Observation of Top Quark Production in Proton-Nucleus Collisions

Sirunyan, A. M.

2017-12-14

http://hdl.handle.net/10138/231021
https://doi.org/10.1103/PhysRevLett.119.242001

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Observation of Top Quark Production in Proton-Nucleus Collisions

A. M. Sirunyan et al.*
(CMS Collaboration)
(Received 21 September 2017; published 14 December 2017)

The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of \(\sqrt{s_{NN}} = 8.16 \) TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174 nb\(^{-1}\).

The significance of the \(t\bar{t} \) signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is \(\sigma_{t\bar{t}} = 45 \pm 8 \) nb, consistent with predictions from perturbative quantum chromodynamics.

DOI: 10.1103/PhysRevLett.119.242001

The top quark, the heaviest elementary particle in the standard model, has been the subject of numerous detailed studies based on data samples with large integrated luminosities in \(p\bar{p} \) and \(pp \) collisions \cite{1} accumulated at the Fermilab Tevatron and the CERN LHC, respectively. Until recently, top quark studies remained inaccessible in nuclear collisions because of the small integrated luminosities of the first heavy ion runs at the LHC and the low nucleon-nucleon \((NN)\) center-of-mass energies \((\sqrt{s_{NN}}) \) available at the BNL RHIC. This situation changed when the 2016 LHC proton-lead \((pPb)\) run at \(\sqrt{s_{NN}} = 8.16 \) TeV produced a data set corresponding to an integrated luminosity of 174 nb\(^{-1}\) (equivalent to 36 pb\(^{-1}\) of nucleon-nucleon collision data). Top quark cross sections at the LHC are dominated by pair production via gluon-gluon fusion processes \((gg \to t\bar{t} + X)\), and are computable with great accuracy in perturbative quantum chromodynamics (QCD) \cite{2,3}. In proton-nucleus collisions, the top quark is a novel and theoretically precise probe of the nuclear gluon density at high virtualities \(Q^2 \approx m_t^2 \) (where \(m_t \) is the top quark mass) in the unexplored high Bjorken-\(x \) region \((x \gtrsim 2m_t/\sqrt{s_{NN}} \approx 0.05) \) \cite{4,5}. In this region, “antishadowing” and “EMC” effects \cite{6} are expected to modify the gluon density with respect to that in the free-proton case \cite{7,8}. The production of top quarks thus provides information on the nuclear parton distribution functions (nPDF) that is complementary to that obtained through studies of electroweak boson production. In comparison to the \(W \) and \(Z \) cases \cite{9,10}, top-pair cross sections are more sensitive to gluon (rather than quark) densities at Bjorken-\(x \) values about twice as large. Novel studies of parton energy loss using top quarks in the quark-gluon plasma formed in nucleus-nucleus collisions have also been proposed \cite{4,11}. A good understanding of top quark production in proton-nucleus collisions is crucial as a baseline for these studies.

Once produced, the top quark decays promptly without hadronizing (lifetime \(\tau_t \approx 0.15 \) fm) into a \(W \) boson plus a bottom quark, and top quark pair events are commonly categorized according to the subsequent decay of the two \(W \) bosons. When one \(W \) boson decays leptonically \((\ell \nu, \text{with } \ell = e, \mu)\) and the other hadronically \((q\bar{q}')\), the \(\ell^+ + \text{jets} \) final state presents a typical signature of one isolated charged lepton and momentum imbalance from the unobserved neutrino in one \(W \) decay, two light quark jets from the other \(W \) decay, and two \(b \) jets from the two original top quark decays. Such a final state features a large branching fraction \((\approx 30\% \text{ for the } e + \text{jets and } \mu + \text{jets channels combined, and } \approx 34\% \text{ adding also events from the } t \to W \to \ell \to e, \mu \text{ decay chain})\) and moderate background contamination, and thereby provides favorable conditions for the detection of \(t\bar{t} \) production in proton-nucleus collisions.

This Letter describes the first observation of top quark production in nuclear collisions. The analysis is carried out with \(pPb \) collisions collected by the CMS experiment at the LHC at \(\sqrt{s_{NN}} = 8.16 \) TeV, using \(t\bar{t} \) candidates with the event topology described above. The \(t\bar{t} \) cross section is extracted from a combined maximum-likelihood fit of the invariant mass of the two light-quark jets from the \(W \)-boson decay, in different categories of events with zero, one, or at least two \(b \)-tagged jets.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization chambers.
Particle candidates are reconstructed off-line with the CMS particle-flow (PF) algorithm [19], which identifies and provides a list of particles using an optimized combination of information from the various elements of the CMS detector. Events are required to contain exactly one muon [20] or electron [21] candidate, with $p_T > 30$ GeV and $|\eta| < 2.1$, excluding in the electron case the transition region $1.444 < |\eta| < 1.566$ between the ECAL barrel and end cap, where the reconstruction of electron objects is less efficient. The muon and electron candidates are required to be isolated from nearby hadronic activity within a cone of $\Delta R = 0.3$ around the direction of the track at the primary event vertex.

The cone is defined as $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$, and $\Delta\eta$ and $\Delta\phi$ are the separations in pseudorapidity and azimuthal angle. The scalar p_T sum of all PF candidates consistent with arising from the primary event vertex and contained within the cone of radius ΔR, excluding the contribution from the lepton candidate, is used to define a relative isolation variable, I_{iso}, through the ratio of this sum to the p_T of the lepton candidate. A charged lepton is selected if its relative isolation discriminant value satisfies $I_{iso} < 0.15$ (muon), 0.07 (electron in the barrel), or 0.08 (electron in one of the end caps). These thresholds have been optimized to reduce the contamination from nonprompt leptons. To remove the Drell-Yan background, events are rejected from the analysis if they contain extra electrons (muons) that are reconstructed using a looser set of identification criteria and have $p_T > 20(15)$ GeV within $|\eta| < 2.5(4)$. The efficiency of the lepton selection is measured using a “tag-and-probe” method [22] in events enriched with Z-boson candidates and selected by the same trigger requirements as the signal candidate events. The combined reconstruction, lepton identification, and trigger efficiency is determined as a function of lepton p_T and η.

Events are required to have at least four reconstructed jets with $p_T > 25$ GeV and $|\eta| < 2.5$, that are separated by at least $\Delta R = 0.3$ from the selected muon or electron. Jets are reconstructed from the PF candidates using the anti-k_T clustering algorithm [23] with a distance parameter of 0.4. Jet energy corrections extracted from the full detector simulation are applied as functions of jet p_T and η [24,25] to both data and simulated samples. A residual correction to the data is applied to account for a small data-MC discrepancy in the jet energy response. Jets from b quarks are tagged based on the presence of a secondary vertex from B-hadron decays, identified using a multivariate algorithm combining tracking information [26]. The distinct $\ell\ell$ signature of two b jets in the event, which rarely occurs in background processes such as $W +$ jets and QCD multijet (collectively labeled as “nontop” background), is used to extract the signal. The number of jets passing a threshold on the b-jet identification discriminant, corresponding to a b-tagging efficiency of approximately 70% with a misidentification rate of less than 0.1% for light-flavor jets, as estimated in simulated pPb events, is used to
classify the selected events into no (0 b), exactly one (1 b), or at least two (2 b) tagged-jet categories. All three event categories are exploited in a maximum-likelihood fit in order to extract the signal cross section, and simultaneously constrain the background contamination and determine the efficiency of the b-jet identification.

In the ℓ+jets final state, two light-flavor jets (jj′) are produced in the decay of one of the W bosons, and the resonant nature of their invariant mass provides a distinctive feature of the ℓt signal with respect to the main backgrounds. Given that these light-flavor jets are correlated at production, they are also closer in phase space relative to other dijet combinations in the event. In cases where more than two non-b-tagged jets are found, the jj′ pair with smallest separation in the η-φ plane is used to form a W-boson candidate. The invariant mass of those two jets, m_{jj′}, is used as input for the maximum-likelihood fit.

The parametrization of the signal in the fit model is derived from the MC simulation, while that of the backgrounds is obtained from control regions in the data. In the MC simulation, pairs of jets that are geometrically well separated in the η-φ plane is used to form a W-boson candidate. The invariant mass of those two jets, m_{jj′}, is used as input for the maximum-likelihood fit.

The total number of events in each b-jet category is obtained by fitting the sum of the contributions for signal and backgrounds. The free parameters of the fit are the normalization of the signal, QCD multijet, and W+jets yields (as well as the parameters of their functional forms described above), the b-finding efficiency, i.e., the probability that a jet originating from the b quark from a top quark decay passes both the kinematic and the b-tagging selections, and an overall jet energy scale factor. Figure 1 shows the m_{jj′} distribution for events with zero, one, or at least two b-tagged jets, compared with the fit results.

To further examine the hypothesis that the selected data are consistent with the production of top quarks, we define a proxy of the top quark mass, m_{top}, as the invariant mass of a t → jj′b candidate formed by pairing the W candidate with a b-tagged jet. This pairing is chosen to minimize the absolute difference between the invariant masses of the t → jj′b and the t → ℓνb candidates. In the 0 b and 1 b categories, the jet(s) with the highest value(s) of the b-quark identification discriminator are considered for this purpose. Figure 2 shows the distribution of m_{top} reconstructed for events in the 0, 1, and 2 b-tagged jet categories, with all signal and background parameters kept fixed to those from the outcome of the m_{jj′} fit.

The total number of ℓt signal events obtained through the fit of the μ+jets and e+jets channels combined is 710. Sources of experimental uncertainty in the measurement include the uncertainty in the b-tagging efficiency, which is
measured \textit{in situ} and bears the largest effect of ±13% on the \(\bar{t}t \) cross section; and the jet energy scale [24], which takes into account a 3%-level difference between the reconstructed and generated jet energy in MC events and a 3% residual calibration uncertainty from data, that together propagate as an additional ±4% uncertainty in the final cross section. Background shape and normalization uncertainties are also determined in the fit procedure and have a ±7% effect on the extracted cross section. Uncertainties in the lepton trigger and reconstruction efficiencies, estimated with the tag-and-probe method, result in a ±4% effect on the measured cross section. The integrated luminosity calibration for \(p\text{Pb} \) data taking conditions results in a ±5% uncertainty. The jet energy resolution [24], as estimated in proton-proton collision data, and the 0.1% uncertainty of the LHC beam energy [30], have a numerically insignificant effect on this measurement.

The compatibility of the data with a background-only hypothesis has been evaluated using a profile-likelihood ratio as a test statistic [31], including all systematic uncertainties as nuisance parameters with Gaussian priors. Several tests have been performed, varying the estimation method and the background modeling assumptions. Even with the most conservative assumptions, the background-only hypothesis is excluded with a significance above 5 standard deviations. The \(\bar{t}t \) production cross section is then obtained via

\[
\sigma_{\bar{t}t} = \frac{S}{A \epsilon L},
\]

where \(S \) is the number of fitted signal events; \(A = 0.060 \pm 0.002 \) and \(0.056 \pm 0.002 \) are the total acceptances in the \(\mu + \text{jets} \) and \(e + \text{jets} \) channels relative to all generated \(\bar{t}t \) events, including the branching fraction to leptons, as determined from simulation; \(\epsilon = 0.91 \pm 0.04 \) and \(0.63 \pm 0.03 \) are the \(\mu + \text{jets} \) and \(e + \text{jets} \) event selection efficiencies as estimated from data; and \(L \) is the total integrated luminosity. The 4% uncertainty in the acceptance correction \(A \), including its dependence on the proton and Pb PDFs, and on the values of theoretical scales and the QCD coupling (\(\alpha_s = 0.118 \pm 0.001 \) at the Z-boson pole mass), has been determined from a NLO \(p\text{Pb} \to \bar{t}t + X \) sample generated with \textsc{powheg} (v.2) [32–34]. The total uncertainty on \(S \) is obtained from the covariance matrix of the fit. It is further split into a statistical part, by leaving \(\sigma_{\bar{t}t} \) to float in the fit and fixing all other parameters to their post-fit values, and a systematic part, by subtracting the square of the statistical uncertainty from the square of the total uncertainty. From Eq. (1), we measure

\[
\sigma_{\bar{t}t}^{\mu + \text{jets}} = 44 \pm 3(\text{stat}) \pm 8(\text{syst}) \text{ nb},
\]

\[
\sigma_{\bar{t}t}^{e + \text{jets}} = 56 \pm 4(\text{stat}) \pm 13(\text{syst}) \text{ nb},
\]

in the individual \(\mu + \text{jets} (S = 420) \) and \(e + \text{jets} (S = 348) \) channels, with relative total uncertainties of 18% and 23%, respectively. The combined fit to both channels yields

\[
\sigma_{\bar{t}t} = 45 \pm 8(\text{total}) \text{ nb}. \tag{3}
\]

The measured cross section is found to be consistent with the theoretical prediction [5] \(\sigma(p\text{Pb} \to \bar{t}t + X) = 59.0 \pm 5.3(\text{PDF})_{+1.6}^{-1.1}(\text{scale}) \text{ nb} \), computed with \textsc{mcfm} (v.8) [35] using the CT14 proton PDF [36] and the EPPS16 nPDF for the lead ions [8], scaled to NNLO + NNLL accuracy with a \(K \) factor computed with \textsc{top++} (v.2.0) [2], and multiplied by \(A = 208 \). The PDF uncertainties are obtained from the corresponding 56 + 40 eigenvalues of the CT14 + EPPS16 sets (corresponding to a 90% confidence level) added in quadrature, while the theoretical scale uncertainty is estimated by modifying the factorization and renormalization scales within a factor of 2 with respect to their default value set at \(\mu_F = \mu_R = m_t \). The same calculation with the CT10 proton PDF [37] and EPS09 [7] nPDF yields \(\sigma(p\text{Pb} \to \bar{t}t + X) = 57.5 \pm 4.3(\text{PDF})_{+1.5}^{-1.0}(\text{scale}) \text{ nb} \). The difference in the theoretical \(\bar{t}t \) cross section computed with the PDF for free protons and for bound nucleons is small. A net overall antishadowing effect increases the total top-quark pair cross section by only 4% for both the EPPS16 and EPS09 sets in \(p\text{Pb} \) relative to \(pp \) collisions [5]. Such a
by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPEB, and FAPESP (Brazil); MES (Bulgaria); CERN, CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland; MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

State Fund for Fundamental Researches

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussels, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
University of Tennessee, Knoxville, Tennessee, New Jersey, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin - Madison, Madison, Wisconsin, USA

*Deceased.
Also at Vienna University of Technology, Vienna, Austria.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Universidade Federal de Pelotas, Pelotas, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Suez University, Suez, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Helwan University, Cairo, Egypt.
Also at King Abdulaziz University, Jeddah, Saudi Arabia, Jeddah, Saudi Arabia.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at Ilia State University, Tbilisi, Georgia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Yazd University, Yazd, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at University of Florida, Gainesville, USA.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.