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Introduction: Prenatal antiepileptic drug (AED) exposure is associated with an increased risk of cognitive impair-
ment and autism spectrum disorders detected mainly at the age of two to six years. We examined whether the
developmental aberrations associated with prenatal AED exposure could be detected already in infancy and
whether effects on visual attention can be observed at this early age.
Material and methods: We compared a prospective cohort of infants with in utero exposure to AED (n = 56)
with infants without drug exposures (n= 62). The assessments performed at the age of sevenmonths included
standardized neurodevelopmental scores (Griffiths Mental Developmental Scale and Hammersmith Infant
Neurological Examination) as well as a novel eye-tracking-based test for visual attention and orienting
to faces. Background information included prospective collection of AED exposure data, pregnancy outcome,
neuropsychological evaluation of the mothers, and information on maternal epilepsy type.
Results: Carbamazepine, oxcarbazepine, and valproate, but not lamotrigine or levetiracetam, were associated
with impaired early language abilities at the age of seven months. The general speed of visuospatial orienting
or attentional bias for faces measured by eye-tracker-based tests did not differ between AED-exposed and
control infants.
Discussion:Ourfindings support the idea that prenatal AED exposuremay impair verbal abilities, and this effectmay
be detected already in infancy. In contrast, the early development of attention to faceswas spared after in utero AED
exposure.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

There is a rapidly accumulating literature on the effects of antiepileptic
drug (AED) treatment during pregnancy, including both the effects on
maternal seizures and epilepsy-relatedmortality, as well as on the effects
on obstetric outcomes [1–5]. Recent data suggest that the effects on struc-
tural and functional teratogenesis vary widely between AEDs [6], with
most data available on the effects of valproate, carbamazepine,
lamotrigine, and phenytoin. In particular, prenatal valproate exposure re-
lates to a relatively higher risk of major malformations, cognitive impair-
ment, and autism spectrum disorders [6–9]. Comparisons between AEDs
acid; CBZ, carbamazepine; OXC,
TPM, topiramate; VIQ, verbal
uotient; HINE, Hammersmith

Hospital, Helsinki University
suggest that in utero valproate exposure in six-year-old children is associ-
ated with an IQ that is 8 to 11 points lower compared with children with
in utero exposure to lamotrigine, carbamazepine, or phenytoin [10]. The
largest group differences were seen in verbal and memory function.

Despite the growing knowledge of the effects of the AEDs on
neurocognition and behavior, the underlyingmechanisms and develop-
mental time-course of these consequences are still mainly unknown.
One of the proposedmechanisms at cellular level has been altered apo-
ptosis [11–14] contributing to structural changes in the cerebellum [15],
hippocampus, and cortex [16]. Functional changes have been suggested
to be due to alterations in synapticmaturation, in organization of neuro-
nal networks, and in electric brain activity [13,17–20].

Supporting the hypothesis that AED exposuremay alter thedevelop-
ment of activity-dependent neural networks, we recently found signifi-
cant differences in the newborn cortical activity after prenatal exposure
to AEDs [20]. These findings suggested that prenatal AED exposure
might interfere with temporal occurrence and spatial coordination of
the developing brain, possibly leading to functional effects that emerge
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behaviorally in later infancy. Yet very few studies have assessed the
early developmental effects [21,22].Moreover, the changes in AEDprac-
tices [23,24] have raised the need for assessing the developmental
effects of many newer AEDs.

Besides the need for assessing the general effects of AED exposure on
early development [7,9,10,25–27], it has become important to assess
changes in specific cognitive processes, and in particular, those related
to visual functions. Recent developments in eye-tracking-based testing
of infant cognition [28–30] have opened newpossibilities for automated
testing of infants' visual acuity, visuospatial orienting (gaze shifts to
a novel visual stimulus), and attention to salient social stimuli, such
as faces [31–35]. These processes provide the key “building blocks” of
later emerging advanced cognitive, academic, and social skills [36,37].
For instance, speed of visuospatial orienting at 3.5 or 7 months of age
will predict cognitive and academic performance at the age of 4 and
11 years [38,39]. Similarly, tests assessing infants' attentional bias for
faces at 7 months predict socioemotional development at the age of
14 months [40], and reduced face preference is associated with later
autism spectrum disorders [41–46] and atypical development [47].
Compared with traditional observational methods, eye-tracking-based
testing of infants allows for completed automatization of the test
procedure, as well as accurate, transparent physiological metrics of the
sensory and cognitive processes in infants [33,47,48].

The present study was designed to investigate whether prenatal
AED exposure is associated with the development of neurological and
perceptual abilities at the age of seven months. To this end, we used
both standardized neurocognitive testing and novel eye-tracking-
basedmethods that focus on infants' attention orienting and attentional
bias for faces [28].

2. Material and methods

2.1. General aspects

The study was conducted at the Helsinki University Hospital. The
ethics committee of the Helsinki University Hospital approved the
study. A written informed consent was obtained from all mothers
during pregnancy. Background information, exposure data (including
daily doses and serum levels for oxcarbazepine (OXC), carbamazepine
(CBZ), valproic acid (VPA), lamotrigine (LTG), and levetiracetam
(LEV)), pregnancy outcome data, and results of the mothers'
neurocognitive evaluation were gathered prospectively and are de-
scribed in detail in a previous report along with a description of the re-
cruitment process [20].

The initial cohort consisted of 56 newborns with fetal AED exposure
and 67 control newborns. Of the AED group, ten infantswere exposed to
OXC, nine to CBZ, eight to LTG, seven to LEV, five to VPA, one to
topiramate monotherapy, and 16 to more than one AED. Mean daily
doses in monotherapy group during the first trimester were as follows:
CBZ 733 mg (mean serum concentration: 29 μmol/l,), OXC 833 mg
(30 μmol/l), LTG 288mg (7.1 μmol/l), VPA 925mg, (free serum concen-
tration: 28 μmol/l), and LEV 1571 mg (serum concentrations for LEV
were notmeasured). Formore detailed information, see Supplementary
material Table S1 and our previous publication [20]. All of the exposed
infants and 62 out of 67 control infants of this original cohort participat-
ed in clinical neurological and eye-tracker examinations at the age of
seven months. Three of the original controls declined participation for
personal reasons, one due to moving to another district, and one due
to acute illness. The examinations took place at outpatient visits be-
tween November 2010 and January 2015. All examiners were blinded
to the exposure status of the infants.

2.2. Clinical neurology

The Griffiths Mental Developmental Scale [49] was used to evaluate
the developmental status of the infant. This scale constitutes of five
subscales (locomotor, personal–social, hearing and language, eye and
hand coordination, and performance) and total developmental quotient.
We converted the raw scores to subquotients and general quotient
as described in [49]. To assess the clinical neurological status, we used
the Hammersmith Infant Neurological Examination (HINE) [50,51]. It in-
cludes three sections: twenty-six neurological items (cranial nerve func-
tion, movements, tone, reflexes, and reactions), eight motor milestone
items, and three behavior items, altogether 37 items. Thefirst author per-
formed both Griffiths Mental Developmental Scale and HINE
examinations.

2.3. Eye-tracker

The eye-tracking test was designed to assess infants' attention
to nonface patterns and faces by using a face-distractor competition
paradigm [31,40]. In this paradigm, infants fixate a nonface pattern
or a picture of a face in the center of the screen while a lateral
distractor stimulus (geometric shape) is presented to the left or to
the right. Infants' attention is indexed by the duration of gaze fixation
to the pattern/face. The duration is measured until the infant makes a
gaze shift to the lateral distractor or a maximum time of 1000 ms was
reached.

During the test, the infants sat in a baby carrier attached on their
parent's chest, and a sequence of visual stimuli was presented on
a 17-inch TFT monitor integrated in a Tobii T120 eye-tracker device
(Tobii Technology AB, Stockholm, Sweden). Before running the actual
study protocol, a calibration procedure was performed as explained in
detail by Ahtola et al. [31]. The eye-tracking protocol constituted 32 tri-
als. Each trial consisted of two phases, which together lasted for
4000ms. The trial began by first attracting infant's attention to the cen-
ter of the screen using simple audiovisual animations, for example, a
gradually expanding red circle (diameter from 0.3 ° to 4.2 °)with recur-
ring sound. The trial was programmed to start automatically only after
the eye-tracking device had reported 600 ms of continuous fixation
onto the predefined ‘fixation area’ (diameter: 4.2 °) around the anima-
tion stimulus. During the first 1000 ms, an image of a nonface pattern
(‘sham’) or a face displaying neutral, happy, or fearful expression was
shown on the center of the screen. During the remaining 3000 ms, a
peripheral “distractor” stimulus was added into the edge of the screen
10.2 ° away from the face, equiprobably on the left or right. The order
of the central stimulus (a nonface pattern or one of the three faces) and
the side of the peripheral stimulus varied randomly with the exception
that the same face was presented no more than twice in a row, and the
target was no more than three times in a row shown on the same side
of the screen. The test has been described in further detail in a previous
report [31,40].

To determine the duration of infants' gaze fixations to nonface
patterns and faces, we used a library of MATLAB (Mathworks, Natick,
MA) functions, designed for automated extraction of the fixation dura-
tion parameters from raw eye-tracking data (x–y gaze position coordi-
nates [33]). Briefly, the analysis consisted of the following stages: First,
a 15-sample median filter was applied for removing abrupt spikes in
the gaze data (attributable to technical artifacts). Second, data segments
with a maximum of 200 ms of missing eye position data were filled by
continuing the last recorded x- and y-coordinates until the tracking
came back online. Third, invalid trials were removed from the analyses
(i.e., trials with N200 ms of missing eye position data, b70% of gaze fix-
ation at the first stimulus by the end of the analysis period, anticipatory
eye movements with a latency b150 ms, or computer timing errors).
Finally, the duration of gaze fixation at the first stimulus (a nonface pat-
tern or pictures of faces) was calculated for each stimulus condition by
using the same criteria as those used in previous studies [33]. The dura-
tion index was calculated by measuring the time from the onset of the
lateral stimulus to the onset of a gaze shift to the lateral stimulus or a
1000-ms time limit. Raw time values were converted to proportions
so that the index was 0 if the infant made an immediate gaze shift to



Table 1
Developmental quotients at the age of 7months, infants exposed to antiepileptic drugs vs.
unexposed infants.

Developmental quotients AED (n = 56)
mean (range, SD)

Controls (n = 59)
mean (range, SD)

p

Locomotor 101 (73–141, 14) 114 (81–166, 22) 0.002⁎

Personal/social 96 (66–127, 13) 105 (84–123, 9) b0.001⁎

Hearing and speech 87 (65–119, 11) 94 (80–110, 7) b0.001⁎

Eye and hand 94 (73–120, 11) 95 (79–117, 9) 0.49
Performance 95 (79–117, 9) 93 (79–117, 6) 0.18
General quotient 95 (77–117, 8) 100 (85–113, 6) b0.001⁎

Subquotients and general quotients of Griffiths Mental Developmental Scale of 7-month-
old infants with (AED) or without (controls) prenatal antiepileptic drug exposure. AED
group is compared with control group (Mann–Whitney test).
AED groups include 40 infants exposed prenatally tomonotherapy and 16 infants exposed
to polytherapy. For the number of different drugs, see Table 2.
⁎ Significant difference after Bonferroni correction.
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the lateral stimulus (150 ms was used as a cutoff for shortest possible
reaction time) and 1 if the infant held gaze at the first stimulus until
the end of the analysis period.

The mean duration of gaze fixation (index) reflects infants' general
saccadic reaction time or “attention disengagement” time (longer
“disengagement times” have been linked to autism [43,47]) whereas
the relative lengthening of the fixation time in the context of faces
(i.e., difference between nonface patterns and faces) reflects infants'
attention bias for faces [52]. Reduced attentional bias for faces has
been found in children with behavioral problems or autism [40,53,54].

SS performed all eye-tracker examinations. The eye-tracker procedure
took maximum 15 min, and infants seemed to enjoy the situation sitting
on their parents' lap and watching a screen with changing objects.

2.4. Statistical analysis

We compared AED-exposed and control infants with each other.
Subgroup analyses of infants with fetal exposure to different AEDs
were compared with each other and control infants, infants with fetal
AED polytherapy exposure were compared with infants with fetal AED
monotherapy exposure, and both of these groups were compared
with infants without fetal AED exposure. As some of the data were
not normally distributed and group sizes were relatively small and un-
balanced, the primary comparisonswere executed using nonparametric
statistics: Fisher's Exact test, Pearson Chi-Square test, Mann–Whitney
U-test, or Kruskal–Wallis test. To evaluate the impact of age of the infant
and maternal education and maternal intelligence, we performed addi-
tional statistics using one-way between-groups analysis of covariance
and two-way between-groups analysis of covariance. The level of signif-
icance was set at p b 0.05. In cases with multiple comparisons, we
applied Bonferroni correction.

3. Results

3.1. Background information

As described in [20], AED and control groups did not differ signifi-
cantly concerning the gestational age or gender of the newborn or the
age, folic acid supplementation, neurocognitive evaluation, smoking,
alcohol consumption, or parity of the mothers. Neuropsychological
evaluation [55–57] was performed for 48 mothers of the medication
group and of 20 mothers of the control group. There was no significant
difference in maternal verbal intelligence quotient (VIQ), performance
intelligence quotient (PIQ), or clinically measurable relevant executive
functioning skills between the groups: VIQ mean 111 (range: 69–137,
SD: ±13) (AED group) vs. mean 114 (range: 97–134, SD: ±10
(controls), p = 0.54; PIQ mean 117 (range: 62–138, SD: ±12) (AED)
vs. mean 122 (range: 100–138, SD: ±11) (controls), p = 0.07; and
executive problems (no problems/slight problems) 76%/24% (AED) vs.
90%/10% (controls), p = 0.32. Furthermore, maternal cognitive abilities
did not differ between subgroups except between polytherapy and
monotherapy groups and polytherapy and control groups (Table 2).
However, infants in the AED group were significantly younger than
control infants at the time of both the eye-tracker (7.31 months vs.
7.47 months, p = 0.009) and the clinical examination (7.46 months
vs. 7.25 months, p = 0.001). In addition, the educational level of AED
group mothers was significantly lower than of the control group
mothers, and the birth weight was lower in the AED group as well as
described in our previous report [20].

3.2. Development and clinical neurology

The mean general quotient and three out of five mean subquotients
of the Griffiths Mental Developmental Scale were significantly lower in
theAED-exposed infants comparedwith thequotients of theunexposed
infants (Table 1). As the maternal educational level differed between
the exposed and control groups, we conducted two-way between-
groups analysis of variance to measure the impact of maternal educa-
tional level on the mean developmental quotients. After adjusting for
the mother's educational level, there was still a statistically significant
main effect for AED exposure in “personal/social” (p b 0.001), “hearing
and speech” (p = 0.01), “eye and hand” (p b 0.001), and “general
quotient” (p b 0.001) categories. However, the effect size wasmoderate
(partial eta squared: 0.16, 0.06, 0.12, and 0.15, respectively). Statistically
significant interaction effect between exposure andmaternal education
was seen only in the category of “eye and hand”. Though the maternal
intelligence scores did not differ significantly between the AED and
control groups, we conducted additional analysis of the Griffiths Mental
Developmental Scale quotients including only those infants with infor-
mation onmaternal VIQ and PIQ. This analysis showed a similar trend be-
tween exposed and unexposed infants as the main analysis: “locomotor
subquotient” (p = 0.11), “personal/social” (p = 0.02), “hearing and
speech” (p = 0.003), “eye and hand” (p = 0.53), “performance”
(p = 0.04), and “general quotient” (p = 0.06). For more detailed data,
see Supplementary material (Table S2).

Furthermore, as the ages at the time of the clinical examinations dif-
fered between the exposed and control groups, we conducted one-way
between-groups analysis of covariance to measure the impact of age on
the mean developmental quotients. The independent variable was the
exposure status of the infant, and the dependent variables were the
mean scores of subquotients and general quotient of the Griffiths
Scale. The age of the infant during the examinationswas used as the co-
variate in the analysis. After adjusting for age, therewas still a significant
difference between AED and control groups in locomotor (F(1111) =
12.3, p = 0.001, partial eta squared: 0.10), in personal–social
(F(1111) = 27.0, p b 0.001, partial eta squared: 0.20), and in hearing
and speech subquotients (F(1110) = 16.9, p b 0.001, partial eta
squared: 0.13), and in general quotient (F(1110)= 21.0, p b 0.001, par-
tial eta squared: 0.16). On theother hand, therewasnot a significant dif-
ference in eye and hand subquotient (F(1111) = 1.1, p = 0.30, partial
eta squared: 0.01) or in performance subquotient (F(1111) = 0.22,
p = 0.64, partial eta squared 0.002).

As an additional post hoc analysis, we excluded from the analysis
those infants of the control group that were older than 7.7 months at
the time of the clinical examination. The differences between AED and
control groups were still seen after excluding these infants though
the mean age at the clinical examination did not differ significantly
anymore between the groups at the time of the clinical examination
(controls: n = 47, mean age: 7.34 months, range: 6.83–7.69, SD: ±0.24
and AED: n = 55, mean: 7.25 months, range: 6.50–8.27, SD: ±0.37;
p = 0.09) or at the time of eye-tracker (7.39 months, 6.80–7.80, 0.25
vs. 7.31, 6.50–8.23, 0.34, respectively; p = 0.12). The results of this post
hoc analysis are shown as Supplementary material (Table S3).

In subgroup analyses, infants with CBZ, OXC, and VPA monotherapy
exposure had significantly lower mean developmental subquotients in
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the category of hearing and speech than control infants. In addition,
CBZ-exposed infants' mean personal–social subquotient and VPA-
exposed infants' mean general quotient were significantly lower than
the quotients of the control infants. Results of the subgroup analyses
are shown in Table 2. In the monotherapy group, the results were
consistent with the results of the whole AED groups, but surprisingly,
statistically significant differences were not observed when comparing
the polytherapy group with controls (Table 2).

The mean overall score of 26 neurological items of HINE was lower
in the AED group compared with that in the control group (mean
score: 50, range: 46–52, SD: ±2 vs. 51, 48–52, ±1.0; p b 0.001). On
the other hand, in the individual scores, there was only one statistically
significant difference between the exposed and unexposed infants
in the neurological evaluation at the age of seven months. Fewer of
the AED-exposed infants showed a prompt reaction to lateral tilting in
section “Reflexes and reactions” than control infants (45% vs. 55%,
p = 0.004). In HINE analyses, the age of the infant had a major role,
and therefore, the 7.7-month age limit for control infants as described
above was applied.

3.3. Eye-tracking

The number of valid trials did not differ significantly between
AED and control groups as the percentage of infants having the maxi-
mum (eight) trials was as follows (AED vs. controls): sham 69% vs.
71% (p = 0.13), neutral 69% vs. 71% (p = 0.85), happy 73% vs. 68%
(p = 0.17), and fear 73% vs. 66% (p = 0.54). One infant from the AED
group was excluded from the analyses because of an insufficient
number of accepted eye-tracker trials (b3 per stimulus).

There were no significant differences in eye-tracker indexes
between AED-exposed and control infants (Fig. 1). As the ages at the
time of the eye-tracker examination differed between the exposed
and control groups, we conducted one-way between-groups analysis
of covariance to measure the impact of age on the parameters of eye-
tracker examination. The independent variable was the exposure status
Table 2
Developmental quotients at the age of 7 months, infants exposed prenatally to antiepileptic dr

Developmental quotients
mean (range, SD, p)

Controls (n = 59) CBZ (n = 9) OXC (n = 10) VPA

Locomotor 114 (81–166, 22) 104 (88–115, 8,
p = 0.32)

104 (81–130, 15,
p = 0.21)

91 (8
p =

Personal/social 105 (84–123, 9) 95 (85–108, 8,
p = 0.003⁎)

97 (78–117, 13,
p = 0.06)

88 (6
p =

Hearing and speech 94 (80–110, 7) 83 (66–92, 9,
p = 0.001⁎)

85 (73–96, 8,
p = 0.002)

79 (6
p =

Eye and hand 95 (79–117, 9) 99 (78–117, 11,
p = 0.14)

88 (74–104, 8,
p = 0.03)

84 (7
p =

Performance 93 (79–117, 6) 94 (82–102, 8,
p = 0.46)

94 (81–106, 9,
p = 0.85)

96 (7
p =

General quotient 100 (85–113, 6) 95 (87–105, 5,
p = 0.02)

94 (79–105, 7,
p = 0.01)

88 (7
p =

Subquotients and general quotient of Griffiths Mental Developmental Scale in different ant
polytherapy groups are compared with controls (Mann–Whitney test).
Maternal neurocognitive functioning (VIQ=verbal intelligence quotient, PIQ=performance in
p=0.19 (PIQ), Kruskal–Wallis test) or betweenmonotherapy and controls groups (see below)
monotherapy groups (p = 0.01 (VIQ), p = 0.02 (PIQ), Mann–Whitney test). Neuropsychologi
CBZ (VIQ mean: 116, range: 94–131, SD: ±10, p = 0.49; PIQ 120, 102–129, ±9, p = 0.082).
OXC (VIQ mean: 108, range: 75–137, SD: ±17, p = 0.27; PIQ 116, 94–128, ±11, p = 0.22).
VPA (VIQ mean: 109, range: 87–122, SD: ±14, p = 0.59; PIQ 113, 100–119, ±9, p = 0.07).
LTG (VIQ mean: 113, range: 100–125, SD: ±10, p = 0.91; PIQ 122, 113–138, ±8, p = 0.72).
LEV (VIQ mean: 118, range: 109–131, SD: ±9, p = 0.42; PIQ 121, 112–132, ±8, p = 0.52).
Monotherapy (VIQ mean: 114, range: 75–137, SD: ±13, p = 0.81; PIQ 119, 94–138, ±9, p =
Polytherapy (VIQ mean: 104, range: 69–119, SD: ±13, p = 0.02; PIQ 110, 62–121, ±15, p = 0
Controls (VIQ mean: 114, range: 97–134, SD: ±10; PIQ 122, 100–138, ±11).
CBZ = carbamazepine, OXC = oxcarbazepine, LTG = lamotrigine, LEV = levetiracetam, VPA
topiramate monotherapy, and this child was included as part of monotherapy group.
Polytherapy combinations: LTG+ LEV (n= 3), CBZ+ LEV (n=3), CBZ+ TPM (n= 1), OXC+
CZP (n = 1), LTG + LEV + CZP (n = 3), LTG + TPM + CLB (n = 1).
⁎ Significant difference after Bonferroni correction.
of the infant, and the dependent variable was the index of the eye-
tracker examination.Neutral, happy, fear, and sham indexeswere calcu-
lated separately. The ages of the infants during the examinations
were used as the covariate in the analysis. After adjusting for age,
there was no significant difference between AED and control groups:
F(1113) = 1.61, p = 0.21 for index of sham; F(1114) = 0.68, p = 0.42
for index of neutral; F(1114) = 0.56, p = 0.46 for index of happy; and
F(1114) = 3.43, p = 0.07 for index of fear. There was no statistically
significant association relationship between the age of the infant
and of the eye-tracker indexes, as indicated by a partial eta squared
value of 0.01 for index of sham, of 0.01 for index of neutral, of 0.01 for
index of happy, and of 0.03 for index of fear. As an additional post hoc
analysis, wematched the two groups for age by excluding those infants
of the control group that were older than 7.7 months at the time of the
clinical examination. This analysis showed that the results reported
above did not change when the age difference between the groups
was eliminated. Results are demonstrated in Supplementary material
Table S4.

In subgroup analyses, eye-tracker indexes did not differ between
infants with monotherapy exposure and controls, polytherapy expo-
sure and controls, or monotherapy and polytherapy exposure. The
comparisons of each AED monotherapy group against another or with
controls did not reveal any significant differences between the groups
(Supplementary material Tables S4 and S5). Eye-tracker indexes were
overall higher in infants exposed to LEV implying that themean latency
of the eye gaze shifts (and, consequently, visual orienting responses)
was slower, but taking into account Bonferroni corrections, the result
was not significant. Themean ages of LEV and control groupswere com-
parable at the time of eye-tracker examination.

4. Discussion

To our knowledge, this is the first study to evaluate neurocognitive
effects of prenatal AED exposure at the age of seven months and, in
particular, to measure AED effects on an infant's visual orienting and
ugs: subgroup analyses.

(n = 5) LTG (n = 8) LEV (n = 7) Monotherapy
(n = 40)

Polytherapy
(n = 16)

6–102, 8,
0.01)

97 (86–106, 7,
p = 0.03)

102 (93–112, 6,
p = 0.27)

101 (81–130, 10,
p = 0.002⁎)

102 (73–141, 20,
p = 0.11)

6–111, 19,
0.07)

96 (83–108, 9,
p = 0.02)

98 (85–112, 12,
p = 0.25)

96 (66–120, 12,
p b 0.001⁎)

95 (74–127, 14,
p = 0.03)

5–89, 10,
0.005⁎)

90 (68–109, 15,
p = 0.35)

90 (77–102, 11,
p = 0.44)

86 (65–109, 11,
p b 0.001⁎)

91 (73–119 12,
p = 0.21)

3–93, 9,
0.04)

95 (82–104, 8,
p = 0.99)

94 (89–112, 8,
p = 0.84)

94 (73–117, 10,
p = 0.59)

95 (81–120, 12,
p = 0.54)

9–109, 13,
0.28)

96 (90–108, 5,
p = 0.33)

97 (85–115, 11,
p = 0.69)

95 (79–115, 8,
p = 0.17)

95 (81–117, 10,
p = 0.56)

7–96, 9,
0.008⁎)

95 (89–99, 5,
p = 0.03)

96 (87–105, 6,
p = 0.15)

94 (77–106, 6,
p b 0.001⁎)

97 (81–117, 10,
p = 0.19)

iepileptic drug exposure subgroups. Different monotherapy groups, monotherapy, and

telligence quotient) did not differ between differentmonotherapy groups (p=0.27 (VIQ),
but did differ between polytherapy group and control group and betweenpolytherapy and
cal evaluation was performed for 48 exposed and 20 unexposed mothers.

0.27).
.006).

= valproic acid, CZP = clonazepam, CLB = clobazam. There was only one infant with

LTG (n=1), OXC+ LEV (n= 1), OXC+GBP (n=1), OXC+ CLB (n=1), LTG+OXC+



Fig. 1. Eye-tracker indexes. Comparisons between seven-month-old infants with prenatal antiepileptic drug exposure (red) and control infants (blue) showed no statistically significant
differences (p-values varying from 0.15 to 0.40, Mann–Whitney test) in four stimulus-specific responses: neutral, happy, fear, and sham. Stimulus-specific indexes represent the
proportion of gaze fixation on the given stimulus prior to potential disengagement to the new stimulus in the periphery. The index reflects the duration of infants' fixation to faces and
nonface patterns when they are being “distracted” with a peripheral stimulus. It is normalized by converting the raw fixation times to proportions. The index is 0 if the infant shifts
attention away from the face/pattern immediately after the presentation of the lateral distractor. The index is 1 if the infant maintains gaze on the face/pattern and does not shift to
the lateral distractor by the maximum time limit of 1000 ms. Boxes equal medians of eye-tracker indexes, and whisker lines interquartile ranges.
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attention. In linewith earlier studies on older children [5,10,14,26,27,58],
we found prenatal AED exposure to compromise the development
of early language and social skills, as well as overall neurodevelopment
at the age of seven months. However, our eye-tracker-based assess-
ment suggests that the general speed of visuospatial orienting (or
“disengagement”) as well as attentional bias for faces is spared at the
age of seven months in infants with prenatal AED exposure.
4.1. Development and neurological status neurology

Our study implies that prenatal exposure to VPA, CBZ, or OXC
(a structural analogue of CBZ) monotherapy may have effects on the
development of the exposed children (Table 2), and they can be
observed already at the age of seven months. In concordance with
previous studies on older children [10,14,26,58], we found the most
prominent effects in the overall development (general quotient), as well
as in verbal (subquotient of hearing and speech) and social (subquotient
of personal–social) developments. These observations suggest that the
precursors of verbal impairments detected at the age of 4.5 to 6 years
[10,26,58]may, indeed, be observedduring thefirst year of life. Deviations
of early development at the age of eightmonths have been discovered be-
fore in infants ofwomenwith epilepsy taking phenobarbital or phenytoin
during pregnancy, but the developmental scores showed only random
variation according to AED exposure, and it remained unclear whether
the developmental changes were due to AED or epilepsy per se [21].
The results of Griffiths Mental Developmental Scale (Table 2) suggested
that LTG and LEV may differ from CBZ, OXC, and VPA in regard to early
language abilities (subquotient of hearing and speech). In a recent study
from Baker et al. [26], both VPA and CBZ were associated with reduced
verbal abilities at the age of six years as well.

The long-term clinical relevance of the difference in global scores
of HINE of the AED-exposed children remains to be shown. The HINE
was primarily developed to assess the infant neurological status rather
than to predict future developmental outcomes [50]. The global as
well as some individual HINE scores are predictive of cerebral palsy
[59,60]; however, other outcomes correlate less with HINE. The very
low incidence of CP (1 per 1000 live births) in populations like ours
[61] makes it unlikely that our present findings are predictive of
CP-related morbidities.

4.2. Visual orienting of attention

Our results showed no difference in fixation durations for nonface
patterns and faces between AED-exposed children and controls. Given
that the test task performancewas technically successful and very com-
parative with many previous studies [40,43], the lack of differences
cannot be attributed to methodological issues in test administration.
Furthermore, earlier work has shown that the eye-tracking-based
method is sensitive enough to measure clinically subtle effects such
as single nucleotide gene polymorphisms or preterm birth; both were
shown to affect eye-tracking-based measures [62–64]. Thus, we would
conclude that the present observations are valid and may tentatively
speak for relative sparing of attention to faces in AED-exposed infants.
Future studies may examine whether this result generalizes to other
eye-tracking-based tests of infant cognition, given results suggesting
that nonsocial and social attention may be based on partially indepen-
dentmechanisms in infants [30] and the current results showing specif-
ic problems in language-related tasks in AED-exposed infants.

A post hoc comparison with respect to different AED exposures
suggested that LEV-exposed infants tend to have a slower gaze shift
compared with control infants (Supplemental material Table S3). The
underlying neurobiological mechanisms of LEV-related effects are not
clear; however, LEV is known to target diverse molecular mechanisms
that are distinct from the more traditional AEDs [65,66].

4.3. Strengths and limitations

Our study process included a prospective collection of exposure
and background data for all excluded pregnancies allowing for the esti-
mation of recruitment bias that cannot be achieved in registry studies
[20]. The drop-off rate during postnatal follow-up was exceptionally
low. Neuropsychological evaluation of the mothers was included,
though for differences in recruitment process (see [20]), only 30%
of the control mothers were examined. To assess the neurocognitive
development of the infants, we used well-established structured
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methods [49–51] and the quantitative eye-tracker approach, which has
been described and tested in previous studies [31].

The range ofmedications in our study (CBZ, OXC, LEV, LTG, VPA) cor-
responds to current medication trends [23,24]. Because of a small num-
ber of children, our study did not have enough power to reliably assess
possible differences between differentmonotherapy groups or between
specific monotherapy or other subgroups and controls, though some
developmental differences were indicated. The mean age of the infants
during the examination and the educational level of the mothers were
higher in the control group, but the results remained similar when
these confounding factors were taken into account.

5. Conclusions

According to our study, verbal impairments after prenatal AED expo-
sure can be detected already in infancy. In contrast, social visuospatial
attention or face perception abilitiesmay be less vulnerable to functional
teratogenic effects of the AEDs.

Eye-tracking-based testing can be easily administered in clinical
settings and may prove to be useful techniques in the early assessment
of infants with suspected problems in visuospatial orienting and/or face
perception. Our follow-up study at the age of two years is awaited to
disclose potential effects of these infant findings on the longer-term
developmental trajectories.
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