
run on hardware and operating systems without MPX support, although nat-
urally without the MPX functionality. Backwards compatibility is achieved
by ensuring that the added hardware instructions map to NOPs, i.e., in-
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Figure 2: The bounds of a pointer can be either pointer-based (a) or
object-based (b). Pointer-based bounds do not change when the pointer’s
value is changed. Object-based bounds change if the pointer’s value is
changed so that it points into another object.

1 struct user {
2 name∗ name ;
3 pw∗ pw;
4 }
5
6 struct name ∗n = get ( user ) ;
7
8 check_bounds (n) /∗ OK. ∗/
9 /∗ Bounds from user . name ∗/

10
11 /∗ Bad p o i n t e r a r i t h m e t i c ! ∗/
12 name += s izeof ( struct name ∗ ) ;
13
14 check_bounds (n) /∗ S t i l l OK! ∗/
15 /∗ Bounds were loaded from user . pw ∗/

Listing 27: Problem with naive-object oriented bounds checking. Because
the bounds are associated with the object, not the pointer, it is impossible
to determine whether the object itself is correct.
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structions that do nothing, on legacy systems. The initialization code uses
operating system calls to check for MPX support before doing any work.
Because MPX is source compatible, its use requires little effort and no source
code modifications. Only the appropriate compiler flags are required to use
MPX.

GCC exposes the new MPX instructions (Table 4) to the programmer
via built-in functions for reading, creating and checking bounds [17f]. In
regular use, there is little need for the programmer to directly call the MPX
instructions or built-ins. MPX also provides new registers; most notably the
four bounds registers, bnd0 to bnd3, which are used for storing and using
bounds. The new bndcfgu and bndcfgs registers control MPX in user-space
(ring 3) and kernel-space (ring 0), respectively. These registers also specify
the memory address of the Bounds Directory (BD), discussed shortly, and
the BNDPRESERVE and ENABLE flags. A final new register, BNDSTATUS, is used
to convey information on similarly new MPX BOUND Range Exceeded (#BR)
exceptions. The user-space registers are process-specific, which means that
MPX must be enabled individually for each process using it.
Storing pointer bounds: The MPX bounds are pointer-based but stored
in separate metadata. The instrumentation, when possible, stores bounds
either statically, on the stack, or in the four added bndx registers. Function
call instrumentation propagates bounds into called functions. The compiler
can thus often treat bounds as any other variable and propagate them along
stack and registers. However, it cannot pre-allocate bounds for dynamically
stored pointers, such as those in dynamically sized arrays. In such cases,
MPX uses the new bndstx and bndldx instructions to store and load the
pointer bounds via a process-specific BD. The BD contains pointers to
Bound Tables (BT), which in turn contains the Bound Table Entries (BTE).
The pointer’s linear address and bndcfgu determine the exact BTE to use
(Figure 3). A BTE contains reserved bits and the pointer’s value, lower
bound and upper bound. On 64bit systems, the BD is 2GB, each BT 4MB,
and the individual entries 32-bytes. The operating system or the process
must manage the BD nd BTs since the MPX hardware does not. In practice,

BNDMK Create bounds in bounds register
BNDCL Check pointer lower bound against bounds register
BNDCU Check pointer upper bound against bounds register
BNDCN Check upper against 1’s complement register register
BNDMOV Copy/load bounds from/to memory or bounds register
BNDLDX Store bounds into bounds table
BNDSTX Load bounds from bounds table

Table 4: The MPX instruction set
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Figure 3: The BTE address translation used when loading or storing
bounds via bndldx or bndstx.

these are allocated on demand partially by the MPX enabled program itself,
and partially by the MPX aware operating system.
Checking bounds: The checking mechanism using the new bndcu/l in-
structions operates on a given bndx register and a pointer. Depending on
the situation the bounds might need to be loaded with bndldx or copied
with bndmove from directly accessible memory, i.e., the stack or data section.
Failed checks are not handled by the running process but instead cause the
CPU to issue a #BR exception which is handled by the kernel exception
handler. The CPU also populates the BNDSTATUS register with additional
information for error handling and diagnosis. The kernel handler kills the
process outright or allows the process to continue while ignoring or logging
errors. The default behavior is to only log errors to stderr but this can be
controlled with environmental variables.

The code in Listing 28 shows an example program that would benefit
from MPX because it can cause a buffer overflow at line 11. While the
erroneous input handling in the example code is evident, it is conceptually
similar to the real spatial memory errors. This example also shows a situation
where bndldx must be used. The compiler can only pass the bounds of the
outer pointer into the function and therefore must, at line 10 use bndldx to
load the bounds for the pointed-to pointer.

3.1.3 Implementation of MPX

This section presents the MPX process initialization and Linux kernel support
for MPX. The discussion is limited to the Linux kernel and GCC compiler.
However, the Intel C++ Compiler (ICC) and the Microsoft Windows op-
erating system also support MPX. The Linux kernel, before our work,
only provides user-space support and does not support MPX for securing
kernel-space.
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1 #include <s td i o . h>
2 #include <s t d l i b . h>
3
4 char ∗ h e l l o = " He l lo World\n" ;
5 char ∗ s e c r e t = " password " ;
6
7 void p r i n tp t r ( int i , char ∗∗ p t r 2 s t r )
8 {
9 /∗ Bounds f o r p t r 2 p t r passed in v ia func t i on c a l l ∗/

10 char ∗ s t r = (∗ p t r 2 s t r ) ; /∗ BNDLDX needed ! ∗/
11 char chr = s t r [ i ] ; /∗ can ove r f l ow ! ∗/
12 p r i n t f ( "%d : %c\n" , i , chr ) ;
13 }
14
15 void main ( int argc , char ∗∗ argv )
16 {
17 int i ;
18 s can f ( "%d" , &i ) ;
19 p r i n tp t r ( i , &h e l l o ) ;
20 }

Listing 28: Example to illustrate bound propagation in MPX. While
the bounds for the ptr2ptr pointer can be passed via the function
arguments, the bounds of inner pointer *ptr2ptr cannot. The compiler
therefore must instead use bndldx to load the bounds for *ptr2ptr and
then assign those bounds to the str pointer.
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MPX is a per-process mechanism and must to be initialized by the
process during its startup. The initialization checks the CPU for MPX
support, reserves memory space for the Bound Directory (BD), registers
exception handlers with the kernel, and finally enables MPX by writing the
configuration into the bndcfgu register via a system call. Both bndcfgu and
its in-kernel equivalent, bndcfgs, follow the same layout and contain the BD
address, reserved space, and the BNDPRESERVE and ENABLE flags (Figure 4).
Memory use: The Intel Developer’s Manual states that the running process
must itself allocate storage for BD and used Bound Tables (BTs) [Int16]. In
practice, this is not strictly the case. The BD is allocated by the process using
mmap as an anonymous and private memory area. The anonymous memory
range is reserved but not mapped to physical memory. The CPU issues a Page
Fault (#PF) if unmapped memory is accessed, which allows the kernel to swap
or reserve physical memory transparently before transferring control back to
the process. This is not MPX specific and is indeed why user-space processes
can treat the virtual address-space as endless (although within addressing
constraints and subject to hardware limitations). An unallocated BT entry
similarly causes MPX to issue a #BR. The kernel can, based on BNDSTATUS,
distinguish this #BR from a bound violation and again transparently allocate
the missing BT. Because of these on-demand mechanisms, MPX consumes
significantly less physical memory than what is reserved for the 2GB BD and
the 4MB BTs. However, memory usage is highly dependant on the memory
access patterns of applications [Kuv+17].
Binary compatibility: While the binary compatibility of MPX is conve-
nient, it poses a problem when pointers are passed into legacy code. The
legacy code could potentially modify the pointer but cannot update the asso-
ciated bounds. MPX attempts to remedy the situation by using bndstx and
bndldx to detect pointer modifications by legacy code. The BT entries store
not only the bounds but also the value of the pointer, which bndldx compares
to the current pointer value. If the pointer value has been modified MPX
sets the pointer’s bounds to infinite, i.e., it accepts any pointer [Ram+16].
Bounds for pointers passed into legacy code are always stored with bndstx
and bndldx, thus ensuring that legacy modifications are detected.

Figure 4: The MPX configuration register layout
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Narrowing: MPX employs selective narrowing, i.e., it sometimes attempts
to narrow the bounds of pointers into nested data structures so that the
bounds correspond to the innermost object. If an assignment involves struct
fields or array items, it would seem natural to narrow the bounds to those of
the specific item, not the whole container. However, using a pointer as an
iterator is not compatible with such strict narrowing (Listing 29). Another
common but incompatible idiom is makeshift inheritance using initial struct
fields to hold the parent class (Listing 30). GCC provides compiler flags
that disable narrowing and when narrowing is enabled applies the following
rules [17f]:

• “If there are static array accesses then bounds of the outermost array
are taken”

• “If there are no static array accesses then bounds of the innermost
field, which is not the first in outer object, are taken”

3.1.4 The GCC Compiler

Before diving into GCC MPX instrumentation, it behooves to take a brief look
at the GCC compiler in general [17d]. Conceptually GCC works by parsing
source code into an internal format, and then executing compiler passes that
do stepwise changes and finally produces an executable binary. Figure 5
shows a high-level representation of the different compilation stages. We will
here focus on passes modifying the GIMPLE6and Register Transfer Language
(RTL) intermediate representations (IR), but a typical compilation includes
various other stages, including Interprocedural Analysis (IPA) passes.

GIMPLE passes process one function at a time. The initial passes
represent a function as a flat sequence of statements, which in later passes is
split into basic blocks. Each basic block is a self-contained chunk of code
that can be jumped into, e.g., an if-else clause produces one basic block for
each execution path. GIMPLE and RTL are target-independent but often
describes target specific features (e.g., it can include MPX-specific calls).
GIMPLE uses trees to represent data (e.g., attributes and arguments) and
GIMPLE tuples to represent statements (e.g., functions and operands). In
our work, we mostly interact with GIMPLE_CALL statements that represent
function calls. The GIMPLE_CALL statement includes various information on
the function declaration, arguments, and return value but it also encapsulates
information for the specific call instance (i.e., values for function parameters),
definition availability (i.e., is the function external or in the same translation
unit), and potentially the whole function body.

6GIMPLE is based on the older GENERIC intermediary representation and is influenced
by the SIMPLE Intermediary Language used in the McCat compiler project [17d; Hen+93].
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1 void upper_case (char ∗ s t r i ng , int s t a r t ) {
2 char ∗c = &( s t r i n g [ s t a r t ] ) ;
3 /∗ bounds o f c =
4 ∗ bounds o f s t r i n g ?
5 ∗ bounds o f one char ?
6 ∗ bounds o f s t r i n g [ s t a r t , . . . ] ?
7 ∗/
8
9 for ( ; ∗c != ’ \0 ’ ; c++) {

10 ∗c = ∗c − 32 ;
11 }
12 }

Listing 29: The example code implements a naive upper_case function.
It uses a *char pointer as an iterator, which depending on how the
bounds are assigned on line 2 can cause bound violations.

1 struct base_c lass {
2 int type ;
3 int common ;
4 }
5
6 struct sub_class {
7 struct base_c lass parent ;
8 char ∗ s t u f f ;
9 }

10
11 void use_obj ( struct base ∗o ) {
12 struct ∗ sub s ;
13
14 switch ( o−>type ) {
15 case 1 :
16 s = ( struct sub ∗) o ;
17 . . .

Listing 30: The example code uses a base struct field which can be
used either as the base or by casting as the larger surrounding struct.
It is not immediately clear how bounds to such fields should be handled
correctly and without introducing source compatibility issues.
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Figure 5: Some GCC compiler passes. The first and last stages include
various intermediate stages not discussed here. Only a small fraction of
GIMPLE and RTL passes are shown, they number over 150 on a default
Ubuntu kernel compilation.
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The compiler expands the code into an RTL representation after the
GIMPLE passes. The RTL passes are also processed one function at a time.
Whereas GIMPLE is quite high-level and resembles C source code, RTL
uses a Lisp-like syntax and does not use high-level abstractions such as
variables and statements. The GIMPLE variables are assigned to registers
or memory, and statements are converted to RTL instructions. The RTL
expansion also expands function calls, i.e., populates the stack and registers
with function arguments and uses an RTL call instruction to enter the
functions. After the RTL passes are completed, the compiler eventually
produced machine-readable code.

The stepwise separation into individual passes allows each individual pass
to be highly specific, and ideally, self-contained. That said, the individual
passes can, in fact, interfere with each other and have cross dependencies.
Passes can depend on specific ordering; it is, for instance, not possible
to use the control flow graph (CFG) before the cfg pass has created it.
Optimizations and internal house-keeping also pose challenges. For example,
the compiler can use the CFG to remove unreachable basic blocks and unused
static functions. Among other things, the compiler thus needs to ensure that
both the code (i.e., GIMPLE or RTL) is correct and that the CFG is current.
The default kernel and configuration on Ubuntu 17.04 uses over 200 passes
during compilation, showing that this cross-dependency is far from trivial.

3.1.5 MPX Instrumentation

The GCC MPX instrumentation uses several passes, including IPA, GIM-
PLE and RTL passes. One could loosely divide it into the generic Pointer
Bounds Checker instrumentation and lower-level hardware-specific MPX
instrumentation. The Pointer Bounds Checker consists of GIMPLE and
IPA passes that insert bounds checks and replaces function calls with instru-
mented variants. The MPX-specific implementation, in contrast, works at
the RTL layer. For instance, pointer bounds in GIMPLE are of the abstract
pointer_bounds_type_node type, whereas in RTL they are assigned storage
on the stack or in registers. Bounds for function arguments are also handled
during the RTL expansion, i.e., GIMPLE adds bounds to function definitions,
whereas RTL writes the bounds to specific registers or invokes bndstx.

Although the GCC Pointer Bounds Checker is a generic high-level im-
plementation for pointer bounds checking, its use currently requires MPX
hardware [17e]. GCC provides compiler built-ins and attributes for explicit
control of the instrumentation. The built-ins, i.e., functions provided by the
compiler, can be used for direct checking, creating and assigning of bounds.
The compiler attributes modify instrumentation behavior and include the
bnd_legacy attribute that can be used to disable instrumentation of specific
functions. GCC also provides the MPX initialization code and automatically
calls it on process startup.
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1 void ∗
2 __mpx_wrapper_malloc ( s i z e_t s i z e )
3 {
4 void ∗p = (void ∗) mal loc ( s i z e ) ;
5 i f ( ! p ) return __bnd_null_ptr_bounds (p ) ;
6 return __bnd_set_ptr_bounds (p , s i z e ) ;
7 }

Listing 31: MPX replaces all malloc calls with __mpx_wrapper_malloc
calls [17g, Version 6.3.0, libmpx/mpxwrap/mpx_wrappers.c, Line 487].
The wrapper executes the malloc call and assigns bounds to the returned
pointer.

MPX instruments memory-altering functions using wrapper functions,
i.e., it replaces the original function calls with wrapper functions. The
wrapper for malloc (Listing 31), for instance, first allocates the pointer by
calling malloc and then returns it with __bnd_set_ptr_bounds assigned
bounds. When the compiler handles function calls during RTL expansion, it
also ensures that bounds are returned via the bnd0 register. In more complex
cases the wrapper might also need to verify bounds and update already
existing bounds. For instance, the memmove wrapper (Listing 32) checks that
the given memory range does not overflow. The memory could, however,
potentially contain pointers. Because the bounds are associated with the
pointer’s memory address, they will no longer be valid when the pointer is
moved. This is solved by also moving related Bound Tables (BTs), either by
assignment or using the move_bounds function found at [17g, Version 6.3.0,
libmpx/mpxwrap/mpx_wrappers.c.h, Line 205]. The finer details are not of
interest here, particularly since our MPXK implementation does not need
the BTs.

An astute reader might have realized that the limited number of bounds
registers might prove problematic if several pointers are passed into a function.
And indeed, if the four bounds registers cannot hold all the bounds for
arguments MPX instead stores the bounds via bndstx before the call and
again restores them inside the function via bndldx (although there are some
exceptions, which are discussed in Section 3.4.2). Some language features
also impose variations to this scheme. For example, functions with variable
argument lists cannot use the bounds registers for the variable arguments.
Variable list functions take an arbitrary number of arguments and use special
accessors to retrieve the arguments via a va_list data structure [Lin]. The
instrumentation handles variable argument lists similarly to other data
structures containing pointers, i.e., with bndstx and bndldx.
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1 void ∗__mpx_wrapper_memmove(void ∗dst ,
2 const void ∗ src ,
3 s i z e_t n)
4 {
5 i f (n == 0)
6 return dst ;
7
8 __bnd_chk_ptr_bounds ( dst , n ) ;
9 __bnd_chk_ptr_bounds ( src , n ) ;

10
11 /∗ When we copy e x a c t l y one p o i n t e r i t i s f a s t e r to
12 j u s t use bnd ldx + bnds tx . ∗/
13 i f (n == s izeof (void ∗ ) )
14 {
15 void ∗const ∗ s = (void ∗const ∗) s r c ;
16 void ∗∗d = (void ∗∗) dst ;
17 ∗d = ∗ s ;
18 return dst ;
19 }
20
21 memmove ( dst , src , n ) ;
22
23 /∗ Not necessary to copy bounds i f s i z e i s l e s s
24 ∗ then s i z e o f p o i n t e r or SRC==DST. ∗/
25 i f ( ( n >= s izeof (void ∗ ) ) && ( s r c != dst ) )
26 move_bounds ( dst , src , n ) ;
27
28 return dst ;
29 }

Listing 32: The __mpx_wrapper_memmove function [17g, Version 6.3.0,
libmpx/mpxwrap/mpx_wrappers.c, Line 487] checks bounds for incom-
ing arguments and updates destination bounds.
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1 stat ic unsigned int cyc_complexity_execute (void )
2 {
3 int complexity ;
4 expanded_location x loc ;
5
6 /∗ M = E − N + 2P ∗/
7 complexity = n_edges_for_fn ( cfun ) −
8 n_basic_blocks_for_fn ( cfun ) + 2 ;
9

10 x loc = expand_location (
11 DECL_SOURCE_LOCATION( current_funct ion_dec l ) ) ;
12 f p r i n t f ( s tde r r , " Cyclomatic Complexity %d %s :%s \n" ,
13 complexity , x l oc . f i l e ,
14 DECL_NAME_POINTER( current_funct ion_dec l ) ) ;
15
16 return 0 ;
17 }

Listing 33: The execution function for the Linux ker-
nel cyclomatic complexity GCC plugin [Tor, Linux v4.8,
scripts/gcc-plugins/cyc_complexity_plugin.c]. The plugin
itself requires a bit more code for registering the plugin, but most of the
work is handled by the common Linux GCC plugin headers.

3.1.6 Linux GCC Plugin Infrastructure

Since version 4.5.0, released in 2010, GCC has supported plugins that allow
easy incorporation of custom compiler passes. In 2011 PaX/Grsecurity
implemented Linux Kbuild support for using plugins in the kernel build
process [Cor11]. The GCC-plugin framework was upstreamed into the
mainline Linux kernel and has been available there since Linux v4.8, released
in 2016 [Cor16]. It is built on the existing GCC infrastructure and adds
Linux-specific header files for the common plugin management tasks. In
practice, the plugin itself needs only to define some setup variables and
provide an initialization function. Typically the plugin also includes some
functionality that is implemented in its execute function. Listing 33 shows
the GIMPLE execute function for the Cyclomatic complexity plugin, one of
the first plugins that landed in the mainline kernel [Cor16].

The compiler exposes several global variables which can be used to
manipulate the current state, including the cfun variable for the currently
processed function. The cfun data structure contains the function body
and declaration, including argument and attributes. Depending on the
compilation phase the function body consists either of a flat sequence of
GIMPLE instruction or if the CFG has been constructed, of separate basic
blocks. The GIMPLE sequences include representations of source code
statements, including function calls, but also instructions inserted by the
compiler (e.g., MPX instrumentation). The RTL passes are similar, but
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instead of the GIMPLE statements have sequences of RTL instructions. The
Linux GCC-plugin framework supports both RTL and GIMPLE passes, but
also IPA passes.

While the plugins are ill-suited for complex internal modifications, not
to mention completely new languages, they provide a convenient way to
add functionality without GCC source code modifications. As such, plugins
are particularly well suited for specific problems targeting only a subset of
users. Since the introduction of the Linux plugin infrastructure, there have
indeed been many efforts to add kernel security features using plugins. The
plugins can not only be convenient to implement, but they also sidestep the
problem of doing kernel-wide source code changes such as we faced with our
refcount_t conversion patches (see Section 2.5).

3.2 Problem Statement

The goal of this work is to prevent spatial memory errors in the Linux kernel.
We specifically want to explore the usability of Intel MPX to protect in-kernel
execution of code with minimal performance overhead. We aim to maintain
the binary compatibility of MPX, i.e., allow it to be applied to only selected
subsystems or modules without causing kernel-wide performance overheads.
Finally, our solution should not require extensive code changes; otherwise,
there is little chance for its inclusion in the mainline kernel.

The solution must thus fulfill the following requirements:

1. Spatial memory errors in instrumented code must be pre-
vented.

2. The solution must be compatible with existing source code.

3. The solution must be modular and applicable to only select
subsystems.

4. The solution must impose minimal performance overheads.
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3.3 MPXK

Our pointer bounds checking system, MPXK, uses Intel MPX to prevent
spatial memory errors. The main challenge in using MPX is the memory
use, i.e., a 2GB BD and several 4MB BTs. MPXK cannot use the user-space
method to minimize memory use (Section 3.1.3), because the kernel cannot
handle page faults or missing BTs caused by itself.

Preallocating potentially used BD ranges and BTs would increase memory
consumption by at least 500% or introduce excessive performance overheads.
MPXK solves this by using existing in-kernel metadata to reacquire bounds
when needed, instead of using bndldx and bndstx. Therefore, MPXK does
not need to manage BD or BT data. Memory overheads are thus minimal
and consist only of increased code size.

The MPX hardware, the GCC compiler, and the Linux kernel already
provide a user-space implementation. The MPX libraries and user-space
support are self-contained and provide a good starting point for MPXK. The
complexity and size the GCC Pointer Bounds Checker and MPX instrumen-
tation is however not as easily manageable (see Section 3.1.5). Because of
this, we use the existing GCC instrumentation along with a new GCC-plugin
that adapts the instrumentation for our purposes. The MPXK implementa-
tion consists of three parts: in-kernel initialization (Section 3.3.1), in-kernel
support (Section 3.3.2), and a kernel GCC-plugin (Section 3.3.3).

3.3.1 MPX Initialization and Setup

MPXK is an optional feature. It is integrated into Kbuild and provides a
new Kconfig option, CONFIG_X86_INTEL_MPX_KERNEL, that controls its use
during compilation. The compile-time option requires architecture-support
for MPX, but MPXK also performs a CPU feature check before attempting
to enable itself during boot. The CPU has a separate MPX configuration
register for ring 0 execution; this must be set up by MPXK. The register,
bndcfgs, is a Machine Specific Register (MSR) and is accessed via standard
kernel accessors. The bndcfgs layout is identical to the user-space equivalent
(Figure 4). In addition to the enable flag, the configuration must include
a valid linear address to the BD. Because MPXK does not use the BD,
the address is never needed. However, if the BD address points to mapped
memory, an attacker could introduce bndstx instructions (e.g., via a third-
party driver) and potentially cause arbitrary memory writes, i.e., write BTE
data over other memory. Therefore MPXK reserves a memory address for
the BD but does not back it with physical memory. Any attempts to access
the BD thus cause a page fault and subsequent kernel panic.

To be available as early as possible MPXK performs the MPX config-
uration during basic setup after the memory system initialization. The
mpxk_enable_mpx function (Listing 34) enables the instrumentation and is
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1 __attribute__ ( ( bnd_legacy ) )
2 stat ic void mpxk_enable_mpx_cfgs_cpu (void ∗ i n f o ) {
3 (void ) i n f o ;
4 wrmsrl (MSR_IA32_BNDCFGS, bnd_cfg_s . q ) ;
5 }
6
7 __attribute__ ( ( bnd_legacy ) )
8 void mpxk_enable_mpx(void ) {
9 void ∗ ptr = get_vm_area (MPX_BD_SIZE_BYTES_64 +
10 PAGE_SIZE, VM_MAP) ;
11
12 bnd_cfg_s . q = PAGE_ALIGN((unsigned long ) ptr ) ;
13 bnd_cfg_s . q |= MPX_BNDCFG_ENABLE_FLAG;
14
15 on_each_cpu (mpxk_enable_mpx_cfgs_cpu , NULL, 1 ) ;
16 }

Listing 34: The mpxk_enable_mpx function initializes MPX on all avail-
able CPUs.

called from the standard do_basic_setup function in init/main.c. The
function uses get_vm_area to reserve a memory region without backing it
with physical memory. Based on MPX requirements the address is aligned.
The configuration is stored in a global variable, which is then written to each
CPUs bndcfgs register using on_each_cpu.

3.3.2 Supporting Memory Functions

MPXK uses its bndldx replacement, mpxk_load_bounds (Listing 35), to
acquire bounds via existing in-kernel memory management metadata. It is
implemented as a statically linked in-kernel function in arch/x86/lib/mpxk.
c. No header file exposes the function; the MPXK GCC-plugin instead inserts
calls to it where needed. The function currently supports pointers allocated
with kmalloc based allocators and uses kmalloc metadata to determine the
memory range reserved for specific pointer values.

To avoid page faults mpxk_load_bounds checks (using virt_addr_valid)
that given pointers are valid and that they belong to a PageSlab (i.e., are
allocated with kmalloc). Undetermined bounds are set to infinite bounds
using __bnd_init_ptr_bounds for compatibility. This focus on compatibility
is practical but does limit the security guarantees provided by MPXK.
Because mpxk_load_bounds is pointer-based it loads bounds based on a
pointer’s value, not its address. We discuss the security implications of
mpxk_load_bounds behavior and current limitations in Section 3.5.

We use the regular MPX compiler options to disable the MPX wrappers,
which leaves our GCC-plugin free to insert our wrappers where needed. The
wrapper implementations are similar to their MPX equivalents. However,
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1 void ∗mpxk_load_bounds (void ∗ptr )
2 {
3 s i z e_t s i z e ;
4
5 do {
6 i f ( ptr == NULL) {
7 break ;
8 }
9

10 i f ( ! v irt_addr_val id ( ptr ) ) {
11 break ;
12 }
13
14 i f ( ! PageSlab ( virt_to_page ( ptr ) ) ) {
15 break ;
16 }
17
18 s i z e = k s i z e ( ptr ) ;
19
20 i f ( s i z e == 0)
21 return __bnd_null_ptr_bounds ( ptr ) ;
22 return __bnd_set_ptr_bounds ( ptr , s i z e ) ;
23 } while ( 0 ) ;
24
25 return __bnd_init_ptr_bounds ( ptr ) ;
26 }

Listing 35: The in-kernel bounds load function checks that the pointer is
valid, points into a PageSlab, and then loads the bounds based on ksize
return value. If any checks fail the returned bounds are set to infinite.
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1 __attribute__ ( ( bnd_legacy ) ) __attribute__ ( ( a lways_in l ine ) )
2 void ∗
3 __mpxk_wrapper_memmove(void ∗d , const void ∗ s , s i z e_t c )
4 { return memmove(d , s , c ) ; }
5
6 void ∗
7 mpxk_wrapper_memmove(void ∗d , const void ∗ s , s i z e_t c )
8 {
9 i f ( c == 0)

10 return d ;
11
12 __bnd_chk_ptr_bounds (d , c ) ;
13 __bnd_chk_ptr_bounds ( s , c ) ;
14
15 return __mpxk_wrapper_memmove(d , s , c ) ;
16 }

Listing 36: Our wrapper for memmove. The second wrapper,
__mpxk_wrapper_memmove, ensures that memmove is not instrumented,
regardless of whether it is a preprocessor macro or a function call.

MPXK does not use the BD and does not need to maintain BD or BT data.
For instance, the memmove wrapper in user-space (Listing 32) copies any po-
tentially associated BD and BT entries, whereas the mpxk_wrapper_memmove
(Listing 36) function does not. mpxk_wrapper_memmove calls the memmove
via another wrapper to disable instrumentation of memmove, even if it is
defined as a macro.

3.3.3 Adapting the MPX Instrumentation

The GCC Pointer Bounds Checker provides much of the instrumentation
used by MPXK but does not accommodate our modifications. MPXK
relies on the instrumentation to insert bounds checks and do compile-time
propagation of bounds (e.g., bounds for local variables that can be stored
on the stack). Unfortunately, when needed the MPX instrumentation also
uses the Bound Directory (BD), i.e., it inserts bndstx and bndldx calls.
The MPXK instrumentation must remove such calls and instead insert
mpxk_load_bounds calls where needed. It must also instrument memory
altering function calls, i.e., insert MPXK-specific function wrappers.

The straightforward solution would be to directly modify the GCC Pointer
Bounds Checker. Due to the complexity of the Linux build process and
the GCC implementation we opted to depend on the existing and tested
MPX instrumentation. We use the recently added GCC-plugin support in
the mainline Linux kernel (Section 3.1.6) to modify the instrumentation
for MPXK and therefore do not need direct changes to the compiler. Our
MPXK plugin works on both GIMPLE and RTL (see Section 3.1.4) and
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consists of four passes (Figure 6).
The mpxk_wrappers pass runs before the GCC Pointer Bounds Checker
passes and, therefore, allows the Checker to instrument the wrappers them-
selves. The execute function (Listing 37) iterates through all basic-blocks
looking for GIMPLE_CALL statements, i.e., function calls. It replaces specific
functions with wrappers using the mpxk_wrappers_gimple_call function.
A wrapper retains function arguments and return value assignments, but
has a different assembler identifier that points to the wrapper. The wrap-
pers are externally linked, and therefore the instrumentation also sets the
DECL_EXTERNAL attribute to one.
The mpxk_cfun_args pass handles bndldx calls in function prologues, i.e.,
bndldx calls for the arguments of the current function. The instrumenta-
tion passes bounds either via the four bounds registers or when needed,
by using bndstx and bndldx. The compiler manages this by modifying
GIMPLE function calls and definitions to include pointer bounds, e.g., a
call to do(void *ptr) becomes do(void *ptr, bounds ptr_bounds). The RTL
expansion then modifies these abstract bounds types to actual registers
or bndstx/bndldx calls. It is specifically the bndldx calls that must be
removed by MPXK. To achieve this, the mpxk_cfun_args implementation
(Listing 38) analyzes the function declaration to determine which bounds need
replacement and inserts mpxk_load_bounds calls for them. Standard GCC
behavior removes the bndldx call because it notices that mpxk_load_bounds
immediately overwrites the bndldx result.
The mpxk_bnd_store pass removes bndstx calls and replaces bndldx calls
with mpxk_load_bounds. Compiler builtins, i.e., compiler defined functions,
represent these calls in GIMPLE. Therefore, we find them by iterating
through all the GIMPLE_CALL statements. The argument loads processed by
the previous passes cannot be handled here because the function prologue
is created during the RTL expansion and is thus not available in GIMPLE.
Our design favors GIMPLE because it is high-level and, therefore, easier to
manipulate.
The mpxk_sweeper pass must work on the RTL representation. The RTL
expansion creates register writes for function arguments but also inserts
bndstx calls where needed (i.e., calls to the functions modified by the
mpxk_cfun_args pass). This pass removes any such bndstx instructions
that are introduced by the RTL expansion. The execute function (Listing 39)
iterates through the RTL basic-blocks looking for bndstx instructions. The
contains_unspec function (Listing 40) is used to perform a recursive search
through potentially nested RTL instructions.

MPXK combines these passes into one plugin using the Linux GCC-plugin
framework. The plugin is integrated to Kbuild and requires no separate
compilation or configuration. Only one CFLAG, the added MPXK_PLUGIN
variable, is needed to use MPXK on a specific Makefile target. The compile-
time Kconfig configuration determines whether MPXK is enabled at all.
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Figure 6: The MPXK compiler passes. The chkp pass performs regular
MPX instrumentation and is provided by GCC, our MPXK passes are
shown in the darker boxes.
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1 stat ic unsigned int mpxk_wrappers_execute (void ) {
2 gimple_stmt_iterator i t e r ;
3
4 bas ic_block bb = ENTRY_BLOCK_PTR_FOR_FN( cfun)−>next_bb ;
5 do {
6 bas ic_block next = bb−>next_bb ;
7 for ( i t e r = gsi_start_bb (bb ) ; ! gsi_end_p ( i t e r ) ; ) {
8 gimple stmt = gsi_stmt ( i t e r ) ;
9

10 i f ( gimple_code ( stmt ) != GIMPLE_CALL)
11 gsi_next(& i t e r ) ;
12
13 t r e e f nd e c l = g imple_ca l l_fndec l (
14 as_a<g c a l l ∗>(stmt ) ) ;
15 const char ∗fn_name = DECL_NAME_POINTER( fnd e c l ) ;
16
17 i f ( f nd e c l && mpxk_is_wrappable ( fn_name ) ) {
18 mpxk_wrappers_gimple_call(& i t e r ) ;
19 }
20
21 gsi_next(& i t e r ) ;
22 }
23 bb = next ;
24 }
25 while (bb ) ;
26
27 return 0 ;
28 }

Listing 37: The execute function for the mpxk_wrappers, implemented
in scripts/gcc-plugins/mpxk_pass_wrappers.c. The function iter-
ates through each statement in each basic block of the processed function
declaration, and executes the mpxk_wrappers_gimple_call function on
any function call statements.
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1 stat ic unsigned int mpxk_cfun_args_execute (void ) {
2 int bound_count = 0 ;
3 int arg_count = 0 ;
4 bas ic_block bb = ENTRY_BLOCK_PTR_FOR_FN( cfun)−>next_bb ;
5 gimple_stmt_iterator i t e r = gsi_start_bb (bb ) ;
6 t r e e l i s t = DECL_ARGUMENTS( cfun−>dec l ) ;
7 t r e e prev = NULL;
8
9 for ( t r e e ∗p = &l i s t ; ∗p ; ) {

10 t r e e l = ∗p ;
11
12 /∗ Keep count o f the encountered bounds args ∗/
13 i f (TREE_TYPE( l ) == pointer_bounds_type_node ) {
14 bound_count++;
15
16 i t e r = gsi_start_bb (bb ) ;
17
18 i f ( bound_count > 4 | | arg_count > 6) {
19 /∗ I n s e r t MPXK bounds load func t i on ∗/
20 insert_mpxk_bound_load(& i t e r , prev , l ) ;
21 }
22 } else {
23 prev = l ;
24 arg_count++;
25 }
26
27 ∗p = TREE_CHAIN ( l ) ;
28 }
29
30 return 0 ;
31 }

Listing 38: Execute function for our mpxk_cfun_args pass, which in-
serts mpxk_load_bounds call in function prologues when needed. This
happens when either there are more bounds than bounds registers, or
when the bounds are associated with pointer arguments not passed via
hardware registers.
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1 stat ic unsigned int mpxk_sweeper_execute (void ) {
2 bas ic_block bb = ENTRY_BLOCK_PTR_FOR_FN( cfun)−>next_bb ;
3 do {
4 bas ic_block next = bb−>next_bb ;
5 for ( rtx_insn ∗ in sn = BB_HEAD(bb ) ;
6 insn != BB_END(bb ) ;
7 insn = NEXT_INSN( insn ) ) {
8
9 i f (PATTERN( insn ) != NULL &&

10 contains_unspec ( r , UNSPEC_BNDSTX)) {
11 de l e te_insn ( insn ) ;
12 }
13 }
14 bb = next ;
15 } while (bb ) ;
16
17 return 0 ;
18 }

Listing 39: The mpxk_sweeper_execute function iterates through all
instructions in each basic block, removing the instructions that invoke
bndstx.

1 stat ic bool contains_unspec ( r tx r , const int code ) {
2 enum rtx_code r_code = GET_CODE( r ) ;
3
4 i f ( r_code == UNSPEC | | r_code == UNSPEC_VOLATILE) {
5 i f (XINT( r , 1) == code ) {
6 return t rue ;
7 }
8 } else i f ( r_code == PARALLEL | | r_code == SEQUENCE) {
9 for ( int i = 0 ; i < XVECLEN( r , 0 ) ; i++) {

10 i f ( contains_unspec (XVECEXP( r , 0 , i ) , code ) ) {
11 return t rue ;
12 }
13 }
14 } else i f ( r_code == SET) {
15 i f ( contains_unspec (SET_SRC( r ) , code ) )
16 return t rue ;
17 i f ( contains_unspec (SET_DEST( r ) , code ) )
18 return t rue ;
19 }
20
21 return f a l s e ;
22 }

Listing 40: Recursive function that looks into an RTL instructions to
check whether it invokes a specific instrumentation.
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3.4 Challenges

3.4.1 Incompatible Source Code

MPX is envisioned as an easy drop-in memory protection system, as such,
much of its actual implementation and behavior is undocumented. Unfortu-
nately, it is incompatible with some specific use cases (e.g., many valid pointer
uses are in violation of strict pointer bounds semantics). The instrumentation
can also be problematic for concurrently running code [Ole+17]. A shared
global pointer and its bounds could simultaneously be changed by multiple
threads. However because the pointer write and bounds write are separate
instructions it is possible that the loading thread ends up with an updated
pointer but old bounds, or vice versa. The kernel read-copy-update (RCU)
synchronization mechanism, for instance, provides high-performance simulta-
neous updates but is not compatible with MPX or MPXK. We assume MPX
attempts to mitigate concurrency issues by loading bounds registers immedi-
ately before their use, i.e., minimizing the potential race window. MPXK
uses the same mitigation, but does not solve this problem; it instead exempts
incompatible functions from instrumentation (based on current findings,
exemptions are needed for the RCU and kernel linked list implementation).

3.4.2 Undocumented and Obtuse MPX Behavior

Some MPXK specific challenges arise from compiler internals and hardware
instructions — e.g., caveats in the handling of function argument bounds
and bndldx behavior when loading modified pointers [Ram+16]. The ar-
gument handling, to our knowledge, is an implementation shortcut. The
compiler passes the six first arguments through CPU registers and presum-
ably therefore uses the bounds registers only to store the bounds for those
six arguments (i.e., bndldx is used when there are over four bounds or when
bounds belong to the seventh or later argument). Some such implementation
details are trivial engineering problems but can be challenging to recognize.
Unfortunately, they can also have security implications for MPXK.

The bndldx behavior is problematic because if a pointer’s value has
changed after the bndstx, then bndldx treats the pointer’s bounds as in-
finite [Ram+16]. This is possible because the BTEs contain not only the
bounds but also the original value of the pointer. Unfortunately, while this
improves compatibility with legacy code it also means that such pointers
cannot be checked. MPXK does not use bndldx and instead solves this issue
using mpxk_load_bounds. The bounds are loaded based on the pointer’s
value, which means that the bounds can still be acquired for the changed
pointer. Note that MPXK does not offer any protection on legacy code
operation, and thus does not guarantee that the loaded bounds are correct
(i.e., a pointer manipulating attack in legacy code would not be detected
upon returning that pointer to the instrumented code).
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3.5 Evaluation

The evaluation of MPXK is challenging due to the need to maintain bi-
nary compatibility. Binary compatibility inherently imposes some security
limitations (Section 3.1.1) that are challenging to evaluate. Furthermore,
practical targets for comparison, e.g., KASAN [17j], are monolithic and do
not support modularity. We have performed micro-benchmarks comparing
MPXK and KASAN. As a test-case, we have also applied MPXK on the
xfrm subsystem (i.e., the IP transformation subsystem), and measured its
performance impact and confirmed it prevents a related CVE.

3.5.1 Security

MPXK prevents spatial memory errors in instrumented code for any pointer
with known bounds. The protection is thus limited by whether the bounds
are known. Directly instrumented bounds are always known. But dynamic
bounds are loaded with mpxk_load_bounds, which is limited by the following:

• It currently supports only pointers to memory allocated with kmalloc
based allocators.

• Loaded bounds are based on a memory area and thus cannot restore
narrowed bounds (i.e., a pointer to an array element will get the bounds
of the whole array).

• The bounds are loaded based a pointer’s value, which differs from the
MPX bndldx that uses the pointer’s address.

The main limiting factor is the current restriction to kmalloc, but we
expect that this could be improved without major changes to MPXK or
the kernel. As future work, we are looking at expanding the load support.
Other dynamic memory allocators could be supported similarly to kmalloc.
Static and stack memory, i.e., global and local variables, do not necessarily
have similar data, but could still be bound to specific code regions or stack-
frames. The object-based bounds do have some security implications: if
an attacker modifies a dynamically stored pointer before it is loaded with
mpxk_load_bounds the bounds would be loaded based on the modified value,
not the unmodified, presumably correct value (Section 3.1.1). However, this
requires that the attacker can overwrite a specific pointer and that the pointer
is checked against mpxk_load_bounds, not static bounds. This object-based
load is no worse than MPX, where the pointer bounds would be ignored
when bndldx recognized the changed value.

To confirm MPXK functionality we have implemented tests using the
lkdtm (Linux Kernel Dump Test Module) framework. The lkdtm tests
confirm that the basic instrumentation works, but not whether it is effective
against real-world exploits. To gauge this, we tested MPXK against an
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exploit of CVE-2017-7184 [cve17], a vulnerability in the xfrm subsystem.
The attack exploits a missing data-size check, and allows an attacker to
gain root privileges; a working exploit was demonstrated at CanSecWest
20177. We confirmed that the exploit works on the Linux v4.8 kernel running
the Ubuntu 16.04 operating system. The same setup, but with the xfrm
subsystem covered by MPXK, resulted in the exploit being successfully
detected and stopped. While this is a single case, it shows that MPXK can
work even when narrowly applied.

3.5.2 Compatibility

MPXK requires only a single CFLAG to enable it on a specific Makefile target.
However, some valid code can cause compatibility issues through false bound
violations. Issues are avoidable using the bnd_legacy attribute to disable
instrumentation on problematic functions. Intuitively these incompatibilities
seem restricted to specific utility libraries, such as the lists discussed in
Section 3.4.1, but we have not performed comprehensive tests to confirm
this. The xfrm test case did not cause any compatibility issues. Kernel-wide
testing and code analysis is needed to track down incompatibilities and
provide an estimate on compatibility issues but this is left for future work.

3.5.3 Modularity

MPXK is binary compatible and can thus be applied in a modular fashion
(Requirement 3). While the hardware itself is globally enabled it does not
affect non-instrumented code. To enable MPXK on xfrm we modified only
one Makefile by adding appropriate CFLAGS.

3.5.4 Performance

To estimate the performance impact of MPXK we performed two types of mea-
surements. First, we used specifically crafted test code to measure memcopy
performance differences between non-protected, MPXK and KASAN. Sec-
ond, we performed Netperf measurements to estimate the impact of applying
MPXK on the xfrm subsystem. The results for the micro-benchmarks are
shown in Table 5. The results include separate test cases for when MPXK
needs to load the bounds, and for when the bounds are statically available,
i.e., the actual measurements start before the memcopy call and end right after
it has returned. These were added as separate cases due to the assumption,
supported by the data, that the MPXK would be a major contributor to
overheads.

The memcopy benchmarks are mostly in line with expected results. KASAN,
which uses shadow memory, suffers substantial overheads particularly when

7https://cansecwest.com/index.html
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baseline KASAN MPXK
time (stddev) ns diff (stddev) ns diff (stdev)

No bounds load.
memcpy, 256 B 45 (0.9) +85 (1.0) +11 (1.2)
memcpy, 65 kB 2340 (4.3) +2673 (58.1) +405 (5.1)
Bounds load needed.
memcpy, 256 B 45 (0.8) +87 (0.9) +70 (1.5)
memcpy, 65 kB 2332 (5.8) +2833 (28.2) +475 (15.0)

Table 5: MPXK and KASAN CPU overhead comparison.

large memory areas need updating. It is somewhat surprising that the MPXK
overheads differ this much due to the size of the copied area. The results
predictably indicate that the mpxk_load_bounds incurs some overhead, in
this case, an overhead of 65ns per call, which in the case of smaller targets
is a 155% increase.

For larger scale measurements we used a setup where our test machine
was directly connected to another machine and communicated through an
IPSec tunnel. The IPSec IP transformations are implemented by xfrm, which
in turn means that applying MPXK on the xfrm framework impacts the
performance of the IPSec tunnel. The test machine was equipped with a
i36100U processor and 8GB memory. The tests were conducted running a
Ubuntu 16.04 Server installation with a Linux v4.8 kernel using the default
Ubuntu kernel configuration. Each test had a duration of 300s and was
repeated three times. Comparisons were made between an MPXK on xfrm
enabled kernel, and a kernel with MPXK completely disabled via kernel
configuration options. The results are shown in Table 6 and indicate a small
to negligible performance impact.

We used the same setup to compared memory and size overheads caused
by MPXK when enabled on the xfrm subsystem; these show a 110KB increase

Netperf test baseline MPXK change (stddev)

UDP CPU use (%) 24.97 24.97 0.00% (0.02)%
TCP CPU use (%) 25.07 25.15 0.31% (0.29)%
TCP throughput (MB/s) 646.69 617.95 -4.44% (4.61)%
TCP throughput (tps) 1586.79 1547.85 -2.45% (1.66)%

Table 6: Netperf measurements over an IPSec tunnel with the xfrm
subsystem protected by MPXK.
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for the in-memory size of the kernel, which amounts to a 0.7% increase. The
overall size of the kernel image increased by 110KB which is a 0.7% on whole
kernel size. When looking at only the xfrm targets there was an increase
of about 125KB, i.e., an increase of 7%. The memory and binary size will
vary depending on kernel configuration and where MPXK is applied but
the results, nonetheless, indicate that the size and memory increases are
modest. Moreover, they are affected only by added static instrumentation,
not accumulating metadata.

One source of performance overhead is the function calls introduced by
the instrumentation. For future work, MPXK can be modified to inline both
wrapper and mpxk_load_bounds functions. This would slightly increase code
size but could nonetheless be a good trade-off. The MPXK wrappers are
typically small compared to MPX because they do not deal with BD and BT
updates. The instrumentation of legacy function calls could also be modified
to use the stack as a temporary bounds storage thus completely removing
function-call overhead and potential precision loss due to mpxk_load_bounds.

3.5.5 Summary of Evaluation

The requirements and evaluations are briefly summarized in Table 7. Both the
security and compatibility requirements (Requirements 1 and Requirement 2)
are to some extent fulfilled but are subject to some uncertainty. MPXK
is fully modular (Requirement 3) and performance overheads are largely
negligible (Requirement 4). The xfrm test case provides a positive example
of MPXK being applied to prevent a specific error, but cannot be generalized.

Req. 1: Security Limited by modularity and mpxk_load_bounds.
Req. 2: Compatibility Compatibility issues with some use cases.
Req. 3: Modularity Is completely modular.
Req. 4: Performance Small CPU use, negligible memory overhead.

Table 7: Evaluation of MPXK against our requirements.
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4 Related Work
Linux security is an actively researched topic. Some recent surveys provide
insight into Linux kernel vulnerabilities and their causes. A 2008 survey
by Mokhov et al. [MLB08] found that faulty error handling and precondi-
tion validation are a significant source of security vulnerabilities. Chen et
al. [Che+11] found that security measures in the kernel tend to be partial
and unable to cover higher-level semantic errors. Reference counting errors
often fit into these categories, e.g., it is often high-level errors in the error
handling code that lead to omitted reference counter decrements. Palix et
al. [Pal+11] in 2011 found that the Hardware Abstraction Layer (HAL) is
the major contributor of errors in the Linux kernel. Raheja et al. [RMS16]
in 2016 used machine learning techniques to analyzed kernel vulnerabilities.
They report that buffer overflows and integer overflows — vulnerabilities
that are addressed by MPXK and refcount_t, respectively — are the most
significant source of memory corruption exploits.
Reference counters: McKenney [McK07] provides a look at reference
counting schemes in the Linux kernel. The kref type [Kro04] is an early
addition that was designed to improve the usability and security of reference
counters in the kernel. However, reference counters are not unique to the
Linux kernel. They were used as early as 1960 by LISP [McC60] and
Collins [Col60].
Exploit mitigations: There have been many efforts to prevent and mitigate
memory errors. Stack buffer overflows are mitigated using stack canaries, such
as StackGuard [Cow+98] or StackShield [Sta11], that detect manipulated
stack data. Other techniques, e.g., avoiding the canary-data, can circum-
vent stack canaries, although StackShield also incorporates range checks
to detect function pointer manipulations. Traditional attacks inject code
into writeable memory and can be prevented by W⊕X memory schemes that
restrict memory areas from being both writeable and executable simultane-
ously [PaX03b; Sol97b]. However, these techniques are vulnerable to Return
Oriented Programming (ROP) attacks, i.e., code-reuse attacks that redirect
the control flow into executable memory chosen by the attacker [Sol97a;
Kra05]. Memory randomization techniques, such as Address Space Layout
Randomization (ASLR) [PaX03a; XKI03], mitigate ROP attacks techniques,
but cannot completely prevent them. The mentioned mitigations prevent
specific attack techniques but do not address the underlying memory safety
issues. Nonetheless, they drastically decrease the attack surface and increase
the cost of exploitation.
Memory safety: Memory safety solutions require complete mediation of
either pointer dereferences or manipulations [SPW13]. Many solutions have
been proposed; some, such as CCured [Nec+05] and Cyclone [Jim+02] used
fat-pointers to keep pointers tightly coupled with their respective bounds.
CCured is interesting because it, like MPX, attempts to handle bounds during
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compile time and uses separate bounds metadata only when absolutely nec-
essary. However, fat-pointers typically break binary compatibility and cause
compatibility problems due to changed pointer memory layout (i.e., pointer
arithmetic is broken). One notable exception is SGXBounds [Kuv+17]. It is
restricted to Intel Software Guard Extension (SGX) enclaves and therefore
can embed the bounds into the pointers without changing their memory
layout.

An alternative to fat-pointers is to use some separate metadata to store
bounds. Object-based systems typically use either shadow-memory or disjoint
metadata. Such systems are J&K [JK97], Dhurjati et al. [DA06] and Baggy
Bounds Checking [Akr+09]; of which the latter offers the best performance
with an average overhead of 60%. Other systems use pointer-based bounds
and store bounds in disjoint metadata. Examples are SoftBound [Nag+09]
and Intel MPX [Int16] itself. Systems such as Purity [HJ91], PIN [Luk+05],
Valgrind [NS07b], and AddressSanitizer [Ser+12] technically also provide
pointer bounds checking but are positioned as development and testing tools.
Performance overheads and other issues typically make them unsuitable for
end-use.
Linux kernel memory safety: There are some Linux kernel specific
solutions, including Kernel Address Sanitizer (KASAN) [17j] , the kernel-
specific AddressSanitizer implementation. KASAN is conceptually similar to
MPXK, i.e., it instruments the code and performs runtime bounds checking,
but it also provides probabilistic prevention of use-after-free errors. However,
its implementation is different in that it uses a shadow-memory to track
object allocations and therefore has high performance overheads. Of recent
research projects, kCFI [RPK17] and KENALI [Son+16] both target the
Linux kernel. KENALI maintains control flow integrity inside the kernel
and achieves good performance by focusing on security-critical portions only.
Similarly, kCFI also combines static analysis with runtime enforcement of
control flow integrity. Unfortunately, neither is targeting the mainline Linux
kernel; kCFI, for instance, is built on LLVM and requires two rounds of
compilation.
PaX/Grsecurity: Many common security features have been pioneered by
PaX/Grsecurity [17h]. It has also been a inspiration for the Kernel Self
Protection Project (KSPP) and is the source of many features upstreamed
by KSPP. PaX/Grsecurity provided the initial incentive for dealing with
reference counter overflows [Bra15] and first implemented commonly known
features such as ASLR [PaX03a]. It is also PaX/Grsecurity that initially
incorporated the GCC-plugin framework to the Linux kernel. Despite efforts
to port specific individual features, the monolithic PaX/Grsecurity patch-set
has remained firmly separated from the mainline kernel. This separation
allows the patch-set to support architectures selectively, do extensive modi-
fication to the code-base and disregard, by PaX/Grsecurity, unsupported
features.
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5 Conclusion
This work has provided some tangible security improvements for the Linux
kernel. Our HARDENED_ATOMIC work served as an instigator to the addition
of the refcount_t. Beyond that, we contributed to the refcount_t design
via our kernel-wide analysis and conversion of individual reference counting
schemes. With a total of 233 patches, of which about half are already
accepted, this work has been substantial. Elimination of reference counter
overflows would have prevented severe CVEs in the past, and assuredly
makes future exploits more challenging to implement. The MPXK work, in
contrast, has been more exploratory but has yielded the novel, kernel-specific,
mechanism of using memory management metadata to determine bounds.
This allows low overhead pointer checking that is neatly integrated to the
Kbuild system using newly added GCC-plugin functionality. As a whole, this
work has provided concrete improvements to the mainline kernel, interesting
insights on kernel memory safety, and yielded new techniques applicable for
future work.

79



References

[16] Android Developers: Dasboard. 2016. url: https://developer.
android.com/about/dashboards/ (visited on 11/25/2016).

[17a] Android Open Source Project. Oct. 2017. url: https://source.
android.com/ (visited on 10/10/2017).

[17b] Coccinelle: A Program Matching and Transformation Tool for
Systems Code. 2017. url: http://coccinelle.lip6.fr/ (vis-
ited on 07/28/2017).

[17c] CVE Details: Linux Kernel Vulnerability Statistics. 2017. url:
https:///www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendor_id=33 (visited on 05/31/2017).

[17d] GNU Compiler Collection (GCC) Internals. 2017. url: https:
//gcc.gnu.org/onlinedocs/gccint/ (visited on 10/10/2017).

[17e] Using the GNU Compiler Collection (GCC): Instrumentation
Options. 2017. url: https://gcc.gnu.org/onlinedocs/gcc/
Instrumentation-Options.html (visited on 10/10/2017).

[17f] GCC Wiki: Intel Memory Protection Extensions (Intel MPX)
support in the GCC compiler. 2017. url: https://gcc.gnu.
org / wiki / Intel % 20MPX % 20support % 20in % 20the % 20GCC %
20compiler/ (visited on 05/24/2017).

[17g] GNU Project: GCC source. 2017. url: https://gcc.gnu.org/
gcc-6/ (visited on 10/10/2017).

[17h] Grsecurity. 2017. url: https://grsecurity.net (visited on
10/10/2017).

[17i] IDC: Smartphone OS Market Share 2016, 2015. 2017. url:
http://www.idc.com/prodserv/smartphone- os- market-
share.jsp (visited on 10/10/2017).

[17j] The Kernel Address Sanitizer (KASAN). 2017. url: http://
www.kernel.org/doc/html/v4.10/dev-tools/kasan.html
(visited on 10/10/2017).

[17k] Netperf Homepage. 2017. url: https://hewlettpackard.github.
io/netperf/ (visited on 10/10/2017).

[AG96] Sarita V Adve and Kourosh Gharachorloo. “Shared Memory
Consistency Model: A Tutorial”. In: Computer 29.12 (Dec. 1996),
pp. 66–76. url: http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=546611.

80

https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://source.android.com/
https://source.android.com/
http://coccinelle.lip6.fr/
https:///www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https:///www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler/
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler/
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler/
https://gcc.gnu.org/gcc-6/
https://gcc.gnu.org/gcc-6/
https://grsecurity.net
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.kernel.org/doc/html/v4.10/dev-tools/kasan.html
http://www.kernel.org/doc/html/v4.10/dev-tools/kasan.html
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=546611
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=546611


[Akr+09] Periklis Akritidis et al. “Baggy Bounds Checking: An Efficient
and Backwards-Compatible Defense against Out-of-Bounds Er-
rors”. In: USENIX Security Symposium (Aug. 2009), pp. 51–66.
url: https://www.usenix.org/legacy/event/sec09/tech/
full_papers/akritidis.pdf.

[ARM] ARM. ARM v8-M Architecture Reference Manual. url: https:
//developer.arm.com/docs.

[Bie17] Ard Biesheuvel. kernel-hardening mailing list: [PATCH v2] arm64:
kernel: implement fast refcount checking. 2017. url: http://www.
openwall.com/lists/kernel- hardening/2017/07/25/29
(visited on 07/28/2017).

[BL70] Paul Branquart and Johan Lewi. “A scheme of storage alloca-
tion and garbage collection for ALGOL 68”. In: Proceedings
of Working Conference (IFIP) on ALGOL 68 Implementation.
1970, pp. 199–238.

[Bra15] Rodrigo Branco. Grsecurity forum — Guest Blog by Rodrigo
Branco: PAX_REFCOUNT Documentation. Mar. 2015. url:
https://forums.grsecurity.net/viewtopic.php?f=7&t=
4173 (visited on 10/10/2017).

[Che+11] Haogang Chen et al. “Linux Kernel Vulnerabilities: State-of-the-
art Defenses and Open Problems”. In: Proceedings of the Second
Asia-Pacific Workshop on Systems. APSys ’11. New York, NY,
USA: ACM, 2011. url: https://dl.acm.org/citation.cfm?
id=2103805.

[Col60] George E. Collins. “A Method for Overlapping and Erasure
of Lists”. In: Communications of the ACM 3.12 (Dec. 1960),
pp. 655–657. url: https://dl.acm.org/citation.cfm?id=
367501.

[Coo15] Kees Cook. kernel-hardenign mailing list: Kernel Self Protection
Project. Nov. 2015. url: http://www.openwall.com/lists/
kernel-hardening/2015/11/05/1 (visited on 10/10/2017).

[Coo16] Kees Cook. Status of the Kernel Self Protection Project. 2016.
url: https://www.outflux.net/slides/2016/lss/kspp.pdf
(visited on 07/28/2017).

[Coo17a] Kees Cook. codeblog: security things in Linux v4.11. May 2017.
url: https://outflux.net/blog/archives/2017/05/02/
security-things-in-linux-v4-11/ (visited on 10/10/2017).

[Coo17b] Kees Cook. codeblog: security things in Linux v4.13. Sept. 2017.
url: https://outflux.net/blog/archives/2017/09/05/
security-things-in-linux-v4-13/ (visited on 10/10/2017).

81

https://www.usenix.org/legacy/event/sec09/tech/full_papers/akritidis.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/akritidis.pdf
https://developer.arm.com/docs
https://developer.arm.com/docs
http://www.openwall.com/lists/kernel-hardening/2017/07/25/29
http://www.openwall.com/lists/kernel-hardening/2017/07/25/29
https://forums.grsecurity.net/viewtopic.php?f=7&t=4173
https://forums.grsecurity.net/viewtopic.php?f=7&t=4173
https://dl.acm.org/citation.cfm?id=2103805
https://dl.acm.org/citation.cfm?id=2103805
https://dl.acm.org/citation.cfm?id=367501
https://dl.acm.org/citation.cfm?id=367501
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1
https://www.outflux.net/slides/2016/lss/kspp.pdf
https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/
https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/
https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/


[Coo17c] Kees Cook. LKML: PATCH v7 0/3] x86: Implement fast refcount
overflow protection. 2017. url: https://lkml.org/lkml/2017/
7/23/139 (visited on 07/28/2017).

[Cor10] Jonathan Corbet. lwn.net: Kernel vulnerabilities: old or new?
Oct. 2010. url: https://lwn.net/Articles/410606/ (visited
on 10/10/2017).

[Cor11] Jonathan Corbet. lwn.net: Better kernels with GCC plugins.
2011. url: https://lwn.net/Articles/461696/ (visited on
10/10/2017).

[Cor16] Jonathan Corbet. lwn.net: Kernel building with GCC plugins.
June 2016. url: https://lwn.net/Articles/691102/ (visited
on 10/10/2017).

[Cow+98] Crispin Cowan et al. “StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks”. In: USENIX Security
Symposium 98 (Jan. 1998), pp. 63–78. url: https://dl.acm.
org/citation.cfm?id=1267554.

[cve14a] CVE-2014-2851. 2014. url: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-2851 (visited on 05/31/2017).

[cve16a] CVE-2016-0728. 2016. url: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-0728 (visited on 11/01/2016).

[cve16b] CVE-2016-4558. 2016. url: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-4558 (visited on 11/01/2016).

[cve17] CVE-2017-7184. 2017. url: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-7184 (visited on 09/01/2017).

[DA06] Dinakar Dhurjati and Vikram Adve. “Backwards-compatible
array bounds checking for C with very low overhead”. In: Pro-
ceeding of the 28th international conference on Software en-
gineering. ICSE ’06. ACM, 2006, pp. 162–171. url: https :
//dl.acm.org/citation.cfm?id=1134309.

[Edg13] Jake Edge. lwn.net: Kernel address space layout randomization.
https://lwn.net/Articles/569635/. 2013.

[Edg15] Jake Edge. lwn.net: Two PaX features move toward the mainline.
https://lwn.net/Articles/668876/. Dec. 2015.

[Hen+93] Laurie Hendren et al. “Designing the McCAT compiler based on
a family of structured intermediate representations”. In: Lan-
guages and Compilers for Parallel Computing: 5th International
Workshop New Haven, Connecticut, USA, August 3–5, 1992 Pro-
ceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
pp. 406–420. url: https://doi.org/10.1007/3-540-57502-
2_61.

82

https://lkml.org/lkml/2017/7/23/139
https://lkml.org/lkml/2017/7/23/139
https://lwn.net/Articles/410606/
https://lwn.net/Articles/461696/
https://lwn.net/Articles/691102/
https://dl.acm.org/citation.cfm?id=1267554
https://dl.acm.org/citation.cfm?id=1267554
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2851
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2851
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0728
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0728
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4558
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4558
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7184
https://dl.acm.org/citation.cfm?id=1134309
https://dl.acm.org/citation.cfm?id=1134309
https://lwn.net/Articles/569635/
https://lwn.net/Articles/668876/
https://doi.org/10.1007/3-540-57502-2_61
https://doi.org/10.1007/3-540-57502-2_61


[HJ91] Reed Hastings and Bob Joyce. “Purify: Errors of Memory Leaks
and Access Fast Detection”. In: In Proc. of the Winter 1992
USENIX Conference. 1991, pp. 125–136. url: https://courses.
cs.washington.edu/courses/cse484/14au/reading/purify.
pdf.

[Int16] Intel. Intel R© 64 and IA-32 Architectures Software Developer
Manuals. 2016.

[Jim+02] Trevor Jim et al. “Cyclone: A safe dialect of C”. In: USENIX
Annual Technical Conference (2002), pp. 275–288. url: https:
//dl.acm.org/citation.cfm?id=647057.713871.

[JK97] Richard W M Jones and Paul H J Kelly. “Backwards-Compatible
Bounds Checking for Arrays and Pointers in C Programs.” In:
Proceedings of the 3rd International Workshop on Automatic
Debugging. Vol. 1. AADEBUG-97. Linköping University Elec-
tronic Press; Linköpings universitet, 1997, pp. 13–26. url: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
13.7027.

[Kra05] Sebastian Krahmer. X86-64 Buffer Overflow Exploits and the
Borrowed Code Chunks Exploitation Technique. Sept. 2005. url:
http://forum.ouah.org/no-nx.pdf (visited on 08/10/2017).

[Kro04] Greg Kroah-Hartman. “kobjects and krefs: lockless reference
counting for kernel structures”. In: Proceedings of the Linux
Symposium. Vol. 2. July 2004, pp. 295–300. url: https://www.
kernel.org/doc/ols/2004/ols2004v2-pages-9-14.pdf.

[Kuv+17] Dmitrii Kuvaiskii et al. “SGXBounds: Memory Safety for Shielded
Execution”. In: Proceedings of the Twelfth European Conference
on Computer Systems. EuroSys ’17. ACM, Apr. 2017, pp. 205–
221. url: https://dl.acm.org/citation.cfm?id=3064192.

[Lam05] Christoph Lameter. LKML: Re: [PATCH] atomic_long_t &
include/asm-generic/atomic.h V2. 2005. url: https://lkml.
org/lkml/2005/12/14/2 (visited on 10/10/2017).

[Lin] Linux Programmer’s Manual. stdarg(3) Linux Programmer’s
Manual. url: http://man7.org/linux/man- pages/man3/
stdarg.3.html (visited on 05/31/2017).

[Luk+05] Chi-Keung Luk et al. “Pin: building customized program analysis
tools with dynamic instrumentation”. In: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design
and Implementation. Vol. 40. PLDI ’05. ACM, 2005, pp. 190–
200. url: http://dl.acm.org/citation.cfm?id=1065010.
1065034.

83

https://courses.cs.washington.edu/courses/cse484/14au/reading/purify.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/purify.pdf
https://courses.cs.washington.edu/courses/cse484/14au/reading/purify.pdf
https://dl.acm.org/citation.cfm?id=647057.713871
https://dl.acm.org/citation.cfm?id=647057.713871
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.7027
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.7027
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.7027
http://forum.ouah.org/no-nx.pdf
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-9-14.pdf
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-9-14.pdf
https://dl.acm.org/citation.cfm?id=3064192
https://lkml.org/lkml/2005/12/14/2
https://lkml.org/lkml/2005/12/14/2
http://man7.org/linux/man-pages/man3/stdarg.3.html
http://man7.org/linux/man-pages/man3/stdarg.3.html
http://dl.acm.org/citation.cfm?id=1065010.1065034
http://dl.acm.org/citation.cfm?id=1065010.1065034


[McC60] John McCarthy. “Recursive Functions of Symbolic Expression
and their Computation by Machine”. In: Communication of the
ACM 3 (Apr. 1960), pp. 184–195. url: https://dl.acm.org/
citation.cfm?id=367199.

[McK07] Paul E McKenney. Overview of Linux-Kernel Reference Count-
ing. Tech. rep. Linux Technology Center, IBM Beaverton, 2007.
url: http://www.open- std.org/JTC1/sc22/wg21/docs/
papers/2007/n2167.pdf.

[MLB08] Serguei A. Mokhov, Marc André Laverdière, and Djamel Benred-
jem. “Taxonomy of Linux kernel vulnerability solutions”. In:
Innovative Techniques in Instruction Technology, E-Learning,
E-Assessment, and Education. Ed. by Magued Iskander. Springer
Netherlands, 2008, pp. 485–493. url: https://doi.org/10.
1007/978-1-4020-8739-4_86.

[Nag+09] Santosh Nagarakatte et al. “SoftBound: Highly Compatible and
Complete Spatial Memory Safety for C”. In: Proceedings of the
30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’09. Dublin, Ireland: ACM,
2009, pp. 245–258. url: http : / / doi . acm . org / 10 . 1145 /
1542476.1542504.

[Nec+05] George C. Necula et al. “CCured: type-safe retrofitting of legacy
software”. In: ACM Transactions on Programming Languages
and Systems 27.3 (2005), pp. 477–526. url: http://portal.
acm.org/citation.cfm?doid=1065887.1065892.

[NS07a] Nicholas Nethercote and Julian Seward. “How to Shadow Every
Byte of Memory Used by a Program”. In: Proceedings of the 3rd
International Conference on Virtual Execution Environments.
VEE ’07. ACM, June 2007, pp. 65–74. url: https://dl.acm.
org/citation.cfm?id=1254820.

[NS07b] Nicholas Nethercote and Julian Seward. “Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation”. In:
Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’07. San
Diego, California, USA: ACM, June 2007, pp. 89–100. url:
http://doi.acm.org/10.1145/1250734.1250746.

[Ole+17] Oleksii Oleksenko et al. “Intel MPX Explained: An Empiri-
cal Study of Intel MPX and Software-based Bounds Check-
ing Approaches”. In: ArXiv e-prints (Feb. 2017). url: https:
//arxiv.org/abs/1702.00719.

84

https://dl.acm.org/citation.cfm?id=367199
https://dl.acm.org/citation.cfm?id=367199
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2007/n2167.pdf
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2007/n2167.pdf
https://doi.org/10.1007/978-1-4020-8739-4_86
https://doi.org/10.1007/978-1-4020-8739-4_86
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
http://portal.acm.org/citation.cfm?doid=1065887.1065892
http://portal.acm.org/citation.cfm?doid=1065887.1065892
https://dl.acm.org/citation.cfm?id=1254820
https://dl.acm.org/citation.cfm?id=1254820
http://doi.acm.org/10.1145/1250734.1250746
https://arxiv.org/abs/1702.00719
https://arxiv.org/abs/1702.00719


[Pad+08] Yoann Padioleau et al. “Documenting and automating collat-
eral evolutions in linux device drivers”. In: Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems. Vol. 42. Eurosys ’08. 2008, pp. 247–260. url: http:
//dl.acm.org/citation.cfm?id=1357010.1352618.

[Pal+11] Nicolas Palix et al. “Faults in Linux : Ten Years Later Faults
in Linux : Ten Years Later”. In: Proceedings of the 16th inter-
national conference on Architectural support for programming
languages and operating systems. ASPLOS XVI. 2011, pp. 305–
318. url: https://dl.acm.org/citation.cfm?id=1950401.

[PaX03a] PaX Team. PaX address space layout randomization (ASLR).
2003. url: http://pax.grsecurity.net/docs/aslr.txt
(visited on 10/10/2017).

[PaX03b] PaX Team. PaX non-executable pages design & implementa-
tion. 2003. url: http : / / pax . grsecurity . net (visited on
08/10/2017).

[Pax17] Pax Team. kernel-hardening mailing list: Re: It looks like there
will be no more public versions of PaX and Grsec. 2017. url:
http://www.openwall.com/lists/kernel-hardening/2017/
05/11/2 (visited on 10/10/2017).

[PF95] Harish Patil and Charles N. Fischer. “Efficient run-time moni-
toring using shadow processing”. In: Automated and Algorithmic
Debugging. Vol. 95. AADEBUG’95. 1995, pp. 119–132. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.39.2066.

[PF97] Harish Patil and Charles Fischer. “Low-cost, Concurrent Check-
ing of Pointer and Array Accesses in C Programs”. In: Software:
Practice and Experience 27.1 (1997), pp. 87–110. url: https:
//dl.acm.org/citation.cfm?id=250910.

[Ram+16] Ramu Ramakesavan et al. Intel R© Memory Protection Extensions
Enabling Guide Rev 1.01. 2016.

[Res16a] Elena Reshetova. Conversion from atomic_t to refcount_t:
summary of issues. Nov. 2016. url: http://www.openwall.
com/lists/kernel- hardening/2016/11/28/4 (visited on
10/10/2017).

[Res16b] Elena Reshetova. kernel-hardening mailing list: [RFC PATCH
00/13] HARDENING_ATOMIC feature. 2016. url: http://
www.openwall.com/lists/kernel-hardening/2016/10/03/1
(visited on 10/10/2017).

85

http://dl.acm.org/citation.cfm?id=1357010.1352618
http://dl.acm.org/citation.cfm?id=1357010.1352618
https://dl.acm.org/citation.cfm?id=1950401
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net
http://www.openwall.com/lists/kernel-hardening/2017/05/11/2
http://www.openwall.com/lists/kernel-hardening/2017/05/11/2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.2066
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.2066
https://dl.acm.org/citation.cfm?id=250910
https://dl.acm.org/citation.cfm?id=250910
http://www.openwall.com/lists/kernel-hardening/2016/11/28/4
http://www.openwall.com/lists/kernel-hardening/2016/11/28/4
http://www.openwall.com/lists/kernel-hardening/2016/10/03/1
http://www.openwall.com/lists/kernel-hardening/2016/10/03/1


[Res16c] Elena Reshetova. kernel-hardening mailing list: [RFC v2 PATCH
00/13] HARDENING_ATOMIC. 2016. url: http : / / www .
openwall.com/lists/kernel- hardening/2016/10/20/5
(visited on 10/10/2017).

[Res16d] Elena Reshetova. kernel-hardening mailing list: [RFC v3 PATCH
00/13] HARDENING_ATOMIC feature. 2016. url: http://
www.openwall.com/lists/kernel-hardening/2016/10/31/5
(visited on 10/10/2017).

[Res16e] Elena Reshetova. kernel-hardening mailing list: [RFC v4 PATCH
00/13] HARDENING_ATOMIC. 2016. url: http : / / www .
openwall . com / lists / kernel- hardening / 2016 / 11 /10 / 4
(visited on 10/10/2017).

[RMS16] Supriya Raheja, Geetika Munjal, and Shagun. “Analysis of Linux
Kernel Vulnerabilities”. In: Indian Journal of Science and Tech-
nology 9.48 (2016). url: http://www.indjst.org/index.php/
indjst/article/view/105819.

[RPK17] Sandro Rigo, Michalis Polychronakis, and Vasileios P Kemerlis.
DROP THE ROP Fine-grained Control-flow Integrity for the
Linux Kernel. 2017. url: https://www.blackhat.com/docs/
asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-
Grained-Control-Flow-Integrity-For-The-Linux-Kernel-
wp.pdf (visited on 10/10/2017).

[Ser+12] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address
Sanity Checker”. In: USENIX Annual Technical Conference.
June 2012, pp. 309–318. url: https : / / www . usenix . org /
system/files/conference/atc12/atc12-final39.pdf.

[Sha07] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86)”. In: Pro-
ceedings of the 14th ACM conference on Computer and commu-
nications security. Vol. 22. 4. Alexandria, Virginia, USA: ACM,
2007, pp. 552–561. url: http://portal.acm.org/citation.
cfm?id=1315313.

[Sol97a] Solar Designer. Bugtraq mailing list: Getting around non-executable
stack (and fix). 1997. url: http://seclists.org/bugtraq/
1997/Aug/63 (visited on 10/10/2017).

[Sol97b] Solar Designer. Bugtraq mailing list: Linux kernel patch to re-
move stack exec permission. 1997. url: http://seclists.org/
bugtraq/1997/Apr/31 (visited on 10/10/2017).

86

http://www.openwall.com/lists/kernel-hardening/2016/10/20/5
http://www.openwall.com/lists/kernel-hardening/2016/10/20/5
http://www.openwall.com/lists/kernel-hardening/2016/10/31/5
http://www.openwall.com/lists/kernel-hardening/2016/10/31/5
http://www.openwall.com/lists/kernel-hardening/2016/11/10/4
http://www.openwall.com/lists/kernel-hardening/2016/11/10/4
http://www.indjst.org/index.php/indjst/article/view/105819
http://www.indjst.org/index.php/indjst/article/view/105819
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
http://portal.acm.org/citation.cfm?id=1315313
http://portal.acm.org/citation.cfm?id=1315313
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Apr/31
http://seclists.org/bugtraq/1997/Apr/31


[Son+16] Chengyu Song et al. “Enforcing Kernel Security Invariants with
Data Flow Integrity”. In: Proceedings of the 2016 Annual Net-
work and Distributed System Security Symposium (NDSS). San
Diego, CA, Feb. 2016.

[SPW13] László Szekeres, Mathias Payer, and Tao Wei. “SoK: Eternal War
in Memory”. In: SP ’13 Proceedings of the 2013 IEEE Symposium
on Security and Privacy. Vol. 12. 3. May 2013, pp. 48–62. url:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
6824529.

[Sta11] StackShield. A Stack Smashing Technique Protection Tool for
Linux. 2011. url: http://www.angelfire.com/sk/stackshield
(visited on 10/10/2017).

[Tor] Torvalds, Linus, et al. Linux kernel source. https://kernel.
org.

[Win16] DavidWindsor. kernel-hardening mailing list: HARDENED_ATOMIC
benchmarks. July 2016. url: http : / / www . openwall . com /
lists/kernel-hardening/2016/10/22/1 (visited on 07/31/2017).

[XKI03] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. “Trans-
parent runtime randomization for security”. In: Proceedings of
the IEEE Symposium on Reliable Distributed Systems. 2003,
pp. 260–269. url: http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=1238076.

[Zab17] Philipp Zabel. LKML: [PATCH v5 1/6] reset: use kref for refer-
ence counting. 2017. url: https://lkml.org/lkml/2017/6/1/
762 (visited on 10/19/2017).

[Zij17] Peter Zijlstra. Patchwork [tip:locking/core] refcount_t: Introduce
a special purpose refcount type. 2017. url: https://patchwork.
kernel.org/patch/9569859/ (visited on 10/10/2017).

87

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6824529
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6824529
http://www.angelfire.com/sk/stackshield
https://kernel.org
https://kernel.org
http://www.openwall.com/lists/kernel-hardening/2016/10/22/1
http://www.openwall.com/lists/kernel-hardening/2016/10/22/1
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1238076
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1238076
https://lkml.org/lkml/2017/6/1/762
https://lkml.org/lkml/2017/6/1/762
https://patchwork.kernel.org/patch/9569859/
https://patchwork.kernel.org/patch/9569859/


A Appendix

A.1 Coccinelle patterns

Listing 41: Coccinelle pattern for finding reference counters in the Linux
kernel

// Check i f re fcount_t type and API should be used
// in s t ead o f atomic_t type when dea l i ng with r e f c oun t e r s
// Conf idence : Moderate
// URL: http :// c o c c i n e l l e . l i p 6 . f r /
// Options : −−inc lude−headers
v i r t u a l r epor t
@r1 ex i s t s@
i d e n t i f i e r a , x ;
p o s i t i o n p1 , p2 ;
i d e n t i f i e r fname =~ " . ∗ f r e e . ∗ " ;
i d e n t i f i e r fname2 =~ " . ∗ dest roy . ∗ " ;
i d e n t i f i e r fname3 =~ " . ∗ de l . ∗ " ;
i d e n t i f i e r fname4 =~ " . ∗ queue_work . ∗ " ;
i d e n t i f i e r fname5 =~ " . ∗ schedule_work . ∗ " ;
i d e n t i f i e r fname6 =~ " . ∗ ca l l_rcu . ∗ " ;
@@
(
atomic_dec_and_test@p1(&(a)−>x) |
atomic_dec_and_lock@p1(&(a)−>x , . . . ) |
atomic_long_dec_and_lock@p1(&(a)−>x , . . . ) |
atomic_long_dec_and_test@p1(&(a)−>x) |
atomic64_dec_and_test@p1(&(a)−>x) |
local_dec_and_test@p1 (&(a)−>x)

)
. . .
(
fname@p2 (a , . . . ) ; |
fname2@p2 ( . . . ) ; |
fname3@p2 ( . . . ) ; |
fname4@p2 ( . . . ) ; |
fname5@p2 ( . . . ) ; |
fname6@p2 ( . . . ) ;

)
@scr ipt : python depends on report@
p1 << r1 . p1 ;
p2 << r1 . p2 ;
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@@
msg = " atomic_dec_and_test v a r i a t i o n

be f o r e ob j e c t f r e e at l i n e \%s . "
c o c c i l i b . r epor t . pr int_report ( p1 [ 0 ] ,

msg \% (p2 [ 0 ] . l i n e ) )
@r4 ex i s t s@
i d e n t i f i e r a , x , y ;
p o s i t i o n p1 , p2 ;
i d e n t i f i e r fname =~ " . ∗ f r e e . ∗ " ;
@@
(
atomic_dec_and_test@p1(&(a)−>x) |
atomic_dec_and_lock@p1(&(a)−>x , . . . ) |
atomic_long_dec_and_lock@p1(&(a)−>x , . . . ) |
atomic_long_dec_and_test@p1(&(a)−>x) |
atomic64_dec_and_test@p1(&(a)−>x) |
local_dec_and_test@p1 (&(a)−>x)

)
. . .
y=a
. . .
fname@p2 (y , . . . ) ;
@scr ipt : python depends on report@
p1 << r4 . p1 ;
p2 << r4 . p2 ;
@@
msg = " atomic_dec_and_test v a r i a t i o n

be f o r e ob j e c t f r e e at l i n e \%s . "
c o c c i l i b . r epor t . pr int_report ( p1 [ 0 ] ,

msg \% (p2 [ 0 ] . l i n e ) )
@r2 ex i s t s@
i d e n t i f i e r a , x ;
p o s i t i o n p1 ;
@@
(
atomic_add_unless (&(a)−>x ,−1 ,1)@p1 |
atomic_long_add_unless (&(a)−>x ,−1 ,1)@p1 |
atomic64_add_unless (&(a)−>x ,−1 ,1)@p1
)
@scr ipt : python depends on report@
p1 << r2 . p1 ;
@
msg = " atomic_add_unless "
c o c c i l i b . r epor t . pr int_report ( p1 [ 0 ] , msg)
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@r3 ex i s t s@
i d e n t i f i e r x ;
p o s i t i o n p1 ;
@@
(
x = atomic_add_return@p1(−1 , . . . ) ; |
x = atomic_long_add_return@p1(−1 , . . . ) ; |
x = atomic64_add_return@p1(−1 , . . . ) ;
)
@scr ipt : python depends on report@
p1 << r3 . p1 ;
@@
msg = "x = atomic_add_return (−1 , . . . ) "
c o c c i l i b . r epor t . pr int_report ( p1 [ 0 ] , msg)

A.2 refcount_t API

void refcount_set(refcount_t, unsigned int)

unsigned int refcount_read(refcount_t)

void refcount_add(unsigned int, refcount_t)
Add value to refcount_t unless it was 0, in which case the addition is
aborted and a warning is issued. Intended for use when the refcount_t
value is known to be positive, hence the warning when it is not.

bool refcount_add_not_zero(unsigned int, refcount_t)
Add value to refcount_t unless the value before was 0 and return true
if the addition was done.

void refcount_inc(refcount_t)other_func
Increment refcount_t by one unless it already is zero, in which case a
warning issues. Architecture independent version is implemented using
the refcount_inc_not_zero function.

bool refcount_inc_not_zero(refcount_t)
Increment refcount_t unless its value was zero, returns true on in-
crement. Note that this function also returns false when the value
is saturated, although a warning is issued when the saturation takes
place.

bool refcount_sub_and_test(unsigned int, refcount_t)
Subtract value from refcount_t. If the subtraction overflows a warning
is issued. True is returned only if the refcount_t value reaches zero
due to the subtraction. Note that a saturated value incurs neither
warnings nor value changes, it simply stays at the saturation value,
UINT_MAX.
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bool refcount_dec_and_test(refcount_t)
Analogous to refcount_sub_and_test, the architecture independent
implementation is even implemented as refcount_sub_and_test(1,
refcount).

void refcount_dec(refcount_t)
Decrement the refcount_t value by one and issue a warning if the
refcount_t reaches zero.

bool refcount_dec_if_one(refcount_t)
Decrement the refcount_t only if it was 1, i.e., either swaps the value
from 1 to 0, or does nothing. The return value is true if the swap
succeeded. While this function is not strictly needed for ideal reference
counting schemes it is in practice needed to accommodate many existing
reference counting schemes.

bool refcount_dec_not_one(refcount_t)
Decrement the refcount_t only if it’s value is other than 1, i.e.,
decrement only when the resulting value will remain greater than zero.

bool refcount_dec_and_mutex_lock(refcount_t, struct mutex *)
Decrements the reference counter and locks the provided mutex before
invoking the decrement operation. If the decrement caused the counter
to reach zero the mutex remains locked and true is returned, otherwise
the mutex is unlocked and false is returned.

bool refcount_dec_and_lock(refcount_t, spinlock_ *)
Identical to the refcount_dec_and_mutex_lock function, but instead
of a mutex this variant uses a spinlock. The difference being that a
mutex causes blocked CPUs to sleep wherease the spinlock essentially
keeps the CPU spinning and checking the lock continuously.
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