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PART A 
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ii. Abbreviations 
 
Ad  adenovirus 
ADP adenovirus death protein 
bp  base pair 
CAR coxsackie-adenovirus receptor 
CD  cytosine deaminase 
Cox-2 cyclooxygenase-2 
CBGr click beetle green 
CBr  click beetle red 
CEA carcinoembryonic antigen 
CMV cytomegalovirus 
CR  constant region 
CRAd conditionally replicating adenovirus 
CTL  cytotoxic T-lymphocytes 
DMEM Dulbecco's Modified Eagle's medium 
DNA deoxyribonucleic acid 
FACS fluorescence activated cell sorting 
FC  fluoro cytosine 
FCS  fetal calf serum 
FU  fluoro uracil 
GCV ganciclovir 
GFP green fluorescent protein 
GMCSF granulocyte macrophage colony stimulating factor 
h  hour 
HCC hepatocellular carcinoma 
HEK human embryonic kidney 
HRE hypoxia response elements 
HSV-TK herpes simplex thymidine kinase 
hTERT human telomerase reverse transcriptase 
IFN  interferon 
Ig  immunoglobulin 
i.ha. intrahepatic artery 
IL  interleukin 
i.p.  intraperitoneal 
i.t.  intratumoral 
ITR  inverted terminal repeat 
i.v.  intravenous 
Jak/STAT Janus kinase/ Signal Transducers and Activators of Transcription 
LacZ β-galactosidase 
luc  luciferase 
MAPK mitogen activated protein kinase 
MAV mouse adenovirus 
MHC major histocompatibility complex 
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MOI multiplicity of infection 
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium);CellTiter96 AQueous One Solution-Cell Proliferation Assay 
NF-κB nuclear factor κB 
NK  natural killer cells 
NOD-LRR nucleotide binding oligomerization domain/leucine-rich repeat 
oct4 octamer-4 
PAMP pathogen-associated molecular patterns 
PCR polymerase chain reaction 
pfu  plaque forming unit 
pK  polylysine 
PKR  protein kinase RNA-activated 
PRR pattern-recognition receptors 
PSA  prostate specific antigen 
Rb  retinoblastoma 
RGD arginine-glycine-aspartic acid 
RNA ribonucleic acid 
RPMI cell culture media developed at Roswell Park Memorial Institute 
SEAP secreted alkaline phosphatase 
s.c.  subcutaneous 
SCCHN squamous cell carcinoma of the head and neck 
SCID severe combined immune deficiency 
sox2 sex determining region Y box 2 
Th  T helper cell 
TK  thymidine kinase   
TLR  toll like receptor 
TNF tumor necrosis factor 
TP  terminal protein 
TCID50 tissue culture infective dose 50 
VA-RNAs viral associated RNA 
VEGF vascular endothelial growth factor 
vp  virus particle 
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iii. Abstract 
 
Cancer is a devastating disease with poor prognosis and no curative treatment, when 

widely metastatic. Conventional therapies, such as chemotherapy and radiotherapy, have 

efficacy but are not curative and systemic toxicity can be considerable. Almost all cancers 

are caused due to abnormalities in the genetic material of the transformed cells.  

Cancer gene therapy has emerged as a new treatment option, and past decades 

brought new insights in developing new therapeutic drugs for curing cancer. Oncolytic 

viruses constitute a novel therapeutic approach given their capacity to replicate in and 

kill specifically tumor cells as well as reaching tumor distant metastasis. As with any new 

therapy, safety issues need to be considered. Adenoviral therapy has proved good safety 

and efficacy in preclinical and clinical set up. Increasingly effective agents are developed 

and, consequently, replication associated side-effects remain a concern. There is still a 

lack of understanding to the full realization of efficacy and safety of these anticancer 

agents.  

Adenoviral gene therapy has been suggested to cause liver toxicity. This study shows 

that new developed transductional targeted adenoviruses, in particular Ad5/19p-HIT, can 

be redirected towards kidney while adenovirus uptake by liver is minimal. Moreover, low 

liver transduction resulted in a favorable tumor to liver ratio of virus load.  

Further, we established a new immunocompetent animal model – Syrian hamsters. 

Wild type adenovirus 5 was found to replicate in Hap-T1 hamster tumors and normal 

tissues. In general, hamster cell lines were found semi-permissive; however, some of 

them are nearly as permissive as human cells lines, for human adenovirus and exhibited 

sustained adenovirus replication. There are no antiviral drugs available to inhibit 

adenovirus replication. In our study, chlorpromazine and cidofovir efficiently abrogated 

virus replication in vitro and showed significant reduction in vivo in tumors and liver. 

Once safety concerns were addressed together with the new given antiviral 

treatment options, we further improved oncolytic adenoviruses for better tumor 

penetration, local amplification and host system modulation. We analyzed two different 

hypoxia response elements, and found 9HIF to be a good candidate for kidney tumor 

transcriptional targeted therapy. Further, we created Ad5/3-9HIF-Δ24-VEGFR-1-Ig, 
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oncolytic adenovirus for improved infectivity and antiangiogenic effect for treatment of 

renal cancer. This virus exhibited increased anti-tumor effect and specific replication in 

kidney cancer cells. 

The key player for good efficacy of oncolytic virotherapy is the host immune 

response. Thus, we engineered a triple targeted adenovirus Ad5/3-hTERT-E1A-hCD40L, 

which would lead to tumor elimination due to tumor-specific oncolysis and apoptosis 

together with an anti-tumor immune response prompted by the immunomodulatory 

molecule. This oncolytic adenovirus exhibited a potent oncolytic effect in vitro and in vivo 

together with induction of apoptosis. The immunostimulatory molecule, CD40L 

expressed by adenoviruses, mediated tumor regression by induction of innate and 

adaptive immune responses. 

In conclusion, the results presented in this thesis constitute advances in our 

understanding of oncolytic virotherapy by successful tumor targeting, antiviral treatment 

options as a safety switch in case of replication associated side-effects, and modulation 

of the host immune system towards tumor elimination.              



6 

 

PART B 
 
1 REVIEW OF THE LITERATURE 

 
1.1 Introduction 
 
Cancer is a major public health concern worldwide with an estimated 10.9 million 

new cases and 6.7 million deaths in 2002 (Parkin et al., 2005). Even though, overall 

cancer death rates in 2004 compared with 1990 in men and 1991 in women decreased by 

18.4% and 10.5% respectively (Jemal et al., 2008), it is estimated that by 2020 cancer 

incidence will double if preventive measures are not taken (Eaton, 2003). Cancer still 

remains the second leading cause of death in developed countries and the fourth most 

common worldwide. 

Standard treatment options for cancer can be divided in four main categories: 

surgery, chemotherapy, radiotherapy and biological therapy but nevertheless there is still 

no cure for widely metastatic cancer. 

• Surgery – is usually performed for localized tumors, and aims for resection of 

tumors and as much as cancerous tissue possible. It has been the most common 

treatment option until radiation therapy has been introduced. 

• Radiation therapy – uses ionizing radiation to control the tumors. Cancer cells are 

killed by damaging their DNA and making them unable to multiply. 

• Chemotherapy – uses drugs to eliminate the cancer cells. These drugs are 

effective mainly on cells with a high rate of multiplication. Unfortunately not only cancer 

cells have this ability, though this treatment option can cause adverse side-effects. 

• Biological therapy or targeted therapy – uses drugs that target characteristics of 

the cancer cells. This targeted therapy blocks biological activities through which the 

cancer cells can grow and spread. 

As stated above, these treatment options are not curative for advanced metastatic 

cancer. Cancer is a disease caused by mutations in genes either inherited from our 

parents or even more often these changes occur during our life time. Therefore, 

researchers strongly believe that gene therapy might be the treatment option for cancer.  
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1.2 Cancer gene therapy 
 
The emerging field of cancer gene therapy has gained a lot of interest in past 

decades. The use of viruses as anti-cancer treatments has been a therapeutic approach 

for almost 100 years. First report dates from 1912, when a patient with cervical cancer 

received a rabbies vaccination and tumor regression was observed (DePage, 1912). 

Following this, a wide range of viruses, including adenovirus (Ad), Bunyamwera, 

coxsackie, dengue, feline panleukemia, Ilheus, measles, mumps, Newcastle disease, 

vaccinia and West Nile virus, were tested to show their oncolytic potency in animals and 

humans (Asada, 1974; Gross, 1971; Huebner et al., 1956; Reichard et al., 1992; Southam 

and Moore, 1951), and a variety of clinical trials were performed as shown in Figure 1. 

Cancer gene therapy approaches can be classified in three main categories: 

immunotherapy, oncolytic virotherapy and gene transfer. In this context, new 

approaches have been developed for targeting of cancer cells, cancer vasculature, the 

immune system and the bone marrow. 

There are multiple strategies to replace or repair the targeted genes:  

• Insert healthy genes in place of abnormal or missing ones: e.g. most of the 

cancers have defective p53 gene which can be replaced/modified turning a cancer cell to 

apoptosis  

• Ablate the functions of oncogenes which result in end of division of abnormal 

cells and limit the growth of the tumors 

• Introduce genes which make cancer cells more susceptible to chemotherapy and 

radiotherapy  

• Use immunostimulatory molecules or add genes to the immune system cells for 

better recognition of cancer cells 

• Inactivate genes responsible for angiogenesis, which is essential for tumors to 

grow 

• Use ‘suicide genes’ where a pro-drug is given to the patient and is reversed in the 

toxic form by the converting pro-drug enzyme produced by the cancer cells. Ultimately, 

neighboring cells are also killed by the so called bystander effect. 
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Between 1989 and 2009, around 1400 gene therapy clinical trials have been approved 

as reported in the Gene Therapy Clinical Trials Worldwide (provided by the Journal of 

Gene Medicine). Out of these, 70% are for cancer treatment and among them, 280 

clinical trials worldwide were started for adenoviral cancer gene therapy.    

 

 

 
 
 
 
 
 
 
 

Figure 1 Cancer Gene Therapy trials reported till the end of 2009 in 

http://www.wiley.co.uk/genetherapy/clinical/ database.  
 
 

1.3 Adenoviruses 
 
Adenoviruses have potential as vectors for gene therapy because they can be easily 

genetically altered in vitro using recombinant DNA techniques. During the past 20 years, 

Ads were intensively studied and have become the most commonly used gene transfer 

vectors in the field of gene therapy. Adenoviral vectors are an attractive vehicle for gene 

transfer in vitro and in vivo due to easy production of high-titer stocks (up to 1013 

pfu/ml), remarkable efficiency of each step in the adenovirus cell/nucleus entry process 

and low pathogenicity in humans. In addition, Ads are able to transduce both dividing 

and non-dividing cells, but are mostly incapable of genome integration into host cell 

chromosomes and the viral genome does not undergo rearrangement at a high rate. 

However, as disadvantages for using adenoviruses, we have three main challenges, such 

as the expression is transient (viral DNA does not integrate), the viral proteins can be 

expressed in the host and systemic delivery is hampered by the host immune system. 

Wild-type adenoviruses can cause mild upper respiratory tract infections but are not a 

major concern in healthy individuals. Therefore, Ad-based vectors have evolved as an 
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efficient tool for cancer treatment being successfully utilized in many clinical trials with 

variable but encouraging results. 

1.3.1. Adenovirus structure and life-cycle  

Ads were discovered in early 1950 and first isolated from human adenoids in 1953 

(Rowe et al., 1953). Since then, 51 human serotypes of the adenoviridae family have 

been identified and divided into 4 genera (Aviadenovirus, Atadenovirus, Mastadenovirus, 

Siadenovirus) and 6 species (A-F) (Burmeister et al., 2004; Davison et al., 2003; de Jong et 

al., 2008; Li and Wadell, 1999). Ads have been shown to be responsible for a variety of 

illnesses including upper respiratory disease, epidemic conjunctivitis and infantile 

gastroenteritis (Berk, 2007).  

Ads are nonenveloped, icosahedral particles, approximately 90nm in diameter, with 

fibers projecting from the vertices of the icosahedron. The virions contain 87% protein, 

13% DNA and trace amounts of carbohydrate but no lipids (Rux and Burnett, 2004). 

Electron microscopy and X ray crystallography investigations revealed that the 

icosahedral shape contains 20 triangular surfaces and 12 vertices. The capsid of the virion 

is composed of 252 capsomere subunits: 240 hexons and 12 pentons surrounding a DNA-

protein core complex. Each hexon is surrounded by 6 neighbouring subunits, while each 

penton is enclosed by 5 neighbouring subunits and has a fiber projecting from its vertex 

(Figure 2). The protein content of the capsid consists of three major capsid proteins ( 

hexon (720 molecules/virion), penton base (60 

molecules/virion) and knobbed fiber 

(36molecules/virion) (Zhang and Imperiale, 

2003), four minor capsid proteins (VI, VIII, IX and 

IIIa) and four core proteins (Terminal protein, 

Protein Mu, VII and V) (Figure 2) (Berk, 2007; 

Nemerow et al., 2009).  

 

Figure 2 Schematic diagram of the Ad virion summarizing 

the location of the eleven structural proteins  
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The complete sequence of at least eight human and fifteen nonhuman Ads have been 

identified including Ad5 determined by Chroboczek and colleagues (Chroboczek et al., 

1992) (Fig. 3).  

 

 

Figure 3 Schematic representation of Ad genome with early genes (E1-E4), late genes (L1-L5) 

and ψ representing the replication start point-adapted from (Berk, 2007). 

 

The virus genome is a linear, double-stranded DNA with a terminal protein (TP) 

covalently attached to the 5’ termini (Rekosh et al., 1977) which has inverted terminal 

repeats (ITRs).  It is typically around 36 kbp in length and the ITR’s sequences are around 

100-140 bp at each end. Furthermore, the genome contains 5 early transcription units 

(E1A, E1B, E2, E3 and E4), three delayed early units (IX, IVa2 and E2 late) and one major 

late unit that is processed to generate 5 families of late RNAs (L1-L5). Adenovirus 

genome also contains viral associated RNAs (VA-RNAs) which play a critical role in 

regulating the translation process (Thimmappaya et al., 1982). It has been shown that, 

with the exception of E4 (Leppard, 1997), each early and late transcription unit encodes a 

series of polypeptides with related functions. E1A proteins are known to activate 

transcription and trigger entry into the S phase of the cell cycle, which renders the cell 

more susceptible to viral replication (Berk, 2007). Two E1B proteins interact with E1A 

gene products to induce cell growth (Berk, 2007). Three E2 proteins are reported to 

function in DNA replication (Berk, 2007), while E3 proteins mostly play a role in 

modulation of the antiviral host response to adenoviruses and are therefore dispensable 

for in vitro replication (Wold et al., 1999). One of the E3 proteins facilitates efficient 

progeny virus release by late cytolysis of infected cells and has been named adenovirus 

death protein (ADP) (Tollefson et al., 1996). In addition, another protein of the E3, gp19K 

protein delays expression of MHC I (Bennett et al., 1999). E4 gene products mainly 

facilitate virus messenger RNA metabolism (Goodrum and Ornelles, 1999) and provide 
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functions to promote virus DNA replication and shut-off of host protein synthesis 

(Halbert et al., 1985). Further, they are associated with resistance to lysis by cytotoxic T 

lymphocytes (CTLs) (Kaplan et al., 1999). Late proteins are either capsid components, or 

proteins involved in capsid assembly (Berk, 2007).  

The adenovirus life cycle mainly takes place in two phases: the early phase, which 

lasts for 5 to 6 hours and includes adsorption, penetration, movement of uncoated 

virions, transport to the nucleus and production of early genes and the second phase 

which starts by expression of late genes and assembly of the virus progeny as exemplified 

in Figure 4. Typically this cycle is completed in 24 to 36 hours. 

Figure 4: Adenovirus life-cycle - adapted from (Hakkarainen, 2005) 

 

The first step in adenoviral infection is initiated with the binding of the adenovirus 

fiber knob to a high affinity cell surface receptor. Most adenovirus species, subgroups A 

and C-F, have been shown to utilize the coxsackie- and adenovirus receptor (CAR) 

(Bergelson et al., 1997; Roelvink et al., 1999). The initial virus binding is followed by 

receptor-mediated endocytosis in clathrin-coated pits, which is mediated by interactions 

between an arginine-glycine-aspartic acid (RGD) motif within the viral penton base and 

cellular αvβ integrins (Wickham et al., 1994; Wickham et al., 1993). Once internalized, the 

pH drops within the endosome resulting in a conformational change of the capsid 

structure. Endosome membrane is disrupted and the virus particle attaches to the 

nuclear pore complex of the nucleus. After the capsid attaches to the nuclear pore 
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complex, the viral DNA is injected into the nucleus (Berk, 2007). The process of early 

gene transcription is initiated with the production of the viral E1A transactivator and has 

three major consequences. First, cells enter the S phase of the cell cycle to replicate the 

DNA. This is achieved through a number of processes including the release of E2F upon 

E1A binding to the Rb tumor suppressor, inhibition of the p53 tumor suppressor by E1B-

55K and direct blockage of apoptosis by the Bcl-2 homologue E1B-19K. Second, is the 

inhibition of cellular antiviral responses which includes the retention of major 

histocompatibility complex I (MHC I) molecules in the endoplasmic reticulum by E3-

gp19K in order to suppress CTL-mediated cell death. The third main consequence is the 

synthesis of gene products needed for viral DNA replication (Berk, 2007). Following 

synthesis of the early gene products, DNA replication occurs within the nucleus and 

concomitantly the delayed early IX and IVa2 genes are transcribed. Translation of late 

RNA species leads to production of capsid proteins within the cytoplasm followed by 

their translocation to the nucleus. This ultimately results in genome packaging into 

assembled capsids, which are not released until the cell is lysed. Cell lysis requires 

disruption of intermediate filaments, such as vimentin and cytokeratin, which leads to 

collapse and rupture of the cell (Belin and Boulanger, 1987; Chen et al., 1993). 

Once released from the cell, Ad can maintain a long term association with its host. 

Ads encode several gene products responsible for the evasion of the immune system and 

persistence in the human body. E1A gene products counteract the immune response by 

three mechanisms (Hayder and Mullbacher, 1996), such as: block IFN gene activation 

(Routes et al., 1996), interfere with IL-6 at two levels (transcription of IL-6 gene and 

transduction of IL-6 signal) (Janaswami et al., 1992; Takeda et al., 1994) and interrupt the 

process of TNF-induced cell death (Eckner et al., 1994; Hamel et al., 1993). E1B-19k gene 

is also able to counteract the TNF-induced cell death mechanism (White et al., 1992). 

Adenoviruses also encode two VA RNAs proteins which modulate the IFN response. VA-

RNA1 binds to inactive protein kinase RNA-activated (PKR) preventing it from binding to 

dsRNA and subsequent IFN production. VA-RNAs also inhibit the RNA interference 

process (Berk, 2007). The E3 gene products are responsible for the inhibition of cellular 

antiviral responses. E3-gp19K induces the retention of major histocompatibility complex 
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class I molecules in the endoplasmic reticulum in order to suppress cytotoxic T-

lymphocyte-mediated cell death (McSharry et al., 2008). 

1.3.2. Development of targeted adenoviruses 

Ads as gene transfer vectors are currently the preferred tool for cancer gene therapy 

mostly because of their high capacity of gene expression in vivo.  Ads as vectors can be 

classified in two groups: replication deficient and replication competent.  

Replication deficient Ads lack one or more essential viral genes and they are used 

mostly as gene transfer vectors (Immonen et al., 2004; Merritt et al., 2001). In ‘first 

generation’ Ads, usually the E1A gene is deleted and the transgenes of interest are 

inserted. Given this, virus propagation must occur in specific cell lines, such as HEK 293 

(Graham et al., 1977) or 911 (Fallaux et al., 1996), which express E1A gene necessary for 

viral replication. These viruses are fully competent to enter most human cells and 

express the transgenes in vitro and in vivo. These Ads can also have the E3 gene deleted, 

which does not affect the growth of the vector and, moreover, allows insertion of bigger 

transgenes into E1 region, since only up to 105% of the genome can be packaged into 

new virions (Berk, 2007).  Further modifications of the Ad genome led to the 

development of ‘second-generation’ recombinant Ads. These vectors typically carry 

deletions in E2 or E4 in addition to deleted E1 and E3 regions and allow increased cloning 

capacity. ‘Second-generation’ vectors offer reduced viral gene expression and also block 

viral replication in transduced tissue. Overall, this renders these vectors less 

immunogenic than ‘first generation’ Ads (Shen, 2007). Later, Ad vectors lacking all viral 

genes were constructed to further decrease the vectors immunogenicity (Fisher et al., 

1996; Kochanek et al., 1996). These vectors, so called ‘gutless’ or helper-dependent, 

retain the cis-acting sequences such as the inverted terminal repeats (ITR) at each end of 

the genome and also the packaging sequence at the left end, which is required for the 

replication and packaging of the newly formed virions. 

Replication competent Ads, ‘oncolytic adenoviruses’, are mainly used for cancer gene 

therapy. These viruses kill cancer cells as part of their natural life cycle, lyse the cells and 

subsequent infect the neighboring ones. Oncolytic virus selectivity for tumors can occur 

due to two mechanisms: either at the level of infection or replication. To increase the 

selectivity of these vectors for cancer cells, specific promoters are inserted driving the 
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genes responsible for replication. To enhance replication and to target these viruses to 

tumor cells we can delete the genes responsible for viral replication in normal cells and 

retain the ones responsible for viral replication in cancer cells with deregulated cell cycle.    

1.3.3 Tumor targeted adenoviruses 

The perfect vector system to use for gene therapy would be a vector, which 

administered by a noninvasive route would target cells specifically within the target 

tissue and would produce therapeutic amount of transgene with the desired regulation. 

Tumors are heterogeneous, thus specific tumor targeting can be achieved using three 

different strategies: 1) transductional targeting, 2) transcriptional targeting and 3) 

generation of new conditionally replicating viruses.     

1.3.3.1 Transductional targeting to cancer cells 

The effectiveness of gene therapy is governed mainly by the ability of the vector to be 

delivered to the relevant tissue and, once there, to express the gene product in 

appropriate quantities (Russell, 2000). Recombinant Ad5 is the most commonly used 

vector for gene therapy. Several strategies have been employed for targeting 

adenoviruses including: modification of the knob domain by adding different peptides 

into the c-terminus or HI-loop, pseudotyping with fibers derived from other Ad serotypes 

for binding other receptors than CAR (Bauerschmitz et al., 2006; Kanerva et al., 2002a; 

Kanerva et al., 2002b; Kanerva et al., 2003; Kangasniemi et al., 2006; Ranki et al., 2007a; 

Ranki et al., 2007b; Sarkioja et al., 2006) and chemical Ad5 capsid modification. For the 

first approach, several modalities have been employed (Mizuguchi and Hayakawa, 2004) 

to insert peptides into the HI loop of the fiber knob. These include those discovered by 

phage display library to show high affinity for vascular endothelial cells (Havenga et al., 

2001; Havenga et al., 2002; Nicklin et al., 2000), cancer cells (Nicklin et al., 2003), RGD in 

HI loop (Bauerschmitz et al., 2002; Dmitriev et al., 1998),  transferrin receptors (Xia et al., 

2000), vascular smooth muscle cells (Work et al., 2004) and kidney derived peptides  

(Denby et al., 2004; Denby et al., 2007).  

Second approach has featured pseudotyping fibers from all known adenovirus 

subgroups in the context of an Ad5 capsid. For example, altered vector tropism was 

reported by substitution of the Ad5 fiber protein into that of Ad3 which was first 

reported by Krasnykh and colleagues (Krasnykh et al., 1996). These approaches of 
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swapping the Ad5 fiber  with fibers or fiber knobs of other adenovirus serotypes (Ad3, 

Ad7, Ad11, Ad16, Ad17, Ad35) and creating “pseudotyped” hybrid vectors, succeeded in 

changing the tropism of Ad5 to receptors expressed on tumor cells more than CAR 

(Mizuguchi and Hayakawa, 2004). Most of the reported studies have utilized cell lines or 

primary patient samples in vitro, or intratumoral (i.t.) administration in vivo, while data 

on systemic delivery has been scarce.  

More importantly, several recent publications suggest that the biodistribution of Ad, 

following intravenous (i.v.) administration, is not determined by the fiber knob. While 

knob modification may be able to enhance tumor transduction, it has not reduced 

uptake by non-target organs such as the liver. Instead, the fiber shaft may play a key role 

in determining biodistribution (Bayo-Puxan et al., 2006; Haviv et al., 2002; Kanerva et al., 

2002b; Ranki et al., 2007b; Sarkioja et al., 2006; Shayakhmetov et al., 2002). For example, 

Ad5 pseudotyped with the Ad35 fiber (including shaft) or interaction of Ad5 hexon with 

blood factors demonstrated less accumulation of the virus into the liver compared to Ad5 

following i.v. administration (Shayakhmetov et al., 2002; Waddington et al., 2008). Also, 

mutation of the KKTK region of the fiber shaft has been reported to alter virus 

biodistribution (Alemany and Curiel, 2001; Bayo-Puxan et al., 2006). Therefore, 

approaches that have switched the complete fiber (instead of just the knob) or mutated 

relevant regions of the shaft may be appealing for influencing the biodistribution of 

systemically delivered virus. 

1.3.3.2 Transcriptional targeting to cancer cells 

Using transcriptional targeting strategies for genetically engineered Ads, gene 

expression is controlled by a tumor-tissue specific promoter. Two main strategies for 

tumor-selective adenoviral replication have been evaluated: first, deletions in the Ad 

genes responsible for replication in normal cells but dispensable in cancer cells, and 

second, viral genes responsible of replication placed under tumor tissue specific 

promoters.  

Infectivity enhanced and highly effective viruses can cause toxicity at high doses. As a 

result, improvements in selectivity may reduce the side-effects. In this regard, utilization 

of tumor specific promoters, such as: the human telomerase reverse transcriptase 

promoter (hTERT) (Ito et al., 2006; Takakura et al., 2010; Yokoyama et al., 2008), the α–
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fetoprotein promoter (Hallenbeck et al., 1999), the prostate-specific antigen (PSA) 

promoter (Rodriguez et al., 1997), a mucin-like DF3 antigen promoter (Kurihara et al., 

2000), cyclooxygenase-2 (COX-2) for gastrointestinal cancer (Yamamoto et al., 2001), 

carcinoembryonic antigen (CEA) for colorectal liver metastases (Brand et al., 1998), 

human glandular kallikrein 2 for prostate cancer (Xie et al., 2001) and hypoxia response 

elements (HREs) for kidney cancer (Binley et al., 2003) may help to reduce the adverse 

effects of oncolytic viral therapy. Furthermore, we can insert microRNA’s targets in the 

untranslated region of the E1A gene to specifically target liver hepatocytes. This 

modification showed significant decrease of replication of the vector in hepatocytes 

without altering the replication of the vector in the other cells (Ylosmaki et al., 2008). 

1.3.3.3 Conditionally replicating adenoviruses for cancer therapy 

The first oncolytic adenovirus, named dl1520, has been described by Barker and Berk 

in 1987. This replication competent adenovirus known as ONYX-015 is an Ad2/5 chimera, 

which lacks functional E1B-55K (Bischoff et al., 1996). E1B-55K gene binds and inactivates 

p53 in infected cells resulting in induction of S-phase, which is required for effective virus 

replication (Yew and Berk, 1992). Theoretically, this virus should replicate only in cells 

where p53 is not functional, which is the case of most human cancers (Ries et al., 2000). 

Other E1B-modified oncolytic adenoviruses were generated by deletion of both genes, 

E1B-55K and E1B-19K, which additionally target Rb negative cancers (Duque et al., 1999). 

The replication efficiency of this E1B-55K mutant seldom reaches the rate of replication 

of the wild type adenovirus (Howe et al., 2000). This may be explained by the other 

function of E1B-55K, as a mRNA transporter, which might result in inefficient replication 

of ONYX-015 (Dix et al., 2001).  

Two conserved regions in E1A, constant region 1 (CR1) and 2 (CR2), are essential for 

binding of Rb protein, which favors E2F release and induction of S-phase. These regions 

have higher affinity than the normal Rb-E2F binding which occurs normally in cells. 

Deletions in CR1 and CR2 regions lead to defective Rb binding in normal cells resulting in 

cell cycle arrest and no S-phase induction - necessary for virus replication. On the 

contrary, cancer cells are defective on Rb pathway and allow virus replication to occur. 

These CR1-deleted mutants are barely selective and viral replication is attenuated (Heise 

and Kirn, 2000). 
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 In contrast, a single 24bp deletion in CR2 preserves the oncolytic activity in Rb 

negative tumor cells and makes these vectors’s replication deficient in normal cells 

(Fueyo et al., 2000; Heise and Kirn, 2000). Since many cancer types have E2F 

overexpression, it has been thought that E2F would be a perfect candidate as a promoter 

for the E1A. In this regard, Johnson and colleagues constructed an oncolytic virus ONYX-

411 in which both E1 and E4 are driven by the E2F-1 promoter and, in addition, E1A has a 

deletion into the CR2 region (Johnson et al., 2002). This virus retained the oncolytic 

potency in cancer cells at the same levels with a wild-type both in vitro and in vivo - 

following systemic administration. In summary, these conditionally replicating 

adenoviruses are designed to replicate in, and subsequently kill only cancer cells without 

affecting normal cells.  

 

1.4 Clinical trials with oncolytic adenoviruses 

 

Clinical trials and treatments with oncolytic and non-replicating adenoviruses are 

dating from 1950’s; however, there are no conclusive results from early clinical trials. 

Only during the last decades, clinical trials with oncolytic viruses elucidated the efficacy 

of this virotherapy. In 1996, a phase I clinical trial was initiated with the direct injection of 

dl1520 (see 1.3.3.3.) for head and neck cancers (Ganly et al., 2000). In this trial, 14% of 

patients showed tumor regression rates of >50%. During the following years this vector 

was used under the name ONYX-015 in a total of 18 clinical trials (Phase I and II) with 

almost 300 treated patients (Alemany, 2007; Yu and Fang, 2007). Better results were 

noticed when the virus was used in combination with cisplatin and 5-fluorouracil (5-FU) 

in a Phase II trial (Khuri et al., 2000), as about 65% of treated patients with head and neck 

tumors had objective responses. The first oncolytic adenovirus that reached completed 

Phase III trial was H101 (similar to dl1520, but also deleted for E3). This oncolytic Ad 

showed 79% response rate in the combination with chemotherapy versus 40% in the 

chemotherapy only group (Xia et al., 2004).  
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Table 1 shows a selection of the above described clinical trials and others, using 

oncolytic adenoviruses. 

Adenovirus 
Tumor-
specificity 

Phas
e 

Cancer 
Route  
of 
admin. 

Respons
es/ total 
patients 

Reference 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
I 

Head & 

Neck 
i.t. 2/22 

(Ganly et al., 

2000) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
II 

Head & 

Neck 
i.t. 4/30 

(Nemunaitis 

et al., 2001b) 

dl1520 (ONYX-

015) 

chemotherapy 

E1B-55 kDa-

deletion 
II 

Head & 

Neck 
i.t.  19/30 

(Khuri et al., 

2000) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
I Pancreatic i.t. 0/23 

(Mulvihill et 

al., 2001) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
I Ovarian i.p. 0/16 

(Vasey et al., 

2002) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
I 

Metastatic 

lung 
i.v. 0/10 

(Nemunaitis 

et al., 2001a) 

dl1520 (ONYX-

015) 

E1B-55kD 

deletion 

I HCC 
i.v., i.t. 

1/5 (Habib et al., 

2002) 

ONYX-015 + 5-FU 

+ leucovorin 

E1B-55kD 

deletion 

I Colorectal 

cancer 

i.ha. 1/11 (Reid et al., 

2001) 

ONYX-015 + 

etarnercept 

E1B-55kD 

deletion 

I Advanced 

cancers 

i.v. 0/9 (Nemunaitis 

et al., 2007) 

Ad5-CD/TKrep + 

GCV/5-FU + 

radiation 

E1B-55kD 

deletion + 

TK/CD 

transgene 

I Prostate 

cancer 

i.t. 15/15 (Freytag et al., 

2003) 

ONYX-015 + 5-FU E1B-55kD 

deletion 

I-II HCC and 

colorectal 

i.t., i.ha., 

i.v. 

3/16 (Habib et al., 

2001) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
II Colorectal i.v. 0/18 

(Hamid et al., 

2003) 

dl1520 (ONYX-

015) 

E1B-55 kDa-

deletion 
I Glioma i.t. 3/24 

(Chiocca et al., 

2004) 

CV787 

(CG7870) 

E1A under 

probasin and 

E1B under PSA 

promoter 

I-II Prostate i.v. 0/23 
(Small et al., 

2006) 

CV706 

E1A expression 

under PSA 

promoter 

II Prostate i.t. 5/20 
(DeWeese et 

al., 2001) 

H101 
E1B-55 kDa-

deletion 
I-II Multiple i.t. 

3/15, 

14/46 

(Yu and Fang, 

2007) 
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H101+ 

chemotherapy 

E1B-55 kDa-

deletion 
III 

Head & 

Neck 
i.t.  41/52 

Yu and Fang, 

2007) 

H101 + 

cisplatin/adriamyc

in + 5-FU 

E1B-55kD 

deletion 

III SCCHN i.t. 71/160 (Xia et al., 

2004) 

ONYX-015 + MAP 

chemotherapy 

E1B-55kD 

deletion 

I-II Sarcoma i.t. 1/6 (Galanis et al., 

2005) 

ONYX-015 + 

gemcitabine 

E1B-55kD 

deletion 

I-II Pancreatic 

cancer 

i.t. 2/21 (Hecht et al., 

2003) 

 

1.5 Efficacy of adenoviral gene therapy 

 

Efficacy data of adenoviral gene therapy has been scarce since the primarily end point 

of the clinical trials has been the safety. Still, a plethora of efficacy data was reported in 

animal models (Bauerschmitz et al., 2002; Kanerva et al., 2002a; Kanerva et al., 2003; 

Kangasniemi et al., 2006; Raki et al., 2007; Ranki et al., 2007b). Preclinical efficacy of 

adenoviral gene therapy shows promising results and tumors were eradicated following 

i.t. administration of the oncolytic adenovirus (Bischoff et al., 1996; Cerullo et al., 2010; 

Heise and Kirn, 2000). As depicted in Table 1, adenoviral gene therapy alone has minimal 

effect, but in combination with chemotherapy or radiotherapy, the efficacy of the 

treatment is increased. Best results are reported for ONYX-15, as mentioned above in 

clinical trials chapter. Moreover,  another version of this virus, H101, gained marketing 

approval for cancer treatment in China (Yu and Fang, 2007), and is intended for i.t. 

injection of head and neck cancers or other accessible solid tumors in combination with 

chemotherapy. More recently, new era of oncolytic adenoviruses, Ad5/3-Cox2L-Δ24, 

ICOVIR 7, Ad5/3-Δ24-GMCSF and Ad5-Δ24-GMCSF were tested in an advanced therapy 

access program (ATAP). The results showed low toxicity of the vectors and no severe 

side-effects. Additionally, objective responses were noticed for almost 60% of patients in 

these studies as follow: 11/18 for Ad5/3-Cox2L-Δ24 (Pesonen et al., 2010); 9/17 for 

ICOVIR-7 (Nokisalmi et al., 2010); 8/12 for Ad5/3-Δ24-GMCSF (Koski et al., 2010) and 

8/16 for Ad5-Δ24-GMCSF   (Cerullo et al., 2010). 
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1.6 Safety considerations for adenoviral gene therapy 

 

As for any new treatment option, safety concerns need to be addressed. Ads 

commonly cause respiratory diseases, but may also cause illness, such as gastroenteritis 

and conjunctivitis. Even though Ads based on serotype 5 have proved efficient in vitro 

and in vivo in preclinical studies and safe in patients, their therapeutic effect as single 

agents therapy is still uncertain (Hermiston, 2006).  The main safety concerns for 

adenoviral gene therapy are: 1) liver toxicity, 2) host immune response and 3) lack of 

antiviral treatment in case of uncontrolled virus spread in the body. 

1.6.1 Liver toxicity 

Adenoviral tissue tropism differs among the serotypes. It is well established that 

following i.v. administration of Ads either replication deficient or competent, liver is 

sequestering a big part from the input dose. Liver toxicity started to become a real 

concern, especially after a patient died due to increased liver enzymes and cytokine 

storm produced following intra-hepatic administration (Raper et al., 2003). The route of 

administration plays a critical role in virus biodistribution and toxicity. Following i.v. 

administration of the virus, kupffer cells, the macrophages of the liver, are the main cells 

taking up the virus, which leads to necrosis of these cells. In preclinical studies in mice it 

was shown that a second dose of virus administration can transduce the liver better. This 

was observed due to no responsiveness of kupffer cells saturated from the initial dose 

(Manickan et al., 2006). Moreover, Waddington and colleagues showed that liver 

transduction is mediated through the interaction of adenoviral hexon protein with the 

blood coagulation factor X (Waddington et al., 2008).   

Successful approaches to overcome liver tropism of adenoviral gene therapy include: 

serotype switching, warfarin treatment and coating Ad5 with high molecular weight 

polyethylene glycol (Wong et al., 2010). There is no clear evidence that adenoviral gene 

therapy could induce liver toxicity in humans. Therefore, adenoviral liver tropism is still 

subject of debate as mouse liver is known to uptake human adenoviruses more 

efficiently than other mammals studied (Yamamoto and Curiel, 2010).  
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1.6.2 Host  immune response 

Adenoviruses elicit a strong immune response along with increased transduction and 

replication inside the tumors. This can be a disadvantage for adenoviral therapy, leading 

to rapid clearance of the virus and preventing virus replication and spreading inside the 

tumor (Prestwich et al., 2009). New strategies for engineering adenoviral vectors have 

been employed to overcome these immunological barriers (Cerullo et al., 2010; Koski et 

al., 2010; Loskog et al., 2005). Host defense mechanisms towards adenoviruses can be 

classified in innate and adaptive immune responses. For the adaptive immunity, the host 

has four options to respond to Ad: 1) cellular immune responses mediated by T cells; 2) 

humoral response orchestrated by B-cells and leading to the production of neutralizing 

antibodies; 3) production of interferons (IFNs) to ablate the intracellular activities of the 

invading virus; and 4) induction of apoptosis by switching into proapoptotic proteins.   

1.6.2.1 Innate immune responses 

The innate immune response is the host’s first line of defense. Ads induce the innate 

responses immediately after infection (Raper et al., 2003; Zhang et al., 2001). The 

induction of the innate immune response following adenovirus infection has been well 

studied both in vitro and in vivo (Cerullo et al., 2007; Muruve et al., 2004; Tuve et al., 

2009). It became of great interest, in particular because of the one and only lethal 

adverse effect reported with Ad and thought to be due to innate immune response, 

which provoked cytokine storm, intravascular coagulopathy and multiorgan failure 

(Raper et al., 2003). Even though many improvements have been made to understand 

the mechanisms of interaction of viruses with the innate immune system, still little is 

known. The innate immune response is the major player for the clearance of adenovirus 

from the body (Lenaerts et al., 2008). Host cells have a range of strategies to overcome 

any danger signal by releasing specific cytokines and chemokines, leading to recruitment 

of neutrophils responsible for the inflammatory response (Muruve et al., 1999). 

Neutrophils recruited at the site of infection produce cytokines which lead to 

amplification of the antiviral immune cascade. At the same time, recruitment of 

macrophages and natural killer (NK) cells and activation of complement are important 

factors for the clearing of the adenovirus (Worgall et al., 1997). Macrophages, and 

specially monocytes, are phagocytes which release antiviral cytokines and effectively 
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present antigens necessary for induction of adaptive immune response (Guidotti and 

Chisari, 2001). On the other hand, NK cells spontaneously kill MHC-I deficient tumor cells 

(Whiteside and Herberman, 1995). They mediate the cytotoxicity via perforin and 

induction of different cytokines. As described by Smyth and colleagues, NK cells are 

highly responsive to many cytokines such as IL-2, IL-12, IL-15 and IFNs, and they increase 

their cytolytic, secretory, proliferative and anti tumor activities (Smyth et al., 2001). More 

recently, an increasing body of evidence is pointing out the importance of the Toll-like 

receptor family (TLRs) as a major factor in modulating the innate immune response 

towards adenoviruses (Cerullo et al., 2007). TLRs interact with various viral components 

triggering part of the immune response to adenoviral vectors. TLR9, an endosomal 

receptor, is activated by double strand DNA (dsDNA). This receptor is able to sense viral 

infection at cellular levels and triggers cytokines expression as a response (Cerullo et al., 

2007). In addition, TLR2, expressed on cell membrane, is also able to sense a viral 

infection eliciting part of the characteristic immune response to the adenovirus (Suzuki et 

al., 2010). Another function of the innate immune system is recognition of structures or 

products known as pathogen-associated molecular patterns (PAMPs) through a set of 

receptors called pattern-recognition receptors (PRRs) (Akira et al., 2006). The best 

studied receptors from this family are TLRs and NOD-LRR (nucleotide binding 

oligomerization domain/leucine-rich repeat) (Huang and Yang, 2009). These ubiquitous 

receptors are particularly abundant on dendritic cells and macrophages. This recognition 

triggers a series of events that finally eradicate viral infection. A principal mechanism for 

this is mediated through Nf-κB activation which signals via mitogen activated protein 

kinase (MAPK) pathway and results in transcription of different chemokines and 

cytokines of the host cell (Ferreira et al., 1999; Girardin et al., 2002; Inohara and Nunez, 

2003). Finally, the activation of complement is also an important innate defense 

mechanism of the host to enhance viral clearance. Appledorn and colleagues 

demonstrated that complement C3 knock-out mice have a reduced cytokine production 

upon stimulation with adenovirus (Appledorn et al., 2008).  

1.6.2.2 Adaptive immune responses 

During the last decade, scientists have discovered new receptors of the innate 

immune system that can shape the adaptive immune response. Still, there is no such 



23 

 

distinct line between innate and adaptive immunity. These two processes are cross-

linked and cannot exist separately. Adaptive immunity is a complex process orchestrating 

different mechanisms including: cellular immune responses, humoral responses, the role 

of IFNs in bridging the innate with adaptive response and induction of apoptosis 

mediated by effector cells. 

1.6.2.2.1 Cellular immune response 

Cellular immune response against tumors is orchestrated by T cells, and is a balance 

between induction of anti-tumor response and clearance of virus itself. Several studies 

demonstrated that cellular immune response towards virus elimination is mainly T cell 

mediated along with induction of the humoral response and production of IFNs (Russell, 

2000; Schagen et al., 2004). T cell mediated response involves both cytotoxic CD8+ and 

helper CD4+ cells. After the uptake of adenovirus, viral proteins and transgenes are 

expressed, processed into small oligopeptides and presented on the cell surface. These 

antigens are recognized by CTLs in a complex with class I proteins of the MHC on the 

surface of the cell.  The binding of CD8+ T cells to this peptide-MHC complex I leads to 

formation of specific CTLs towards Ad or transgene product (LacZ for instance) (Schagen 

et al., 2004). Further, the cellular immune response is engaged by CD4+ T helper (Th) 

cells primarily belonging to Th1 subset (Yang and Wilson, 1995; Yang et al., 1995). These 

CD4+ cells, in contrast of CD8+ cells, are activated by antigens from the input virions. 

These antigens are presented through the MHC class II molecules on the surface of the 

antigen presenting cells. Activated CD4+ cells start to produce IL-2 and IFN- γ 

(Maraskovsky et al., 1989). These cytokines belonging to Th1 subset, further on induce 

CD8+ cells differentiation into cytotoxic CD8+ cells (CTLs) (Wille et al., 1989). It has been 

also suggested that activated CD4+ cells can destroy Ad-transduced cells themselves 

(Yang and Wilson, 1995).  

1.6.2.2.2 Humoral response 

Besides cellular immune response, another immune adaptive mechanism towards 

adenovirus is the humoral response. The humoral response is represented by the 

production of antibodies targeted towards any pathogen incorporated by cells. In case of 

adenoviral infection, these antibodies are mainly targeted towards adenoviral capsid 

proteins (Gahery-Segard et al., 1998; Willcox and Mautner, 1976). These antibodies do 
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not contribute to virus elimination (Yang et al., 1996) but they prevent adenovirus 

binding to cells and promote opsonization by macrophages (Schagen et al., 2004). Pre-

existing immunity towards wild-type adenovirus occurs in most of the patients. Given 

this, the humoral immune responses are of importance for planning the dose, route of 

administration and target tissue.  

Humoral response depends on B cell capacity of recognizing viral antigens and 

producing immunoglobulins. This recognition process is mediated through CD4+ helper 

cells (Yang et al., 1996). They release immunoglobulins into plasma which specifically 

recognize the antigens. This process starts with the binding of adenovirus particles to the 

surface of immunoglobulin of B cells (Schagen et al., 2004). After internalization and 

processing of the virus, the antigens are exposed on the surface of B-cells through MHC 

class II molecules (Paul and Seder, 1994). The complex formed can be recognized by the 

activated T helper cells of the Th2 subset. These activated CD4+ cells start to produce 

cytokines like IL-4, IL-5, IL-6 and IL-10 which induce B cell transformation into plasma 

cells (Paul and Seder, 1994). Further on, the plasma cells secrete antibodies which are 

against adenovirus capsid. Even though it was mentioned that Th1 subset can also induce 

a small humoral response, this is more involved in antibody-isotype switching (Boom et 

al., 1988). In conclusion, Th2 cells control the production of Ab isotypes IgG1, IgG2b, IgA 

and IgE mediated by cytokines like IL-4 while Th1 cells control the switch to IgG2a or Ig3 

as a response to IFN-γ secretion (Finkelman et al., 1990; Germann et al., 1995; Schagen 

et al., 2004). 

1.6.2.2.3 Interferons 

Interferons are divided in two classes: type I with IFN-α and IFN-β and type 2 with 

IFN-γ. Interferons are thought to be the bridge between innate and adaptive response to 

adenoviral infection. They are released very early after virus infection and present certain 

cell specificity. Type I interferons are thought to play a critical role in both innate and 

adaptive responses, while type II, IFN-γ, mostly acts for adaptive immune response 

(Goodbourn et al., 2000). IFN-γ is crucial for many events that occur in tumors, including 

up-regulation of pathogen recognition, antigen processing and presentation, regulation 

of the antiviral state, inhibition of cellular proliferation and induction of apoptosis, 

immunomodulation, and leukocyte trafficking (Schroder et al., 2004). The mechanism of 
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action for IFNs is mediated through Jak/STAT pathway (Look et al., 1998). Interferons 

bind to cellular receptors which leads to formation of STAT complexes (Paulson et al., 

1999). These complexes are transferred to the nucleus where they bind to interferon-

response elements of the cellular DNA and inhibit the intracellular activities of the 

invading virus (Randall and Goodbourn, 2008). 

1.6.2.2.4 Apoptosis 

Another strategy for the human body to overcome the viral infection is induction of 

apoptosis in infected cells. A major player in this process is p53 tumor suppressor 

protein. This protein regulates the transcription of specific genes which are involved in 

cell cycle arrest and apoptosis. However, adenoviral gene E1B-19k gene can counteract 

the proapoptotic effect of the p53 (Han et al., 1996).     

Another mechanism for inducing apoptosis is complemented by TNF-α production 

(Elkon et al., 1997). This cytokine is immediately secreted by macrophages and 

leukocytes as a response to viral infection.  TNF-α plays an important role in virus 

clearance from the body through direct induction of caspase pathway (Russell, 2000).  

Additionally, Fas and Fas-ligand are also involved in the induction of apoptosis. These 

proteins are reported to be the major mediators in adenovirus elimination from the liver 

(Chirmule et al., 1999). Adenoviral proteins encoded in the E3 region cause Fas to be 

removed from the cell surface and degraded. FIP-3 protein gets activated and blocks the 

NF-κB release, and the proapoptotic pathway is inhibited (Li et al., 1999). Moreover, E1A 

can induce direct apoptosis mediated through caspase-8 pathway, independent of p53 

presence (Putzer et al., 2000).  

1.6.3 Antiviral treatment 

Wild type adenovirus infections can cause severe or even lethal infections, especially 

in immunocompromised patients (Claas et al., 2005; Leen et al., 2006). Development of 

more effective and more potent viruses raised concerns of uncontrolled replication of 

these vectors once administered in the body. So far, there is no approved treatment for 

adenoviral infections.  

Several classes of nucleoside (e.g. ribavirin) and nucleotide (e.g. cidofovir, adefovir, 

tenofovir) analogues have been tested in vitro (Naesens et al., 2005). Morfin and 

colleagues have demonstrated in vitro that ribavirin’s efficacy is specific for species C Ads 
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(Morfin et al., 2005). Another proposed drug, cidofovir, is by far the most tested drug for 

anti-adenoviral treatment. Cidofovir (Vistide as commercial name) showed inhibition of 

adenoviral replication for all serotypes tested (Lenaerts et al., 2008). The selectivity of 

this drug is due to its higher affinity for viral DNA polymerase if compared to cellular DNA 

polymerases. The acyclic nucleoside phosphonate compounds get phosphorylated 

through cellular kinases and further serve as alternate substrates for viral DNA 

polymerases. New derivatives of these compounds showed potent activity against DNA 

viruses including Ads, poxviruses and herpes viruses (Lenaerts et al., 2008).   

Acyclic nucleoside analogues such as acyclovir or gancyclovir have been proposed as 

alternative antiviral drugs. Only ganciclovir showed modest efficacy as reported by Raki 

and colleagues (Raki et al., 2007). Nucleoside and nucleotide analogues have been 

proposed as potential therapeutic agents but clinical data with these compounds is still 

subject of debate (Lenaerts et al., 2008). Ribavirin treatment was successful in some 

studies (Liles et al., 1993; McCarthy et al., 1995) while the lack of efficacy has been 

reported elsewhere (Ljungman, 2004). Other antiviral approaches suggest targeting the 

entry of the virus in the cells or altering some mechanisms involved in packaging and 

assembly of the vector. In this regard, NMSO3, sulfatic sialic acid, was found to inhibit 

cellular binding of several Ads (Kaneko et al., 2001). Chlorpromazine was also suggested 

because of its mechanism of action on clathrin coated pits assembly (Wang et al., 1993). 

This drug has been used for decades as antipsychotic in the clinic (Lehman et al., 2004). 

Moreover, Kanerva and colleagues found reduced replication of Ad in vitro in cell lines 

and liver explants (Kanerva et al., 2007). However, these results could not be confirmed 

in vivo due to lack of a good animal model (Kanerva et al., 2007).  

It is well known that human Ads do not replicate in small animal models like mice or 

rats, which are often used for assessing biodistribution, efficacy and toxicity of the 

adenovirotherapy. Lenaerts and colleagues suggested the use of non-human Ads, such as 

MAV-1 (mouse adenovirus), as an alternative for assessing the efficacy of antiviral drugs  

(Lenaerts et al., 2008). They tested the antiviral effect of cidofovir in immunodeficient 

mice treated with MAV-1 and noticed a delay in progression of the disease, but could not 

prevent the fatal MAV-1 induced disease. The study concluded that immune system plays 
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a critical role in adenoviral clearance from the body, and the need for an immune 

competent, syngeneic animal model is obvious (Lenaerts et al., 2008). 

Recently, Syrian hamsters have been proposed as a promising animal model for 

studying replication, toxicity, biodistribution and anti-tumor activity of adenoviruses 

(Bortolanza et al., 2007; Thomas et al., 2006; Thomas et al., 2008; Toth et al., 2008). 

However, even though Toth and colleagues (Toth et al., 2008) showed abrogation of virus 

replication in immunosuppressed animals with a cidofovir analog, it has not been 

previously demonstrated that adenovirus replication can be significantly reduced in 

immune competent animals.   

 

1.7 Future directions: arming oncolytic adenoviruses for 

improving the efficacy  

Although many techniques have been employed to genetically engineer 

adenoviruses, there are still no curative vectors available. Enhancement of the 

replication and selectivity of adenoviruses towards cancer cells transformed these 

vectors into ‘safe machineries’; however, it might hamper their overall oncolytic effect as 

anti-cancer drugs. Efficacy of adenoviruses can be further improved by insertion of 

transgene cassettes, such as VEGF, hCD40L, HSV-TK, GMCSF into the viral backbone. The 

purpose of these transgenes is to enhance the elimination of cancer cells  (Alemany, 

2007). Arming oncolytic adenoviruses improves the potency of these vectors by 

combining their intrinsic oncolytic potency with their ability to deliver tumor-specific 

transgenes (Liu and Kirn, 2008).  

1.7.3 Antiangiogenic gene therapy 

Angiogenesis is essential for tumor progression and metastasis. Tumors require new 

blood-vessel formation to grow and spread. Angiogenesis is coordinated by the balance 

between the two factors: pro-angiogenic and anti-angiogenic. When this balance is 

shifted towards pro-angiogenic factors, tumors start to grow beyond 1mm3. VEGF and its 

downstream pathway have a critical role in regulation of angiogenesis. Also 

angiopoietins, Notch pathway and integrin pathways are involved (Azam et al., 2010). 

VEGF is by far the most studied angiogenic factor, and a plethora of drugs have been 
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developed to target it. Many cancer cell lines secrete VEGF in vitro and also in vivo if cells 

are injected in animals. In addition many human carcinoma types express VEGF (Ferrara, 

2004). Antiangiogenic agents have been shown to alter different stages of angiogenesis. 

Up to date, we have commercially approved antiangiogenic drugs with proved clinical 

benefit: bevacizumab, sorafenib, sunitinib and thalidomide (Escudier et al., 2007a; 

Escudier et al., 2007b; Rini et al., 2008; Stadler, 2005). These agents can be used alone or 

in combination with chemotherapy. Combination therapy showed more stringent results 

with the exception of renal cell carcinomas where the agents alone exhibit 30% to 40% 

improved progression free-survival (Azam et al., 2010).    

The use of an armed oncolytic Ad for local expression of antiangiogenic compounds 

might decrease the systemic exposure/toxicity, while allowing high concentration of the 

agent in the tumor area. Therefore, this might be an efficient and safe approach for 

further investigation. Moreover, if these new vectors are administered systemically, they 

will also engage the normal tissue to express these agents (Wadhwa et al., 2002). 

Antiangiogenic therapeutic strategies showed good efficacy and safety in preclinical and 

clinical studies (Escudier et al., 2007a; Escudier et al., 2007b; Rini et al., 2008; Stadler, 

2005; Yoo et al., 2007; Zhang et al., 2005). Treatment responses were different between 

the tumors types studied, perhaps due to different mechanisms of action involved. It is 

clear that improvements in engineering new vectors along with a better understanding of 

the mechanisms will facilitate the use of antiangiogenic agents in clinical trials.        

1.7.2 Suicide gene therapy 

Suicide genes encode an enzyme which will convert a prodrug into its cytotoxic 

compound inducing cell death. Approaches for suicide gene therapy started with the use 

of adenoviruses coding for herpes simplex virus thymidine kinase (HSV-TK) gene in 

combination with the use of the prodrug ganciclovir (GCV) (Wong et al., 2010). GCV gets 

phosphorylated by HSV-TK, and induces single-strand breaks which lead to cell death. 

This active metabolite can spread in the tumor mass causing the bystander effect. It has 

been shown in preclinical studies that Ads coding HSV-TK gene in combination with GCV 

increased anti-tumor efficacy and survival (Nanda et al., 2001; Raki et al., 2007). 

However, the efficacy of this strategy might be hampered by the direct effect of GCV on 

adenovirus replication (Hakkarainen et al., 2006; Raki et al., 2007).   
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Another strategy for suicide gene therapy is using cytosine deaminase (CD) gene. This 

gene, when expressed in the cells, converts the nontoxic compound 5-fluoro-cytosine 

(5FC) to the cytotoxic 5FU (Chalikonda et al., 2008; Foloppe et al., 2008). Oncolytic 

adenoviruses armed with CD have shown increased anti-tumor efficacy in several 

different cancer models (Ichikawa et al., 2000; Liu and Deisseroth, 2006). Both strategies 

described above, HSV-TK and CD, were used alone or in combination with chemotherapy 

in vitro and in vivo showing increased anti-tumor effect (Dias et al., 2010; Raki et al., 

2007). 

Arming oncolytic adenoviruses with suicide genes will exhibit increased anti-tumor 

effect by combining the effect of oncolytic replication and local prodrug activity. This 

treatment strategy has been already tested in clinical trials. Currently, one phase III trial 

for prostate cancer is ongoing using CD/TK fusion gene and ADP protein expressed by an 

Ad5 based adenovirus in combination with radiotherapy (Wong et al., 2010).          

1.7.3 Immunotherapy 

The immune system uses a wide plethora of mechanisms in response to adenoviral 

gene therapy. Efficacy of oncolytic virotherapy is hampered by the immediate innate 

immune response which leads to rapid clearance of the virus and also due to the 

adaptive immune response which induces long term immunity against the vector (Cerullo 

et al., 2010; Tuve et al., 2009). The innate immune response towards viruses can be 

modulated using cyclophosphamide, an alkylating agent used in cancer treatment (Berd 

and Mastrangelo, 1988). Cyclophosphamide treatment has been shown to enhance viral 

replication due to reduction of neutralizing antibodies and reduction of T regulatory cells 

(Rollinghoff et al., 1977). Moreover, it has been also shown that cyclophosphamide 

treatment increases viral replication and oncolysis in Syrian hamsters (Thomas et al., 

2008). 

Recently, many attempts have been made to circumvent the immune response using 

armed oncolytic viruses. These approaches are aiming for increased viral replication and 

enhanced anti-tumor activity. Oncolytic adenoviruses expressing IL2, B7-1 or IL-4 

cytokines showed increased anti-tumor effect in immunocompetent murine model (Lee 

et al., 2006; Post et al., 2007). Zhang and colleagues also reported a pronounced anti 

tumor effect in vitro in different carcinoma cell lines and inhibition of tumor growth in 
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vivo using a modified oncolytic adenovirus armed with IL-24 cytokine (Zhang et al., 2009). 

Further, in a more comprehensive study, Cerullo and colleagues showed increased anti-

tumor efficacy of an oncolytic adenovirus expressing GM-CSF both in preclinical and 

clinical studies. Preclinical data in immunocompetent Syrian hamsters showed 

eradication of syngeneic hamster tumors and after challenge with the same cell line 

complete rejection of the tumors was seen. Moreover, tumor specific immune response 

was demonstrated in patients treated with Ad5-D24-GMCSF (Cerullo et al., 2010). 

Oncolytic adenovirus expressing the chemokine RANTES showed recruitment of DCs, 

NK cells and macrophages at the tumor site, and engagement of CTLs and NK responses 

promoting tumor regression (Lapteva et al., 2009).     

More recently, oncolytic adenoviruses have been designed to express 

immunomodulatory molecules, such as CD40L (Gomes et al., 2009). Extensive studies in 

the past were using vectors expressing CD40L for better antigen presentation (Crystal, 

1999). Recently, it has been shown that an oncolytic Ad expressing CD40L induced 

increased anti-tumor activity correlated with cell cycle blockade and induction of 

apoptosis (Gomes et al., 2009).  

Altogether, these studies clearly demonstrate the importance of the immune system 

in the context of oncolytic adenoviral therapy. Immune modulation combined with 

oncolytic adenoviruses may help to enhance the initial phases of viral replication inside 

the tumors and to induce a long-lasting immunity in case of relapsed tumors. 
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2 AIMS OF THE THESIS 

  

1. To reduce liver tropism and target kidney moieties using capsid modified 

adenoviruses in the context of systemic delivery.  

 

2. To set up an immunocompetent animal model permissive for adenovirus replication-

Syrian hamster model and to evaluate potential antiviral activity of chlorpromazine 

and cidofovir in this new animal model.  

 

3. To evaluate tissue specific promoters for renal cell cancer and to generate a targeted 

and armed oncolytic adenovirus for enhanced selectivity and improved anti-tumor 

efficacy in kidney cancer models.  

 

4. To generate a transcriptionally and transductionally targeted and armed oncolytic 

adenovirus with CD40L to potentiate the anti-tumor effect due to immune response 

prompted by the immunomodulating molecule.  
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3 MATERIALS AND METHODS 

 

3.1 Cell lines (I, II, III, IV) 

Characteristics of the cell lines used in the studies are described in Table 1. 

Table 1: List of human, hamster and mouse cell lines used in the studies 

Cell line name Description Used in 

293 Human transformed embryonic kidney cells II, III, IV 

911 Human transformed embryonic retinoblasts II 

A549 Human lung adenocarcinoma II, III, IV 

786-O Human renal cell adenocarcinoma I, II 

786-O-CBGr 
Human renal cell adenocarcinoma stably 

transfected with click beetle green luciferase 
II 

ACHN Human renal cell adenocarcinoma I, II 

Caki-2 Human renal cell carcinoma I, II 

769-P Human renal cell adenocarcinoma I, II 

Sv7tert Human renal cell carcinoma I, II 

SN12C Human renal cell carcinoma II 

SN12L1 Human renal cell carcinoma II 

SN12L1-luc 
Human renal cell carcinoma stably transfected 

with firefly luciferase 
II 

FHS173WE Human fibroblasts II 

HUVEC Human umbilical vein endothelial cells II 

Hap-T1 Hamster pancreatic carcinoma III 

H2T Hamster pancreatic carcinoma III 

DDT1-MF2 Hamster leiomyosarcoma III 

HaK Hamster kidney derived III 

EJ Human bladder carcinoma IV 

MB49 Mouse bladder carcinoma IV 

RAMOS-BLUE Human B-cell cell line IV 

 

All cell lines were maintained in the conditions recommended by the manufacturer. 

 

3.2 Human specimens 

Fresh normal and cancerous tumor samples were obtained with signed informed 

consent and ethical committee permission from a patient undergoing surgery at Helsinki 

University Central Hospital - 62 year old female with clear cell carcinoma of kidney, G3, 

pT3a. The complete kidney was removed and therefore normal kidney tissue could be 
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obtained from the same patient. Sample processing was performed within one hour from 

surgery.  

 

3.3 Adenoviruses 

Replication deficient viruses and replication competent viruses were amplified on 293 

and A549 cells, respectively, and purified on double cesium chloride gradients following 

standard protocols (Luo et al., 2007). Presence of inserted genes and absence of wild-

type virus was confirmed by PCR and sequencing. Virus particle (vp) concentrations were 

assessed by measuring absorbance at 260nm and plaque forming unit titers were 

determined with standard TCID50 assay on 293 cells. 

 

3.3.1 Replication deficient adenoviruses (I, II, III, IV) 

Generation, characterization and main features of the replication-deficient 

adenoviruses used in these studies are described in Table 2 and in more detail in studies 

I, II, III and IV. 

Table 2: List of replication deficient adenoviruses  

Virus name E1 * Fiber 
Used 

in 
Reference 

Ad5LacZ LacZ Wild type serotype 5 
I (Yotnda et al., 

2004) 

Ad5/19p LacZ 5/19p serotype chimerism 
I (Denby et al., 

2007) 

Ad5/19p-HIT LacZ 
5/19p serotype chimerism 

HITSLLS  inserted in the HI loop 

I (Denby et al., 

2007) 

Ad5/19p-HTT LacZ 
5/19p serotype chimerism 

HTTHREP inserted in the HI loop 

I (Denby et al., 

2007) 

Ad5/19p-APA LacZ 
5/19p serotype chimerism 

APASLYN  inserted in the HI loop 

I (Denby et al., 

2007) 

Ad5luc1 Luciferase Wild type serotype 5 
II, III (Kanerva et al., 

2002a) 

Ad5/3luc1 Luciferase 5/3 serotype chimerism 
II, IV (Kanerva et al., 

2002a) 

Ad5-9HIF-luc 
Luciferase  

9HIF promoter 
Wild type serotype 5 

II (Guse et al., 

2009) 

Ad5-OB36-luc 
Luciferase 

 OB36 promoter 
Wild type serotype 5 

II (Guse et al., 

2009) 
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Ad5/3-CMV-

hCD40L 
hCD40L Wild type serotype 5 

IV Study IV 

Ad5/3-CMV-

mCD40L 
mCD40L Wild type serotype 5 

IV Study IV 

* The marker genes and transgenes in E1 are under control of the CMV promoter if not stated 
otherwise. The luciferase gene in these viruses codes for the firefly luciferase enzyme. 

 
3.3.2 Replication competent adenoviruses (I, II, III, IV) 

Main features of the replication competent adenoviruses used in the studies are 

described in Table 3. 

Table 3: List of replication competent adenoviruses used in the studies 

Virus name E1 E3 Fiber Used in Reference 

Ad300wt Wild type Wild type Wild type 

serotype 5 

II, III ATCC1 

Ad5/3-Δ24 24 bp deletion2 Wild type 5/3 serotype 

chimerism 

II (Kanerva et al., 

2003) 

Ad5/3-9HIF-

Δ24-E3 

9HIF promoter and 

24 bp deletion2 

Wild type 5/3 serotype 

chimerism 

II (Guse et al., 

2009) 

Ad5/3-9HIF-

Δ24-VEGFR-1-Ig 

9HIF promoter and 

24 bp deletion2 

VEGFR-1-Ig 5/3 serotype 

chimerism 

II (Guse et al., 

2009) 

Ad5/3-hTERT-

E1A 

hTERT promoter Δgp19k 5/3 serotype 

chimerism 

IV (Bauerschmitz 

et al., 2006) 

Ad5/3-hTERT-

hCD40L 

hTERT promoter hCD40L 5/3 serotype 

chimerism 

IV Study IV

1 virus purchased from American Type Culture Collection  
2 24 bps deleted in the constant region 2 (CR2) of the E1A gene 

 

3.3.3 Construction of Ad5/3-CMV-hCD40L, Ad5/3-CMV-mCD40L and Ad5/3-

hTERT-hCD40L (IV) 

Ad5/3-hTERT-E1A-hCD40L was generated and amplified using standard adenovirus 

preparation techniques (Bauerschmitz et al., 2006; Kanerva and Hemminki, 2004; 

Kanerva et al., 2002b; Volk et al., 2003).  Briefly, human CD40L cDNA, kind gift from Prof 

Eliopoulos, was amplified with specific primers featuring insertion of specific restriction 

sites SunI/MunI.  hCD40L was then subcloned into pTHSN plasmid and subsequently 

recombined with an pAd5/3-hTERT-E1A (Bauerschmitz et al., 2008; Volk et al., 2003) 
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rescue plasmid to generate pAd5/3-hTERT-E1A-hCD40L.  This plasmid was linearized with 

PacI and transfected into A549 cells for amplification and rescue. 

All phases of the cloning were confirmed with PCR and multiple restriction digestions. 

Virus production was performed on A549 cells to avoid risk of wild type recombination. 

hCD40L is under the E3 promoter, which results in replication associate transgene 

expression.  

For construction of non-replicating adenoviruses, expression cassettes with either 

hCD40L or mCD40L were inserted into the multiple cloning site of pShuttle-CMV plasmid 

(Stratagene, La Jolla, CA, USA). Shuttle plasmids were recombined with pAdeasy-1.5/3 

plasmid (Stratagene, La Jolla, CA, USA), which carries the whole adenovirus genome, and 

resulting rescue plasmids were transfected to 293 cells to generate Ad5/3-CMV-hCD40L 

and Ad5/3-CMV-mCD40L. 

 

3.4 In vitro studies 

3.4.1 Gene transfer assays (I, II, III) 

Cell line cells were plated in 24 well plates in triplicates and infected with viruses for 

30 minutes in 200 µL of growth medium with 2% FCS. Cells were washed once and 

complete medium was added. After 24 hours incubation at 370C, β-galactosidase (gal) 

(Galacto Light Plus, Tropix, Bedford, MA) or luciferase (E1500, Promega, WI, USA) assays 

were performed according to the manufacturer instructions.  

For gene transfer assays in study II, cells were plated in 24 well plates in triplicates 

and 8 hours later were incubated with/without drugs for 18 hours. Cells were infected 

afterwards with 500 VP/cell +/- drugs for 30 minutes, washed once with PBS and 10% 

complete medium +/- drugs was added. Cells were incubated at 37° C for 24 hours. After 

the incubation, cell lysates were analyzed as mentioned above. 

Human specimens were minced and washed twice. Samples were resuspended in 2% 

RPMI and then infected with 5000 VP/cell and β -gal assay was performed as described 

above. 
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3.4.2 Cytotoxicity assays - MTS (II, III, IV) 

Cells on 96-well plates were infected with indicated viruses at different 

concentrations (0.1, 1, 10, 100, 1000 VP/cell) in growth medium containing 2% FCS. One 

hour later, cells were washed and incubated in growth medium containing 5% FCS for 4 

to 8 days. Cell viability was then analyzed using MTS assay (Cell Titer 96 AQueous One 

Solution Proliferation Assay, Promega). 

3.4.3 Western blot (III)  

Cells were infected with 10 vp per cell, medium was changed after 1 h and cells were 

incubated for 72 h. Western blot was done with cell culture supernatant using anti-

human-IgG antibody (GE Healthcare, Barrington, IL, USA) for detection of VEGFR-1-Ig 

protein. 

3.4.4 Quantitative real-time polymerase chain reaction (qPCR) (I, II) 

DNA was extracted from samples using QIAamp DNA Mini Kit (Qiagen, Valencia, CA, 

USA). A quantification standard curve was generated and samples were analyzed using 

SYBR green for study I and Taqman probes for study II. Primers, probes and reaction 

conditions are described more in detail in study I and study II, respectively. 

3.4.5 Quantification of infectious particles of tissue samples (II, III) 

Selected organs including tumors were collected and stored at -800C. The net weight 

of solid tissues was determined, and tissues were homogenized in growth media without 

supplements, freeze-thawed, and supernatant was analyzed to determine the plaque 

forming units (pfu) by TCID50 assay on 293 cells. Results were normalized to the net 

weight of the tumors and organs. 

3.4.6 Replication assay in vitro (II) 

Cell line monolayers were preincubated for 1h with chlorpromazine 0.1µg/ml, 

cidofovir 5µg/ml, or cytosine arabinoside 0.05µg/ml or growth medium (mock) and then 

infected with Ad300wt (10 vp/cell) which was added on supernatant. Infection media 

was replaced by fresh growth medium ± drugs 1.5 hours later. At indicated time points, 

cells and supernatant were frozen. Replication was analyzed after three freeze/thaw 

cycles. The number of infectious particles (pfu) in supernatant was titered on 293 cells by 

TCID50 assay using the following formula T= 101 + d(S-0.5) and transformed to pfu = T/100.7 
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(AdEasy protocol: Quantum Biotechnology; Qbiogen, Carlsbad, CA). To compare virus 

burst, infection and subsequent replication over time, A549 and Hap-T1 cells were plated 

in 96 well plates (as in the standard TCID50 assay) and infected with Ad300wt at dilutions 

from 1:107-1:1014. Virus titers were calculated after 10 days and transformed to pfu 

values as described above.  

3.4.7 Flow-cytometry (IV) 

Human embryonic kidney 293 cells were infected with viruses expressing hCD40L. 

Twenty four hours after infection, cells were stained with hCD40L-FITC antibody for 30 

minutes and Flow Cytometry analysis was performed on Becton Dickinson instrument 

(BDLSR).  

3.4.8 Functionality assays for hCD40L (IV) 

Cell line A549 monolayers (5x106 cells/T25 flask) were infected with 1000 vp/cell of 

Ad5/3-hTERT-E1A-hCD40L or Ad5/3-hTERT-E1A and one flask not infected (mock). 

Supernatant was collected 48h following infection and filtered with 0.02µm filters 

(Whatman 6809-1002, Maidstone, England). EJ cell line monolayers were transfected 

with the plasmid pNiFty-Luc (InvivoGen) and cultured overnight. Supernatant collected 

from A549 monolayers was added on top of the EJ transfected cells and cultured for 12 

hours and 1µg/ml hCD40L protein (Abcam) was used as positive control for the assay. 

Cells were lysed and luciferase activity was measured according to the manufacturer’s 

manual (Luciferase Assay System, Promega, Madison, WI). Ramos-Blue cell line, a human 

B-lymphocyte cell line which stably expresses an NF-κB/AP-1-inducible SEAP reporter 

gene was stimulated with the same supernatant collected from A549 infected cells and 

cells producing SEAP in the supernatant were monitored and quantified using the 

QUANTI-Blue assay reagent (InvivoGen, San Diego, CA, USA).  

3.4.9 Immunofluorescence and immunohistochemistry staining (I, II, IV) 

Table 4: List of antibodies and conditions used in the studies  

Antibody Dilution Catalog 
number 

Company Detection Used 
in 

anti-beta-

galactosidase 

1:200 AB1211 Chemicon 

International Inc 

LSAB2 System-HRP 1 I 

anti-hexon 1:100 MA1-82982 ABR-Affinity 

BioReagents 

Power Vision kit 2 II 
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anti-Von 

Willebrand Factor 

1:200 A0082 DakoCytomatio

n 

Alexa Fluor 594 3 II 

FITC Mouse Anti-

human CD40L 

1:5 555699 BD Pharmigen FITC IV 

FITC Mouse IgG1 1:5 555909 BD Pharmigen FITC IV 

Anti human CD40 1:100 VP-C349 Vector 

Laboratories 

LSAB2 System-HRP 1 IV 

Rabbit Anti-active 

Caspase-3 

1:100 559565 BD Pharmigen LSAB2 System-HRP 1 IV 

Rabbit Anti-mouse 

F4/80 

1:100 14-4801 ebioscience LSAB2 System-HRP 1 IV 

Rat Anti-mouse CD45 1:100 550539 BD Pharmigen IHC Select kit IV 

Rat Anti-mouse CD19 1:50 14-0193 ebioscience IHC Select kit IV 

Rat Anti-mouse CD4 1:50 14-0041 ebioscience IHC Select kit IV 

Rat Anti-mouse CD8 1:100 14-0083 ebioscience IHC Select kit IV 
1 kit purchased from DakoCytomation, Carpinteria, CA, USA (K0673) 
2 PowerVision Poly-HRP-antimouse/rabbit/rat (ImmunoVision Technologies Co., Brisbane, CA 
94005,USA) 
3 secondary antibody Molecular Probes, Invitrogen (dilution used 1:250) 
4 IHC Select kit (DAB150-RT, Millipore, MA, USA) 
 

Tissues fixed in 4% formalin for paraffin blocks or frozen tissues embedded in Tissue 

Tek OCT (Sakura, Torrance, CA, USA) were made. Tissue sections of 4µm thickness were 

prepared and incubated with primary antibody at dilutions mentioned in Table 4 for 1 

hour at room temperature. Further, sections were incubated according to manufacturer 

instructions with the detection kits as described in Table 4. Sections were counterstained 

with hematoxyline and dehydrated in ethanol, clarified in xylene and sealed with Canada 

balsam. For the immunofluorescence staining, sections were fixed in 4% 

paraformaldehyde and mounted with Vectashield mounting medium (Vector 

Laboratories, Burlingame, CA, USA). Pictures at magnifications of 10x, 20x, 40x, 63x and 

100x were taken with an Axioplan2 microscope (Carl Zeiss) equipped with Axiocam 

(Zeiss).  

3.4.10 LacZ staining (I) 

Whole mount tissues were fixed in fixing solution (25%glutaraldehyde, 100mM EGTA 

pH7.3, 1M MgCl2, 0.1M phosphate buffer pH7.3, Sigma Aldrich) and stained with X-gal 

staining solution (1mg/ml X-Gal, 5mM K3Fe(CN)6, 5mM K4Fe(CN)6, Sigma Aldrich). Whole 

mount pictures were analyzed at 1.1 magnification by Leica MZFLIII microscope equipped 
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with ColorView Soft Imaging system. Further, tissues were fixed in 4% paraformaldehyde 

and embedded in paraffin blocks. Tissue sections of 4µm thickness were prepared and 

counterstained with eosin, dehydrated in ethanol, clarified in xylene and sealed with 

Canada balsam. Pictures at magnifications of 10x, 20x, 40x, 63x and 100x were taken with 

Axioplan2 microscope (Carl Zeiss) equipped with Axiocam (Zeiss). 

 

3.5 In vivo studies 

All animal protocols were reviewed and approved by the Experimental Animal 

Committee of the University of Helsinki and the Provincial Government of Southern 

Finland. Mice were purchased from Taconic (Ejby, Denmark) at the age of 4-5 weeks and 

quarantined for at least one week. Syrian (Golden) hamsters (Mesocricetus auratus) were 

obtained from Taconic (Ejby, Denmark) at 4 to 5 weeks of age and quarantined at least 

for 1 week prior to the study. Health status of the mice and hamsters was frequently 

monitored and soon as any sign of excess pain or distress was evident they were killed. 

3.5.1 Animal models in study I 

Subcutaneous (s.c.) ACHN tumors were induced in Nude and Nod-Scid mice in both 

flanks. Virus injections were performed on three consecutive days (days 1-3) i.t. with 109 

VP. Intravenous injections with 5x1010 VP were performed on day 2. Mice were 

euthanized 24 hours after the last i.t. injection and/or 48 hours after the i.v. injection and 

selected organs including tumors were collected and stored at -800C. Tissue samples 

were homogenized and lysed with Cell Culture Lysis Buffer, freeze-thawed, and 

supernatant was analyzed for LacZ activity with Galacto Light Plus (Tropix, Bedford, MA) 

as described earlier (Kangasniemi et al., 2006). 

Peritoneal metastatic disease was established in SCID mice by i.p. injection of 107 

ACHN cells per mouse. After 28 days mice received i.p a dose of 5x109 VP. Mice were 

euthanized 48 hours later. Selected organs and tumors were collected, stored at -800C 

and analyzed as above. Results were normalized to protein content of the organs by DC 

Protein Assay (Bio-Rad, Hercules, Manassas, CA, USA). 
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SCID mice bearing i.p. or s.c. tumors were injected i.v. with 5x1010 VP. 48 hours after 

the i.v. injection selected organs including tumors were collected and stained either for 

LacZ activity by X-gal staining or by immunohistochemistry for LacZ. 

3.5.2 Animal models in study II 

3.5.2.1 Intratumoral replication and biodistribution of oncolytic adenovirus 

Hamsters were injected s.c. in four different sites with 107 cells/site for all four 

different cell lines (HaP-T1, H2T, HaK and DDT1-MF2) and injected i.t. with Ad300wt at a 

dose of 5x1010 vp/tumor. Hamsters were killed at four different time points: 30 minutes, 

24, 48, and 72h after the virus injection and selected organs including tumors were 

collected and stored at -800C. The net weight of solid tissues was determined, and tissues 

were homogenized in 0% growth media, freeze-thawed, and supernatant was analyzed 

to determine the plaque forming units (pfu) by TCID50 assay on 293 cells. Results were 

normalized to the net weight of the tumors and organs. 

3.5.2.2 Treatment with drugs in vivo 

Hamsters were injected s.c. in four different sites with 107 Hap-T1cells/site. When 

tumors reached the volume of ca. 80mm3 hamsters were randomized into groups and 

injected with 5x109 VP/tumor Ad300wt and 30 minutes later drugs were injected i.p. The 

animals were killed at four different time points: 24, 48, 72 and 96h after the i.t. injection 

and selected organs including tumors were collected and stored at -80° C. Tissue samples 

were analyzed as described above and virion production is reported by pfu normalized to 

protein content. 

3.5.3 Animal models in study III 

3.5.3.1 Luciferase activity experiment 

Nude mice were injected s.c. with 5x106 786-O cells and injected i.t. with 3x108 vp. 

Two days later, mice were imaged and then killed. Tumors were collected and analyzed 

for luciferase expression. 

For the i.p. models, tumors were induced with 107 786-O or 786-O-CBGr cells and 

after 20 days mice were imaged and 108 VP was administered i.p. Two days later mice 

were imaged again for tumor and virus location. Mice were then killed; livers were 

collected and analyzed for luciferase expression. 
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3.5.3.2 Bioluminescence imaging 

Mice were injected i.p. with 4.5 mg of D-Luciferin (Promega, Madison, WI) diluted in 

100 μl 0% RPMI and after 10 min images were captured with the IVIS imaging system 

series 100 (Xenogen, Alameda, CA). Photon emission values were calculated with Living 

Image v2.5 software (Xenogen). 

In the experiment with the dual luciferase imaging system GFP, DsRed or no emission 

filter were applied to separately measure cells (expressing click beetle green luciferase) 

or virus (expressing firefly luciferase). 

3.5.3.3 Subcutaneous tumor growth inhibition experiment 

Nude mice with s.c. induced tumors with 5x106 786-O cells were injected i.t. with 

viruses at a dose of 108 VP. Blood samples were taken on day 7, 11 and 15 after virus 

injection and VEGFR-1-Ig concentration in the collected mouse serum was determined 

with a human IgG Elisa kit (Immunology Consultants Laboratory, Newberg, OR, USA). On 

day 17, mice were killed and tumors were collected and prepared for 

immunofluorescence staining. 

3.5.3.4 Survival experiment 

SCID mice injected i.p. with 107 SN12L1-luc cells were injected i.p. with virus at a dose 

of 5x108 vp on day 10 after cell injection. Mice were monitored for survival and imaged 

on day 9, 18, 25 and 32 after cell injection. 

3.5.4 Animal models in study IV 

3.5.4.1 Tumor growth follow-up 

For the immune deficient models 106 A549 or EJ cells were injected subcutaneously 

into flanks of Nude mice (n=5mice/group). When tumors reached the size of 

approximately 5 x 5mm, virus was injected i.t., at a dose of 108VP/tumor for three times 

(days 0, 2 and 4). For the immunocompetent model 5x105 MB49 cells were injected 

subcutaneously on shaved flanks of C57BL/6 mice (n=7mice/group). Virus was injected 

three times i.t. at the dose of 3x108 vp/tumor on days 0,2 and 4, when tumors reached 

the size of approximately 5 x 5 mm. Tumor growth was followed and organs/tumors 

were collected at the end of the experiments. Tissues were embedded in paraffin and 

histology and immunohistochemistry were performed. Spleens were minced and 

splenocytes were cultured in 10% DMEM supplemented with 1% L-glutamine and 
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penicillin/streptomycin. Supernatants were collected at 24, 48 and 72 hours and 

analyzed for cytokines by FACS Array.   

3.5.4.2 Elisa 

Tumor bearing mice, nude mice with A549 tumors and C57BL/6 mice with MB49 

tumors were injected i.t. with either, 108VP/tumor of Ad5/3-hTERT-E1A-hCD40L and 

Ad5/3-CMV-hCD40L, or 3x108VP/tumor of Ad5/3-CMV-mCD40L on days 0, 2 and 4. Blood 

samples were taken on days 4, 8 and 12 after first virus injection.  hCD40L and mCD40L 

concentration in the serum was determined with Human CD40 Ligand Elisa kit (ELH-

CD40L-001, RayBiotech Inc, Norcross GA, USA) and Mouse sCD40L Elisa kit ( BMS6010, 

Bender Medsytems, Austria) according to the manufacturer’s protocol. 

3.5.4.3 FACS-Array 

FACS array was performed for collected blood serum and supernatant from cultured 

splenocytes and IL-6, TNF, IL-12, IFNγ and RANTES were analyzed according to 

manufacturer protocol (BD Cytometric Bead Array Mouse Flex Sets, BD Biosciences 

Pharmingen Franklin Lakes, NJ). 

 

3.6 Statistics for studies I-IV 

To compare differences between groups in in vitro assays, two tailed student’s t-test 

was used and a p-value of <0.05 was considered significant. P-values of the in vivo 

experiments were calculated by Mann-Whitney test (SPSS 13.0). Data of survival 

experiments was plotted as Kaplan-Meier graphs and a log rank t-test (SPSS 13.0) was 

used for pair wise comparison of groups. 
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4 RESULTS AND DISCUSSION 

 

The scope of this thesis is to address two issues of adenoviral gene therapy 

treatment: 1) safety and 2) efficacy.  

First, studies I and II are investigating more the safety of adenoviral gene therapy and 

also giving treatment options in case of adenoviral replication induced side-effects:  

• Limit liver toxicity by genetically engineering new vectors to retarget other organs 

• Developing new animal models – Syrian hamsters- for assessing safety of 

oncolytic therapy 

• Prove the efficiency of antiviral drugs in syngeneic immune competent animal 

models  

Second, studies III and IV reveal two new approaches for targeted oncolytic 

adenovirus therapy with preclinical and clinical applications: 

• Promoter evaluation for increased tumor transcriptional targeting  

• Arming oncolytic virus with antiangiogenic transgene 

• Evaluating the efficacy of replication deficient and replication competent 

adenoviruses coding for immunomodulatory molecules 

• Immune response towards adenoviruses coding for hCD40L and mCD40L in 

different animal models  
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4.1         Genetically modified adenoviruses limit liver toxicity and 

enhance transduction of kidney targeted moieties (I) 

 

Genetically modified adenoviruses have emerged as promising therapeutic agents for 

advanced cancers refractory to other available treatments. Following intravenous 

administration, the predominant site of sequestration of Ad5 based Ads is the liver, with 

significant hepatocyte transduction. Liver tropism of Ad5 started to raise concerns when 

one patient died in 1999 following administration of the vector into the hepatic artery. 

Moreover, extensive study by Waddington and colleagues showed direct binding of Ad5 

to coagulation factor X via its hexon protein (Waddington et al., 2008). This provided a 

new rational for studying different Ad serotypes or Ad5 based chimeric adenoviruses 

with a modified tropism. Examples of the latter approach are e.g. fiber modifications 

(Mizuguchi and Hayakawa, 2004).  

In this regard,   previous report from Denby and colleagues identified Ad19p as a 

useful tool for targeting kidneys in rats (Denby et al., 2004; Denby et al., 2007). 

Moreover, the chimeric viruses Ad5/19p were further modified with rat kidney homing 

peptides inserted into the HI loop of the fiber: Ad5/19p - HTTHREP (Ad5/19p-HTT); 

Ad5/19p - HITSLLS (Ad5/19p-HIT) and Ad5/19p - APASLYN (Ad5/19p-APA). They 

presented a better rat kidney transduction without increased toxicity in the targeted 

organ. In study I, we analyzed the modified adenoviruses in the context of liver 

detargeting associated with kidney targeting in different mice models. First, in vitro 

studies showed that these vectors, tested in six different kidney cell lines and human ex-

vivo kidney explants, did not improve the transduction, with the exception of ACHN cell 

line (Figure 1 and 2 study I). The absence of improved kidney transduction might result 

from a lack of stroma and tumor vascularization that are important mediators for virus 

transduction. Nevertheless, an increased transduction of the fiber modified adenoviruses 

was observed in s.c. or i.p. induced kidney tumors (Figure 3 and 4 study I). Confirming the 

results from Denby and colleagues according to which fiber modified adenoviruses can 

transduce kidney tumors more efficiently than Ad5 in orthotopic mice models, our study 

focused next on evaluating liver tropism of these vectors. The best candidate proved to 
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be Ad5/19p-HIT which exhibited the highest transduction of mouse kidneys, as shown in 

Figure 4 (study I). In s.c. or i.p. induced tumors, injected either i.t, i.p, or i.v, liver tropism 

was significantly downregulated. Our results are in agreement with those reported by 

Shayakhmetov et al who showed decreased accumulation in the liver of the pseudotyped 

Ad5/Ad35 virus, speculating that reduced interaction with CAR, coagulation factor IX and 

protein C4 might play a critical role in the detargeting effect (Shayakhmetov et al., 2002). 

It is also known that Ad19p uses sialic acids as the primary receptor (Arnberg et al., 

2000a; Arnberg et al., 2000b; Burmeister et al., 2004). Moreover, Denby and colleagues 

showed reduced affinity of Ad5/19p modified vectors with factor X (Denby et al., 2007). 

Complete understanding of the mechanism reducing liver tropism of these fiber modified 

adenoviruses would require further studies. Additionally, this study demonstrates that 

tumor to liver transduction ratio is increased following intravenous or intraperitoneal 

administration of the viruses (Figure 6 study I). 

In conclusion, our study provides one more evidence for safety of adenoviral 

treatment. By modifying adenoviral genome, we improved viral transduction in targeted 

tissues and reduced liver uptake of the vector. Altogether, modified adenoviruses are 

promising tools for systemic and local delivery, in particular for human kidney tumors.  

    

4.2 Syrian hamsters as a new immunocompetent animal 

model for assessing adenoviral replication (II) 

 

The safety and efficacy of oncolytic adenoviruses was widely assessed and discussed 

in many preclinical and clinical studies (Khuri et al., 2000; Xia et al., 2004; Yu and Fang, 

2007). Still, most metastatic tumors have no curative treatment option to date. First 

generation adenoviruses showed modest anti-tumor effect. The tumor 

microenvironment together with the immune system exerts an antiviral effect leading to 

rapid virus clearance. More insights into the mechanism of action of Ads and the 

obstacles to virus delivery to the tumor site provided the scientific rationale for 

engineering more potent oncolytic adenoviruses. More potent oncolytic adenoviruses 

might imply more toxic agents. Human adenoviruses do not replicate productively in 
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murine tissues (Blair et al., 1989; Ying et al., 2009). In vivo analysis of adenoviral 

replication has been hampered by the lack of a permissive immune competent animal 

model. Recently, Syrian hamsters have been suggested as a suitable animal model for 

studying adenovirus replication (Bortolanza et al., 2007; Thomas et al., 2006; Thomas et 

al., 2007). Furthermore, as hamster cell lines have been developed, syngeneic tumors can 

be grown and tumor-host immune responses have been addressed in immune 

competent environment. In this study, a new syngeneic Syrian hamster model was 

established for assessing permissivity of wild-type adenovirus replication. First, hamster 

carcinoma cell lines, Hap-T1, DDT1-MF2, HaK and H2T, were transduced and killed by 

human adenoviruses. This was in accordance with previous studies (Thomas et al., 2006). 

Hap-T1, a hamster pancreatic cell line was the most permissive cell line for studying 

adenoviruses (Figure 1, study II). Hap-T1 cell line was also compared in different assays 

with human lung carcinoma cell line A549. In terms of transduction and replication, the 

hamster cell line was as permissive as the human cell line in terms of effective 

transduction and virion production (Figure 3, study II).  Further, syngeneic tumors were 

grown in hamsters and tumor growth rates were compared. Hap-T1 cell line exhibited 

the best result, inducing 0.5 cm3 tumors in approximately one week, followed by the 

other cell lines which developed tumors within five weeks. The most permissive tumors 

for adenovirus replication proved to be Hap-T1 with a 24-fold increase in virion 

production between 24 and 48 hours following i.t. administration. Taken together, these 

data showed that Hap-T1 syngeneic tumors in Syrian hamster are a useful model for 

assessing adenoviral replication and its side-effects. Likewise, the same model was used 

to assess anti-tumor immune response using an oncolytic adenovirus armed with the 

immunostimulatory cytokine GM-CSF (see chapter 1.6.3.) and showed a complete 

rejection of the tumors after rechallenge in the group injected with this virus (Cerullo et 

al., 2010).  In conclusion, this model can be used for characterizing both viral replication 

(study II) and host immune response.      
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4.3 Antiviral treatment with chlorpromazine and cidofovir in 

case of oncolytic virotherapy induced side-effects (II) 

 

Concerns have been raised about the toxicity of oncolytic viruses. Specifically, 

immune compromised patients are at risk for uncontrolled viral replication, leading to 

severe and even fatal side-effects (Claas et al., 2005; Fischer, 2008; Raper et al., 2003). 

There have been many attempts (see chapter 1.5.3) to establish antiviral treatments but 

so far no curative antiviral drugs have been on the market.  

In this study, we propose the use of chlorpromazine and cidofovir to inhibit 

adenovirus replication. Chlorpromazine, widely used as an antipsychotic drug, was 

previously reported by Kanerva and colleagues to inhibit adenovirus replication in vitro 

and in ex-vivo human liver explants (Kanerva et al., 2007). The mechanism of action of 

chlorpromazine was reported in 1993 by Wang and colleagues to interfere in the clathrin 

coated pit assembly at the cell surface (Wang et al., 1993). Adenoviruses are binding the 

cells through the interaction of the fiber knob with CAR. The initial binding is followed by 

receptor-mediated endocytosis in clathrin-coated pits. Here, we analyzed the effect of 

chlorpromazine both: in vitro and in vivo. That is, the transduction of the adenovirus in 

hamster pancreatic carcinoma cell line Hap-T1 was not hampered by the treatment with 

chlorpromazine (Figure 5, study II). In contrast, when viral replication was assessed in this 

cell line, the virion production was inhibited 25-fold compared with non-treated cells. A 

possible explanation for this effect could be that the mechanism of entry and action of 

the adenovirus in hamster cells is not known or other functions of chlorpromazine might 

be involved (Day and Dimattina, 1977). Further investigations should be performed in 

this regard. In vivo, the drug had a limited inhibition effect on viral replication in the liver 

but more stringent effect in the tumor (Figure 6 study II).  

Cidofovir, an acyclic nucleoside phosphonate analogue, is by far the most widely used 

antiviral drug (Baba et al., 1987; de Oliveira et al., 1996; Gordon et al., 1991; Hartline et 

al., 2005). This compound acts as a chain terminator during DNA replication and is 

effective as antiviral agent for all human adenovirus serotypes tested (see chapter 1.5.3) 

(Lenaerts et al., 2008). Recently, Toth and colleagues reported that CMX001 (an analog of 
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cidofovir) significantly reduces adenoviral replication in immune suppressed Syrian 

hamsters. In our study, we first analyzed the effect of cidofovir on adenovirus 

transduction and replication in vitro. As expected, this drug did not influence adenovirus 

transduction (Figure 5 study II) meanwhile the virion production was 368-fold 

downregulated (Figure 4 study II). When we tested cidofovir in vivo, in a syngeneic 

immune competent Syrian hamster model, the antiviral effect was confirmed in both 

tumor and liver (Figure 6 study II). 

In conclusion, both antiviral drugs proposed in this study, chlorpromazine and 

cidofovir exert an inhibitory effect on adenovirus replication. Since no significant effect 

was seen in transgene expression, the mechanisms prompted by these drugs could be 

downstream the nuclear delivery. Altogether, chlorpromazine and cidofovir could be 

useful for oncolytic gene therapy by offering a tool to control and reduce the side-effects 

associated with replication. 

 

4.4 Promoter evaluation for increased transcriptional 

targeting (III) 

 

In this study (Study III) we focused our research on investigating new transcriptionally 

targeted adenoviruses for renal cancer treatment. Renal cancer is one of the most 

refractory diseases to conventional therapies, such as chemotherapy and radiotherapy 

(Godley and Kim, 2002; Longo et al., 2007). As reviewed in chapter 1.3.3.2, many 

strategies have been employed for transcriptional targeting of Ads to tumor cells. Most 

of the cancers are defective in p16/Rb or p53 pathways, but in the case of renal cancers 

the main tumor suppressor gene that plays a critical role in tumor development is Von-

Hippel-Lindau gene (VHL) (Shuin et al., 1994).  The most studied function of this gene is 

the regulation of the transcription factor - hypoxia inducible factor (HIF) (Kaelin, 2004). 

This transcription factor is the key regulator for induction of genes which regulate 

adaptation and survival of cells from normoxic to hypoxic conditions (Wang et al., 1995). 

This heterodimer binds to specific DNA sequences, HREs, further inducing the regulation 

of important angiogenic factors, such as VEGF or other mitogenic factors (TGFα, TGFβ, 



49 

 

cyclin D, etc). HIF is highly expressed in renal carcinomas due to hypoxic conditions and 

defective VHL pathway in these tumors. Thus, engineering vectors using HIF promoter 

would increase the efficiency of adenoviral therapy for renal cancer. In this study, we 

analyzed the activity of two HREs promoters regulating luciferase expression: 9HIF and 

OB36. Replication deficient adenoviruses Ad5-9HIF-luc and Ad5-OB36-luc were 

constructed and compared with Ad5-CMV-luc (Ad5Luc1), which has a strong expression 

of luciferase due to a CMV driving promoter. Under normoxic conditions in vitro, the 

OB36 promoter exerted a stronger effect than 9HIF promoter, and both promoters 

induced the expression of higher levels of luciferase when compared with Ad5Luc1 

(Figure 1 a-d study III). In contrast, when renal cancer cell lines were under hypoxic 

conditions, 9HIF was stronger than OB36 in two out of three cell lines. As in normoxic 

conditions, both promoters induced higher expression of luciferase compared with 

Ad5Luc1 (Figure 1 e-f study III). In conclusion, in vitro results showed modest activity of 

9HIF promoter. In an s.c. renal cancer model, both promoters exerted potent activity 

driving expression of higher levels of luciferase when compared with luciferase 

expression induced by the CMV promoter (Figure 2 study III). In an i.p. kidney tumor 

model, Ad5-9HIF-Luc presented specific luciferase expression in the tumors without 

expression in the liver (Figure 4a, b study III). Taken together, these results demonstrate 

efficient induction of HREs elements in vivo. In conclusion, 9HIF promoter was identified 

as a good candidate for kidney tumor transcriptional targeted therapy.  

     

4.5 Improved anti-tumor effect with an oncolytic virus armed 

with antiangiogenic molecule (III) 

 

In this study we constructed a triple targeted oncolytic adenovirus as treatment 

option for renal cell cancer. We propose the use of Ad5/3-9HIF-Δ24-VEGFR-1-Ig, based 

on previous transduction studies and promoter evaluation described above, for improved 

infectivity and antiangiogenic effect in the treatment of renal cancer. It is well known 

that tumor progression and metastasis require persistent blood supply (Ferrara, 2004). 

Kidney tumors, in particular, are highly vascularized and defective for VHL/HIF pathways 
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(Fukata et al., 2005; Kim and Kaelin, 2004). The key player in regulating angiogenesis is 

VEGF, which was found to be expressed by most tumors including kidney tumors (Nicol 

et al., 1997). There are two main receptors for VEGF: fms-like-tyrosine-kinase receptor 

(flt-1 or VEGFR-1) and kinase domain region receptor (KDR or VEGFR-2) (Ferrara, 2004).  

Already in 1993, Kim et al showed that anti-VEGF antibodies can inhibit the growth of 

several tumor cell lines in mice (Kim et al., 1993). The fusion protein VEGFR-1-Ig, used in 

this study to arm the oncolytic adenovirus, was previously reported to induce vascular 

endothelial cell mitogenesis (Kendall et al., 1996; Olofsson et al., 1998). This virus also 

features the Ad5/3 chimeric capsid for enhanced transduction, 9HIF controlling E1A for 

more efficient transcriptional targeting and Δ24bp deletion in the E1A gene for more 

specific viral replication in tumor cells, as described in chapter 1.3.3.3. (Figure 5a study 

III). We also constructed Ad5/3-9HIF-Δ24-E3 as control adenovirus. This virus has all the 

features of the Ad5/3-9HIF-Δ24-VEGFR-1-Ig except the antiangiogenic molecule 

expressed from the E3 region. 

Analysis of the oncolytic potency showed lower cytopathic effect in the case of 

Ad5/3-9HIF-Δ24-VEGFR-1-Ig. The oncolytic potency of the virus was the same as the 

isogenic control Ad5/3-9HIF-Δ24-E3. This virus was less potent than Ad5/3-Δ24 but 

usually more potent than Ad300wt (Figure 6a, b; Supplementary Figure 2 in study III). 

This effect might be explained by the previously observed lower activity of 9HIF promoter 

in vitro in normoxic conditions (Figure 1 study III). Also, VEGFR-1-Ig expressed by infected 

cells (Figure 5b, study III) is not expected to present any anti-tumor effect in vitro. The 

absence of lytic effect in normal fibroblasts, infected with Ad5/3-9HIF-Δ24-VEGFR-1-Ig or 

Ad5/3-9HIF-Δ24-E3 confirms the high specificity of these viruses for cancer cells (Figure 

6c study III). A 100% cell killing was observed in HUVEC cells infected with Ad5/3-Δ24 or 

Ad300wt viruses. In contrast, Ad5/3-9HIF-Δ24-E3 did not exert any lytic effect since HIF is 

not active in these cells in normoxic conditions. Ad5/3-9HIF-Δ24-VEGFR-1-Ig showed 30% 

killing effect possibly related to a minimal expression of VEGFR-1-Ig.  

Further, we analyzed the anti-tumor efficacy and the effect of the transgene in two 

different animal models. First, in an s.c. kidney cancer model, viruses were injected i.t. 

and Ad5/3-9HIF-Δ24-E3 and Ad5/3-Δ24 treatment resulted in complete eradication of 

38% of the tumors (Figure 7 study III). Ad5/3-9HIF-Δ24-VEGFR-1-Ig was not as effective as 



51 

 

the two previous viruses despite the expression of VEGFR-1-Ig (Figure 7b study III). An 

explanation for this minimal effect could be the collapse of the vasculature and increased 

necrosis inside the tumor caused by VEGFR-1-Ig expression. In addition, necrosis and 

hypoxic conditions have been shown to inhibit viral dissemination (Heldin et al., 2004). 

Therefore, when we analyzed the tumors, we observed a profound inhibition of 

vascularization in the group treated with Ad5/3-9HIF-Δ24-VEGFR-1-Ig. Together with low 

vascularization we noticed increased hexon protein expression in the tumors.  

Intraperitoneally disseminated renal cancer induced with SN12L1-luc cells might 

exemplify better the conditions favorable for the use of Ad5/3-9HIF-Δ24-VEGFR-1-Ig. In 

this model, mice treated with Ad5/3-9HIF-Δ24-VEGFR-1-Ig showed a significant increase 

in survival when compared with the other groups (Figure 8 study III). A possible 

explanation of this increased survival might be the different vascularization of these 

tumors which might be more susceptible to anti-angiogenic therapy.  

Altogether, the results show the efficacy of Ad5/3-9HIF-Δ24-VEGFR-1-Ig, in the 

context of preclinical studies and suggest the virus as a good candidate for the treatment 

of patients with renal cell cancer. One concern for this treatment approach might be to 

the safety of VEGFR-1-Ig due to some reports of potential toxicity of sFlt (Mahasreshti et 

al., 2003). On the other hand, promising safety and efficacy results from a clinical trial 

with a related antiangiogenic molecule, VEGF-trap, have already been generated (Riely 

and Miller, 2007).  

 

4.6 Development/characterization and efficacy of new 

immunotherapy agents (IV) 

 

Immunotherapy has gained a lot of interest in the past years. Many studies show 

growing body evidence that the immune system might be the key player in tumor 

growth, survival or eradication. These studies also made immunotherapy more appealing 

for future developments in cancer gene therapy (Prestwich et al., 2008). The immune 

system in cancer patients fails to respond mainly because of the immunosuppressive 
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environment in the tumor and surrounding tissue, and lack of tumor antigen 

presentation.   

As discussed in previous studies (study III and chapters 1.3.3.2 and 1.3.3.3), 

developing new transductionally/transcriptionally targeted oncolytic adenoviruses could 

be a useful approach for tumor clearance and increased survival.  In the present study, a 

new oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, is proposed for cancer treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Cloning strategies for replication competent and replication deficient adenoviruses coding 

for CD40L  

This virus features three genetic modifications: a serotype switching with Ad3 knob 

for improved tumor transduction, insertion of hTERT promoter driving E1A gene for 

tumor selectivity and insertion of an hCD40L encoding sequence for potentiating the 

anti-tumor immune response combined with apoptosis (Figure5, Figure 1, study IV). 

hTERT has been reported to be active preferentially in cells with a high division rate, 

which is the main feature of all cancer cells. Oncolytic adenoviruses driven by this 

promoter also showed good safety data (Takakura et al., 1999; Yokoyama et al., 2008). 
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CD40L also known as CD154 is predominantly expressed on CD4+ T-cells and binds to its 

receptor CD40 present on the membrane of antigen-presenting cells (APCs) (Grewal and 

Flavell, 1998). This interaction leads to activation of both innate and adaptive immune 

response. Binding of CD40L to CD40 expressed by macrophages and dendritic cells (DC) 

leads to antigen presentation and cytokine production (van Kooten and Banchereau, 

2000). The CD40L-CD40 interaction also provides costimulatory signals which trigger T 

cells expansion (Grewal and Flavell, 1998) and increase IL-12 production necessary for 

the engagement of cytotoxic T cells in the anti-tumor immune response (Loskog et al., 

2005; Mackey et al., 1998). Similarly, CD40L was shown in vitro and in vivo to induce 

apoptosis (Fernandes et al., 2009; Loskog et al., 2004; Loskog et al., 2005).  

Given these effects, we hypothesized that Ad5/3-hTERT-E1A-hCD40L oncolytic 

adenovirus could lead to tumor elimination due to tumor-specific oncolysis and 

apoptosis together with an anti-tumor immune response prompted by the 

immunomodulatory molecule. For better confirmation of CD40L effects, two replication 

deficient viruses coding for hCD40L and mouse CD40L were constructed: Ad5/3-CMV-

hCD40L and Ad5/3-CMV-mCD40L (Figure 5, Figure 1 study IV). The three cloned viruses 

expressed the transgenes in vitro and in vivo. In vitro, hCD40L was expressed at the same 

rate with both replication deficient and competent adenovirus. The experiment was 

performed on 293 cell line which expresses E1A gene enabling the non-oncolytic virus to 

replicate at a similar rate as the oncolytic virus. Another reason for the equal expression 

might be the strong expression of the transgene due to the CMV promoter used in the 

non-replicating virus (Figure 1B study IV). We also noticed efficient expression of the 

transgenes in vivo (Figure 1C study IV). Analysis of hCD40L expression in serum samples 

of nude mice revealed a higher concentration of the protein in the group treated with 

the replication deficient adenovirus. mCD40L protein was also detected in the serum of 

injected immunocompetent C57BL/6 mice (Figure 1C study IV). Further, we investigated 

whether hCD40L encoded by oncolytic adenovirus is functional. Two assays were 

performed in this regard, measuring the potency of NF-κB activation. Both showed 

increased activity of the expressed protein (Figure 1D study IV).  

Human CD40L is known to induce apoptosis in the presence of its CD40 receptor. We 

analyzed two different cell lines, EJ which is positive for CD40 receptor, and A549 which 
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is negative for the receptor. Ad5/3-hTERT-E1A-hCD40L oncolytic virus exerted a more 

potent killing effect on the EJ cells expressing CD40. Meanwhile Ad5/3-hTERT-E1A, the 

control isogenic virus, was more potent in A549 cell line (Figure 2A-D study IV). We 

confirmed the apoptotic effect induced by CD40L in the presence of CD40 receptor also 

in vivo. A replication deficient adenovirus Ad5/3-CMV-hCD40L was administered in 

tumors induced with either EJ or A549 cell line. In A549 tumors (negative for CD40 

receptor) the virus did not have any anti-tumor effect. In mice bearing EJ tumors 

(positive for CD40 receptor), the virus resulted in a significant decrease in tumor growth 

(Figure 3A, B study IV). In both tumor models, the oncolytic virus Ad5/3-hTERT-E1A-

hCD40L induced the same significant decrease in tumor growth as its control isogenic 

virus Ad5/3-hTERT-E1A (Figure 3 C, D study IV). To better understand this phenomenon, 

tumor tissues were analyzed at the end of the experiment for assessing caspase-3 activity 

as a marker for apoptosis. Immunohistochemistry analysis revealed increased caspase 3 

activity in the group treated with Ad5/3-hTERT-E1A-hCD40L when compared with the 

control groups: Ad5/3-hTERT-E1A and Ad5/3-CMV-hCD40L (Figure 4 study IV). To 

conclude, our new developed oncolytic adenovirus exhibits a potent oncolytic effect in 

vitro and in vivo and induces apoptosis.    

    

4.7 Immune responses induced by CD40L protein in a 

syngeneic immunocompetent animal model  

 

In order to assess the immune response induced by CD40L protein, we needed an 

immunocompetent animal model. As previously discussed, human adenoviruses do not 

replicate in mouse tissue. In addition hCD40L was previously shown to be inactive in mice 

(Spriggs et al., 1992). As a result, we engineered a replication deficient adenovirus coding 

for mCD40L with the same capsid modification Ad5/3 used for the other viruses. 

In a syngeneic mouse model, s.c. tumors were induced with the MB49 bladder 

carcinoma cell line and were injected with either Ad5/3-CMV-mCD40L or the control 

virus Ad5/3-CMV-Luc1 (Ad5/3Luc1). There was a significant decrease in tumor growth 

(p=0.002) in the group injected with Ad5/3-CMV-mCD40L when compared with 
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Ad5/3Luc1 treated group (Figure 5A study IV). Tumors were collected and 

immunohistochemistry was performed for caspase-3 activity. While Ad5/3Luc1 exerted a 

minimal effect, we noticed an increase of caspase-3 activity in tumors treated with the 

virus expressing mCD40L (Figure 5B study IV). 

As previously discussed in chapter 1.5.2, the mechanisms of host defence are 

mediated mainly by the innate and adaptive immune responses. In this regard, we 

analyzed tumor tissues and serum collected from mice and supernatant from cultured 

splenocytes to demonstrate the effect of CD40L protein on both innate and adaptive 

immune responses. 

Tissues analyzed by immunohistochemistry for macrophage marker F4/80, leucocytes 

antigen CD45 and B-cell CD19+ expression revealed higher expression of these immune 

modulating factors in the tumors treated with Ad5/3-CMV-mCD40L (Figure 6B study IV). 

In addition, mCD40L expressed protein induced the production of cytokines and 

chemokines such as RANTES and TNF-α (Figure 6A study IV). It is known that adenovirus 

per se triggers a strong innate immune response, but the levels of cytokines and 

chemokines induced after infection were significantly higher with Ad5/3-CMV-mCD40L 

virus than Ad5Luc1 virus (Figure 6A study IV).  In mice treated with the virus coding for 

CD40L, we observed increased levels of IL-12 which is an important mediator of the 

adaptive immune response. IL-12 further stimulated IFN-γ production which resulted in 

T-cell priming and stimulation. To assess the toxicity of these adenoviruses, IL-6 was 

measured and no significant difference was seen between the groups. Regarding the 

adaptive immune response, higher levels of IFN-γ production were noticed in the group 

treated with Ad5/3-CMV-mCD40L. Moreover, immunohistochemistry staining revealed a 

high T cell infiltration (CD3 positive) in the tumors. While there was no difference for the 

expression of T helper- CD4+ cells, the number of cytotoxic CD8+ T cells was nevertheless 

increased (Figure 6C study IV). Based on these results, immunotherapy using CD40L 

protein is a tantalizing therapy approach and could be successfully used in the clinic. 

Above all, Ad5/3-hTERT-E1A-hCD40L has already proven its safety and efficacy in a few 

patients treated in an advanced therapy access program (Pesonen et al data 

unpublished).  
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5 SUMMARY AND CONCLUSIONS 

 

The goal of this thesis was to assess the safety profile of adenoviral therapy and 

increase the efficacy of this approach using genetically engineering oncolytic 

adenoviruses. 

The suggested liver toxicity, imperfect animal models and lack of antiviral treatments 

are different pitfalls in adenovirus gene therapy that we addressed in the present thesis. 

Many studies have shown that adenoviruses can be modified to target different 

tissues. Although, liver tropism of adenovirus in humans is still a subject of debate, 

developing adenoviruses which untarget the liver and are redirected to preferred tissues 

is of particular interest. In this study, we used a chimeric Ad5/19p-HIT adenovirus which 

targets receptors different from the Ad5 receptor CAR. The peptide inserted into the HI 

loop augmented the retargeting of this vector towards kidney moieties. Following either 

intravenous or intraperitoneal administration of this adenovirus, kidney tumors and 

normal tissues were better transduced compared with the control virus. In addition, the 

natural tropism of adenovirus for the liver was ablated in all orthotopic animal models, 

independently of the route of administration of the vector. In conclusion, adenoviruses 

can be modified specifically to target kidney moieties and untarget the liver. 

Furthermore, mouse tissues are known not to be permissive for adenoviral 

replication. Here, we established a new syngeneic immunocompetent animal model – 

Syrian hamsters with pancreatic induced tumors. Wild-type Ad5 efficiently transduced 

and killed all hamster cell lines in vitro and exhibited sustained replication in tumors and 

different normal tissues in vivo. The results also suggest that while hamster cell lines in 

general are permissive for human adenovirus type 5, replication and subsequent 

cytotoxicity is variable. Nevertheless, this study confers the “best available” animal 

model for assessing adenovirus replication and its associated side-effects. This animal 

model was further used to show inhibition of adenovirus replication by antiviral drugs 

such as chlorpromazine and cidofovir.  Oncolytic virotherapy has shown promise as 

effective cancer treatment, but only limited efficacy was noticed in clinical settings. On 

the other hand, more effective and potent viruses may also lead to uncontrolled 
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replication. There are no available antiviral treatment options in case of replication 

associated side-effects. Based on our results, chlorpromazine and cidofovir could be good 

candidates to inhibit adenoviral replication. Both drugs ablated viral replication in vitro 

and exhibited a significant reduction of adenovirus replication in tumors and liver normal 

tissue of hamsters. Clinical data may ultimately define the effect of these drugs on 

adenovirus replication.  

Our other studies focused on arming oncolytic adenoviruses for improving their 

efficacy. 

The key factor in regulating angiogenesis is VEGF and is by far the most studied 

angiogenic factor. We generated an infectivity enhanced, transductionally and 

transcriptionally targeted, antiangiogenic oncolytic adenovirus Ad5/3-9HIF-Δ24-VEGFR-1-

Ig. In an orthotopic subcutaneous induced tumor model, the virus exhibited a modest 

anti-tumor effect. The local expression of antiangiogenic molecule resulted in a 

significant decrease of blood vessels number. The latter effect might have induced 

necrosis in the tumor. On the other hand, this effect did not result in significant tumor 

regression. In an intraperitoneal tumor model, more closely related to clinical set up, 

Ad5/3-9HIF-Δ24-VEGFR-1-Ig treatment resulted in increased survival compared with the 

other treated groups. Given the modest effect of this approach, I further generated a 

more potent oncolytic adenovirus: Ad5/3-hTERT-E1A-hCD40L. While Ad5/3-9HIF-Δ24-

VEGFR-1-Ig was generated for enhanced tumor targeting and local anti-tumor effect due 

to antiangiogenic molecule, Ad5/3-hTERT-E1A-hCD40L targets the tumor more effectively 

and is augmented by insertion of the immunostimulatory molecule CD40L. Besides local 

apoptotic effects, CD40L has an important role in modulating the anti-tumor immune 

responses. Immunotherapy is thought to be the answer for cancer treatment since 

scientists discovered that the host immune response is a major player in tumor 

clearance. In this regard, Ad5/3-hTERT-E1A-hCD40L exerted the same oncolytic effect as 

control virus when used in nude mice which lack effective immune function. Despite this, 

local apoptotic events were evident in the tumors treated with the adenoviruses coding 

for CD40L. In a syngeneic animal model, adenovirus coding for CD40L molecule also 

successfully engaged innate and adaptive immune responses inducing significant tumor 

regression. 
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To summarize, the studies from this thesis offer new cancer treatment options using 

armed oncolytic adenoviruses. First, the safety profile of adenoviral gene therapy was 

assessed; using capsid modified adenoviruses enabled to limit liver toxicity and increase 

kidney targeting. Second, a new immunocompetent animal model, Syrian hamster, was 

developed. Third, antiviral treatment options are also suggested as a safety switch in 

case of replication associated side-effects. Further, the potency of oncolytic viruses was 

increased by arming them with antiangiogenic molecules, which resulted in an increased 

survival of the animals. Finally, new immunotherapy agent, Ad5/3-hTERT-E1A-hCD40L, 

was generated and assessed and could translate into successful clinical approach.  

These studies could contribute to the emergence of successful clinical embodiments 

of cancer gene therapy with oncolytic adenoviruses and thus increase the treatment 

options of patients with currently incurable cancer.  
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