The preview study: Metabolic outcomes in overweight, prediabetic individuals after an 8-week low calorie diet

Muirhead, R.

2017


http://hdl.handle.net/10138/231772
https://doi.org/10.1016/j.jnim.2017.04.033

Downloaded from Heldas, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Funding source(s): VicHealth

Concurrent session 3: Nutrition and chronic disease

THE PREVIEW STUDY: METABOLIC OUTCOMES IN OVERWEIGHT, PREDIABETIC INDIVIDUALS AFTER AN 8-WEEK LOW CALORIE DIET

R. Muirhead 1, P. Christensen 2, M. Fogelholm 3, M. Westerterp-Plantenga 4, L. Macdonald 5, J.A. Martinez 2, S. Handijev 6, S. Poppitt 8, W. Schlicht 1, A. Astrup 7, K. Pietiläinen 1, M. Drummen 4, M. Taylor 5, S. Navas-Carretero 6, T. Handjiev-Dalrensa 7, S. Brodie 1, M. Silvestre 8, J. Thurn 9, T.M. Larsen 10, A. Raben 10, J.C. Brand-Miller 1. 1 University of Sydney, Australia; 2 University of Copenhagen, Denmark; 3 University of Helsinki, Finland; 4 Maastricht University, Netherlands; 5 University of Nottingham, United Kingdom; 6 University of Navarra, Spain; 7 Medical University Sofia, Bulgaria; 8 University of Auckland, New Zealand; 9 University of Stuttgart, Germany.

E-mail address: roslyn.muirhead@sydney.edu.au (R. Muirhead).

Background/Aims: The PREVIEW intervention study (www.previewsudy.com) is the largest study aiming to prevent T2D among pre-diabetic individuals with a combination of diet, exercise and behaviour modification. Prior to weight maintenance, participants follow a low-calorie diet (LCD). Methods: Participants received LCD (810 kcal daily) for 8 weeks (Cambridge Weight Plan) 8). Those who achieved ≥8% WL were analysed. Two-sided t-tests and linear regression. Results: The weight loss phase was successfully completed by 1,842 (79%) participants. At baseline, mean ± SD age was 51.6 ± 11.6 years, BMI 35.3 ± 6.5 kg/m², fasting plasma glucose (FPG) 6.2 ± 0.7 mmol/L, and fasting serum insulin (FSI) 13.4 ± 3.8 mU/L. Average WL was 10.6 ± 0.7 kg/m², fasting plasma glucose (FPG) 6.2 ± 0.7 mmol/L, and fasting serum insulin (FSI) 13.4 ± 3.8 mU/L. FPG decreased by 0.57 ± 0.7 mmol/L in men and by 0.37 ± 0.6 mmol/L in women (p < 0.001). FSI decreased by 5.8 ± 0.7 mmol/L in men and by 3.8 ± 5.4 mmol/L in women (p < 0.001). The linear model showed an association of the % weight loss as well as gender on FPG and FSI changes. Conclusions: LCD intervention resulted in marked decreases in body weight, FPG and FSI among prediabetic subjects. Future studies: European Union 7th Framework Programme; NHMRC-EU Collaborative Grant; The NZ Health Research Council

THE EFFECT OF MEAL TIMING ON POSTPRANDIAL GLUCOSE AND INSULIN RESPONSE: A CROSSOVER TRIAL IN HEALTHY VOLUNTEERS

G. Leung, C.E. Huggins, M.P. Bonham, Department of Nutrition and Dietetics, Monash University, Melbourne, VIC, Australia

E-mail address: maxine.bonham@monash.edu (G. Leung).

Background/Aims: Shift workers have a higher risk of T2DM and CVD compared to non-shift workers. Dietary factors, particularly at night, may be important factors in helping to reduce disease risk. This study examined dietary factors, particularly at night, may be important factors in helping to reduce disease risk. Methods: Participants received LCD (810 kcal daily) for 8 weeks (Cambridge Weight Plan) 8). Those who achieved ≥8% WL were analysed. Two-sided t-tests and linear regression. Results: The weight loss phase was successfully completed by 1,842 (79%) participants. At baseline, mean ± SD age was 51.6 ± 11.6 years, BMI 35.3 ± 6.5 kg/m², fasting plasma glucose (FPG) 6.2 ± 0.7 mmol/L, and fasting serum insulin (FSI) 13.4 ± 3.8 mU/L. Average WL was 10.6 ± 0.7 kg/m², fasting plasma glucose (FPG) 6.2 ± 0.7 mmol/L, and fasting serum insulin (FSI) 13.4 ± 3.8 mU/L. FPG decreased by 0.57 ± 0.7 mmol/L in men and by 0.37 ± 0.6 mmol/L in women (p < 0.001). FSI decreased by 5.8 ± 0.7 mmol/L in men and by 3.8 ± 5.4 mmol/L in women (p < 0.001). The linear model showed an association of the % weight loss as well as gender on FPG and FSI changes. Conclusions: LCD intervention resulted in marked decreases in body weight, FPG and FSI among prediabetic subjects. Funding sources: European Union 7th Framework Programme; NHMRC-EU Collaborative Grant; The NZ Health Research Council

Funding source(s): VicHealth

Concurrent session 3: Nutrition and chronic disease

RESISTANT STARCH AMELIORATES HEAT TREATED DIET-INDUCED GUT PERMEABILITY AND REINAL DYSFUNCTION IN EXPERIMENTAL DIABETES

M. Snelson 1, S.M. Tan 1,2, K.C. Sourris 1,2, G.C. Higgins 1, Y. Ding 1, R. Lindblom 1, T.V. Nguyen 1, V. Thallas-Bonke 1,2, M.E. Cooper 1,2, M.T. Coughlan 1,2. 1 Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC, Australia; 2 Department of Medicine, Central Clinical School, Monash University, VIC, Australia. E-mail address: msnelson@baker.edu.au (M. Snelson).

Background/Aims: Heat treating foods leads to the formation of advanced glycation end-products (AGEs) which contribute to chronic renal injury. Recent research implicates gut dysbiosis in the progression of diabetic nephropathy. This study investigates whether excess consumption of dietary AGEs causes gut dysbiosis, exacerbating renal injury in a type 2 diabetes mouse model. Methods: Six week old diabetic (db/db) and non-diabetic (db/h) mice were randomised (n = 12/group) to receive a low AGE (LAGE, unbaked rodent chow) or a high AGE diet (HAGE, baked at 160°C for 1 hour), with or without resistant starch (RS) for 10 weeks. 24-hour urine was collected and albuminuria was measured. Intestinal permeability was assessed in vivo by the clearance of FITC-labelled dextran (500 mg/kg body weight). Statistical differences were assessed by one-way ANOVA. Results: The high AGE diet exacerbated albuminuria in db/db mice (mean ± SD, db/db HAGE: 874.4 ± 154.8 vs. db/db LAGE: 536.2 ± 96.5 μg/g and p < 0.05), and RS attenuated this AGE-induced increase (db/db HAGE: 874.4 ± 154.8 vs. db/db HAGE+RS: 515.5 ± 71.9 μg/g and p < 0.05). db/db mice had greater gut permeability compared to db/h mice (db/db LAGE: 2.38 ± 0.32 vs. db/h LAGE: 1.05 ± 0.11 μg/mL; p < 0.01). db/db HAGE-fed mice trended towards increased gut permeability (db/db HAGE: 3.43 ± 0.43 vs. db/db HAGE: 2.38 ± 0.32 μg/mL; p = 0.06), an effect not observed in RS-fed db/db mice. Conclusions: Heat-treated diets led to increased intestinal permeability and worsening albuminuria in db/db mice. RS was protective against high AGE-induced albuminuria in db/db mice. These preliminary studies support the notion that dietary AGEs contribute to renal disease via alterations in gut homeostasis. Funding source(s): N/A

EFFECT OF DIETARY PREBIOTIC SUPPLEMENTATION ON METABOLIC BIOMARKERS IN ADULTS WITH PREDIABETES – A CROSSOVER RCT

N.J. Kellow 1,2, K.C. Sourris 1, C.M. Reid 1, M.T. Coughlan 1. 1 Glycation, Nutrition & Metabolism Laboratory, Baker IDI, Melbourne, Australia; 2 Department of Epidemiology, School of Public Health, USA; 3 Department of Nutrition & Dietetics, Monash University, VIC, Australia. E-mail address: melinda.coughlan@bakerid.edu.au (N.J. Kellow).

Background/Aims: Modulation of the human colonic microbiota by the dietary consumption of prebiotics has been shown to confer a number of metabolic health benefits to the host, and may reduce risk factors for type 2 diabetes in susceptible individuals. A double-blind randomised placebo-controlled trial was designed to determine the effect of 12 week consumption of a prebiotic dietary supplement on serum lipids, insulin sensitivity and chronic low-grade inflammation in adults with pre-diabetes. Methods: Twenty-seven adults with pre-diabetes (Impaired Glucose Tolerance or Impaired Fasting Glucose) aged between 40-60 years were randomly assigned to receive either 10 grams of prebiotic supplement (inulin-enriched oligofructose) or 10 grams placebo (maltodextrin) daily for 12 weeks. After a 2-week washout period, study subjects crossed over to receive the alternative dietary treatment for 12 weeks. Results: Intention-to-treat analyses using paired samples t-tests indicated a statistically significant difference in serum HDL cholesterol (+0.07 mmol/L; p < 0.05) and waist circumference (~1.1 cm; p < 0.05) following prebiotic supplementation. There were no significant differences between prebiotic