Nonlinear ICA of Temporally Dependent Stationary Sources

Hyvärinen, Aapo

Microtome Publishing

2017

http://hdl.handle.net/10138/232200

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Nonlinear ICA of Temporally Dependent Stationary Sources

Aapo Hyvärinen1,2
1 Gatsby Computational Neuroscience Unit
University College London, UK
2 Department of Computer Science and HIIT
University of Helsinki, Finland

Hiroshi Morioka2

Abstract

We develop a nonlinear generalization of independent component analysis (ICA) or blind source separation, based on temporal dependencies (e.g. autocorrelations). We introduce a nonlinear generative model where the independent sources are assumed to be temporally dependent, non-Gaussian, and stationary, and we observe arbitrarily nonlinear mixtures of them. We develop a method for estimating the model (i.e. separating the sources) based on logistic regression in a neural network which learns to discriminate between a short temporal window of the data vs. a temporal window of temporally permuted data. We prove that the method estimates the sources for general smooth mixing nonlinearities, assuming the sources have sufficiently strong temporal dependencies, and these dependencies are in a certain way different from dependencies found in Gaussian processes. For Gaussian (and similar) sources, the method estimates the nonlinear part of the mixing. We thus provide the first rigorous and general proof of identifiability of nonlinear ICA for temporally dependent stationary sources, together with a practical method for its estimation.

1 INTRODUCTION

Nonlinear independent component analysis (ICA) is one of the biggest unsolved problems in unsupervised learning. The basic idea is to generalize the highly successful linear ICA framework to arbitrary, but usually smooth and invertible, nonlinear mixing functions.

Thus, the observed data is assumed to be a nonlinear invertible transformation (“mixing”) of statistically independent latent quantities, and the goal is to find the mixing function, or its inverse, solely based on the assumption of the statistical independence of the latent quantities (“independent components”, or “sources”). In other words, we want to separate the original sources from the mixed data. Importantly, no prior knowledge on the mixing function should be necessary for the learning.

Nonlinear ICA offers a rigorous framework for unsupervised deep learning, if the nonlinear demixing function (i.e. the inverse of the nonlinear mixing) is modelled by a deep neural network. However, the demixing function could also be modelled by any of the other well-known methods for general nonlinear function approximation, such as kernel methods or Gaussian processes.

The fundamental problem here is that in the basic case the problem is ill-posed: If the latent quantities are random variables, with no temporal structure (i.e. independently and identically distributed, i.i.d., over the set of observations), the original independent components cannot be inferred (Hyvärinen and Pajunen, 1999). In fact, there is an infinite number of possible nonlinear decompositions of a random vector into independent components, and those decompositions are not similar to each other in any trivial way. Assuming the mixing function to be smooth may help (Zhang and Chan, 2008), and in fact estimation of such nonlinear ICA has been attempted by a number of authors (Deco and Brauer, 1995; Tan et al., 2001; Almeida, 2003; Dinh et al., 2015), but it is not clear to what extent such methods are able to separate the sources.

A promising approach to nonlinear ICA is to use the temporal structure of the independent components — this is called by some authors nonlinear blind source separation to emphasize the difference from the temporally i.i.d. case. Using the (linear) autocorrelations of stationary sources enables separation of the sources in the linear mixing case (Tong et al., 1991; Belouchrani et al., 1997). A major advance in the field was to
show how this framework can be extended to the non-linear case (Harmeling et al., 2003). Related proposals have also been made under the heading “slow feature analysis” (Wiskott and Sejnowski, 2002), originating in Földiák (1991), which was extended and thoroughly analysed by Sprekeler et al. (2014). Recent deep learning research (Mobahi et al., 2009; Springenberg and Riedmiller, 2012; Goroshin et al., 2015) as well as blind source separation research (Valpola and Karhunen, 2002; Hosseini and Deville, 2014) use similar ideas.

However, there are two fundamental problems with most research in this direction. First, the objective functions tend to be heuristic, and there is hardly any theoretical justification or proof that they will actually separate the sources. Even the general identifiability of the mixing models considered is not clear: There is no proof in the literature that the sources can be separated under the conditions considered — but see (Sprekeler et al., 2014) for some results in these directions, which are discussed in detail below.

The second problem is that even in the linear case, methods by, or based on Tong et al. (1991) and Belouchrani et al. (1997) can only separate sources which have distinct autocorrelation spectra: If the methods are applied on sources which have identical autocorrelations, they will fail. However, having sources with identical autocorrelations is a very realistic scenario. For example, linear features in video data that only differ by location and/or orientation are likely to have identical autocorrelations; likewise, two electroencephalography (EEG) sources with alpha oscillations may have practically identical autocorrelations. It is clear that the identifiability conditions in the non-linear case cannot be less strict than in the linear case, and thus sources with identical autocorrelations cannot be separated.

Very recently, a rigorous nonlinear ICA theory was proposed for a different kind of temporal structure, consisting of the nonstationarity of variances or other parameters in an exponential family (Hyvärinen and Morioka, 2017). However, in this paper, we consider stationary sources, which is the “default” class in time series analysis, and widely encountered in real data.

Here, we propose a rigorous framework for nonlinear separation of independent, stationary sources based on temporal dependencies, as well as a practical algorithm. We formulate a nonlinear mixing model with explicit conditions on what kind of temporal dependencies are required in the independent source signals — importantly, without any conditions on the mixing function except for smoothness and invertibility. Essentially, we require that the sources have sufficiently strong temporal dependencies, and in particular these dependencies are different from the dependencies exhibited in Gaussian processes, in a precise sense related to the cross-derivatives of the joint log-pdf in a short time window.

We further propose an algorithm which can be motivated by a simple and intuitive heuristic learning principle: We learn to discriminate between the actual observed data and a corrupted version where the time structure is destroyed by permuting (shuffling) the time points. The discrimination is performed by logistic regression with a multi-layer perceptron. Surprisingly, we show that such learning finds the original sources in a hidden layer, up to trivial or otherwise simple indeterminacies. This also constitutes a constructive identifiability proof of our mixing model.

2 MODEL DEFINITION

In this section, we give a rigorous definition of our generative model, including some illustrative examples of sources.

2.1 General Nonlinear Mixing Model

We assume the \(n \) observed signals (i.e. time series or stochastic processes) \(x_1(t), \ldots, x_n(t) \) are generated as a nonlinear transformation \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) of \(n \) latent signals \(s_1(t), \ldots, s_n(t) \):

\[
[x_1(t), \ldots, x_n(t)] = f([s_1(t), \ldots, s_n(t)])
\]

(1)

Denoting by \(\mathbf{x}(t) \) the vector \([x_1(t), \ldots, x_n(t)]\), and likewise for \(\mathbf{s} \), this can be expressed simply as

\[
\mathbf{x}(t) = f(\mathbf{s}(t)).
\]

(2)

We assume the function \(f \) is invertible (bijective) and sufficiently smooth but we do not constrain it in any particular way.

2.2 Source Model with Non-Gaussian Temporal Dependencies

In line with mainstream ICA theory, we assume here that the \(s_i \) are mutually independent stochastic processes (over different \(i \)). We further assume the sources are stationary, in contrast to time-contrastive learning (Hyvärinen and Morioka, 2017).

Importantly, we assume that the \(s_i(t) \) are temporally dependent, for example autocorrelated (Tong et al., 1991; Molgedey and Schuster, 1994; Belouchrani et al., 1997; Harmeling et al., 2003; Sprekeler et al., 2014). Next, we formalize rigorously what kind of temporal dependencies are required, defining a class of stochastic processes for which our theory holds.
Definition 1 A two-dimensional random vector \((x, y)\) is called uniformly dependent if the cross-derivative of its log-pdf exists, is continuous, and does not vanish anywhere:

\[
q_{x,y}(x, y) := \frac{\partial^2 \log p_{x,y}(x, y)}{\partial x \partial y} \neq 0 \text{ for all } (x, y). \tag{3}
\]

A stationary stochastic process \(s(t)\) is called (second-order) uniformly dependent if the distribution of \((s(t), s(t-1))\) is uniformly dependent.

This definition is stronger than simply assuming that \(s(t)\) and \(s(t-1)\) are not independent, since dependence in general only implies that \(q\) is non-zero in some set of non-zero measure, while we assume here that it is non-zero everywhere. Below, we shall always assume the sources \(s_i\) are uniformly dependent, which sets our framework apart from ordinary ICA in which the sources are sampled i.i.d.

Conventionally, the analysis of source separation is divided to the Gaussian and the non-Gaussian case. Here, however, the analysis is naturally divided to a class of distributions whose dependencies are similar enough to Gaussian, and the rest. We define:

Definition 2 A two-dimensional random vector \((x, y)\) is called quasi-Gaussian if \(q_{x,y}\) in Eq. (3) exists, is continuous, and it can be factorized as

\[
q_{x,y}(x, y) = c \alpha(x) \alpha(y) \tag{4}
\]

for some real (possibly zero or negative) constant\(^1\) \(c\), and some real-valued function \(\alpha\). A stationary stochastic process \(s(t)\) is called (second-order) quasi-Gaussian if the distribution of \((s(t), s(t-1))\) is quasi-Gaussian.

Quasi-Gaussianity is a very interesting further restriction on the temporal dependencies. Below, the strongest results on separability will be obtained for sources which are not quasi-Gaussian; the quasi-Gaussian case has to be considered separately.

Factorizability according to Eq. (4) is equivalent to the joint log-pdf being of the form

\[
\log p(x, y) = \beta_1(x) + \beta_2(y) + c\bar{\alpha}(x)\bar{\alpha}(y) \tag{5}
\]

where \(\bar{\alpha}\) is the integral function of \(\alpha\), and the \(\beta_i\) are some smooth functions. If \((x, y)\) is jointly Gaussian, the log-pdf does have such a form, with \(\bar{\alpha}(x)\) being linear and \(\beta_1(x)\) quadratic. Furthermore, then \((g(x), g(y))\) has such a factorization for any invertible function \(g\); we have the following result:

\[^1\text{Note that there is some indeterminacy in Eq. (4), since } c \text{ could be partly absorbed in the functions } \alpha. \text{ However, it cannot be completely removed from the definition, since a negative } c \text{ cannot be absorbed into }\alpha, \text{ and the negative sign has to be taken care of. We shall thus assume } c = \pm 1.\]

Lemma 1 If a stochastic process \(s(t)\) is quasi-Gaussian, then its instantaneous nonlinear transformation \(\tilde{s}(t) = g(s(t))\) is also quasi-Gaussian for any invertible bijective mapping \(g : \mathbb{R} \to \mathbb{R}\).

Proof: For \((\tilde{x}, \tilde{y}) = (g(x), g(y))\), we have

\[
\log p(\tilde{x}, \tilde{y}) = \beta_1(g^{-1}(\tilde{x})) + \log \left| g^{-1}(\tilde{x}) \right| + \beta_2(g^{-1}(\tilde{y})) + \log \left| g^{-1}(\tilde{y}) \right| + c\bar{\alpha}(g^{-1}(\tilde{x}))\bar{\alpha}(g^{-1}(\tilde{y})) \tag{6}
\]

which is of the same form as Eq. (5), when we regroup the terms and redefine the nonlinearities.

However, there are random vectors (and processes) which are quasi-Gaussian but which cannot be obtained as point-wise transformations of Gaussian random vectors. For example, the above logic assumes \(g\) is invertible, which restricts the set of nonlinearities considered. An even more important point is that such factorizability holds for distributions of the type

\[
\log p(x, y) = \beta_1(x) + \beta_2(y) - \rho xy \tag{7}
\]

for any non-quadratic functions \(\beta_1, \beta_2, \text{ and a constant } \rho\). For such distributions, loosely speaking, the dependency structure is similar to the Gaussian one, but the marginal distributions can be arbitrarily non-Gaussian.

In fact, it is important to note that assuming non-quasi-Gaussianity only constrains the (temporal) dependencies, while the marginal distribution of \(s_i\) (over time) is not restricted in any way; it could be Gaussian. However, taken as a stochastic process, \(s_i(t)\) must be non-Gaussian due to “non-Gaussian dependencies”\(^2\).

Examples of Non-Gaussian Sources Next we consider some fundamental models of non-Gaussian processes and their relation to the definitions above. A classic example of a non-Gaussian process is given by a linear autoregressive (AR) model with non-Gaussian innovations:

\[
\log p(s(t)|s(t-1)) = G(s(t) - \rho s(t-1)) \tag{8}
\]

for some non-quadratic function \(G\) corresponding to the log-pdf of innovations, and a regression coefficient \(|\rho| < 1\). Another typical model would be a nonlinear AR model with Gaussian innovations:

\[
\log p(s(t)|s(t-1)) = -\lambda[s(t)-r(s(t-1))]^2 + \text{const} \tag{9}
\]

with some nonlinear, strictly monotonic regression function \(r\), and a positive precision parameter \(\lambda\). We

\[^2\text{For clarity, we recall the standard definition of a Gaussian stochastic process which says that the joint probability of any time window, such as } (s(t), s(t-1)), \text{ must be jointly Gaussian, which is much stronger than mere marginal Gaussianity of } s(t).\]
could obviously have a nonlinear AR model with non-Gaussian innovations as well.

Importantly, the examples of non-Gaussian stochastic processes in Eqs (8) and (9) can be proven to be both uniformly dependent and non-quasi-Gaussian under reasonable assumptions. In the case of the non-Gaussian AR model, we assume $G'' < 0$, which is slightly stronger than concavity, and a non-zero value of ρ. For the nonlinear AR model, we assume a strictly monotonic regression function r, and $\lambda > 0$. (These conditions are sufficient but most likely not necessary.) The proofs are in Supplementary Material.

3 SEPARATING SOURCES BY LOGISTIC REGRESSION

In this section, we propose a practical, intuitive learning algorithm for estimating the nonlinear ICA model defined above, based on logistic regression with suitably defined input data and labels. Although initially only heuristically motivated, we show that in fact the algorithm separates sources which are not quasi-Gaussian. For quasi-Gaussian sources, we show that it estimates the model up to a linear mixing.

3.1 Discriminating Real vs. Permuted Data

Collect data points in two subsequent time points to construct a sample of a new random vector y:

$$y(t) = \begin{pmatrix} x(t) \\ x(t-1) \end{pmatrix}$$

which gives a “minimal description” of the temporal dependencies in the data. Here, t is used as the sample index for $y(t)$. For comparison, create a permuted data sample by randomly permuting (shuffling) the time indices:

$$y^*(t) = \begin{pmatrix} x(t) \\ x(t^*) \end{pmatrix}$$

where t^* is a randomly selected time point. In other words, we create data with the same marginal distribution (on the level of the vectors x instead of single variables), but which does not reflect the temporal structure of the data at all.

Now, we propose to learn to discriminate between the sample of $y(t)$ and the sample of $y^*(t)$. We use logistic regression with a regression function of the form

$$r(y) = \sum_{i=1}^{n} B_i(h_i(y^1), h_i(y^2))$$

where y^1 and y^2 denote the first and second halves of the vector y, i.e. $y = (y^1, y^2)$. (That is, y^1 corresponds to $x(t)$ and y^2 corresponds to either $x(t-1)$ or $x(t^*)$ depending on the data set.) Here, the h_i are scalar-valued functions giving a representation of the data, possibly as hidden units in a neural network. The $B_i : \mathbb{R}^2 \rightarrow \mathbb{R}$ are additional nonlinear functions to be learned.

Intuitively speaking, it is plausible that h_i somehow recover the temporal structure of the data since recovering such structure is necessary to discriminate real data from permuted data. In particular, since the most parsimonious description of the temporal structure can be found by separating the sources and then modelling the temporal structure of each source separately, it is plausible that the discrimination works best when the h_i separate the sources, and the B_i somehow approximate the distribution of $(s_i(t), s_i(t-1))$. We call the new learning method “permutation-contrastive learning (PCL)”.

3.2 Convergence Theory: Non-Quasi-Gaussian Case

While our new method, PCL, was motivated purely heuristically above, it turns out, perhaps surprisingly, that it allows separation of the sources. Rigorously, the correctness of PCL for non-quasi-Gaussian sources is formalized in the following Theorem (proven in Supplementary Material):

Theorem 1 Assume that

1. The sources $s_i(t), i = 1, \ldots, n$ are mutually independent, stationary ergodic stochastic processes.
2. The sources are uniformly dependent (Def. 1).
3. None of the sources is quasi-Gaussian (Def. 2).
4. We observe a nonlinear mixing $x(t)$ according to Eq. (2), where the mixing nonlinearity f is bijective from \mathbb{R}^n onto \mathbb{R}^n, twice differentiable, and its inverse is twice differentiable (i.e. f is a second-order diffeomorphism).
5. We learn a logistic regression to discriminate between y in Eq. (10) and y^* in Eq. (11) with the regression function in Eq. (12), using function approximators for h_i and B_i both of which are able to approximate any nonlinearities (e.g. a neural network). The functions h_i and B_i have continuous second derivatives.

Then, the hidden representation $h_i(x(t))$ will asymptotically (i.e. when the length of the observed stochastic process goes infinite) give the original sources $s_i(t)$, up to element-wise transformations, and in arbitrary order with respect to i.
This Theorem is the first to provide a clear identifiability condition, and an estimation method, for nonlinear ICA of temporally dependent stationary sources. It should be noted that the assumptions in Theorem 1 are very weak in the context of ICA literature: The non-linearity is simply assumed to be smooth and invertible, while the obviously necessary assumptions of temporal dependencies and non-Gaussianity are slightly strengthened. The indeterminacy of ordering is ubiquitous in ICA, and the well-known indeterminacy of scaling and signs is naturally generalized to strictly monotonic transformations of the individual sources. Next we discuss the assumptions in detail:

Assumption 1 is standard in ICA, saying that the sources (independent components) are independent. Here, the assumption is simply extended to stochastic processes using standard theory, and the assumptions of stationarity and ergodicity are added by default.

Assumptions 2 and 3 were already discussed above: they contain and extend the assumption of non-Gaussianity (of the stochastic process), and require the temporal dependencies to be strong enough. Gaussian processes in the linear case can be separated only when they have different autocorrelation functions (Tong et al., 1991; Molgedey and Schuster, 1994; Belouchrani et al., 1997); see Section 3.3 for more on Gaussian sources. As a remedy to this situation, non-Gaussian dependencies in the linear case have been considered, e.g. in (Hyvärinen, 2005; Pham, 2002), but here we may be the first to consider them in the nonlinear case.

Assumption 4 is a rather weak assumption of the invertibility and smoothness of the mixing system. Assumption 5 says that we apply PCL on data which comes from the nonlinear ICA model. A smoothness constraint on the nonlinear function approximator is also added, and it is of course necessary to assume that the nonlinear function approximator has some kind of universal approximation capability in order to be able to invert any nonlinear mixing functions; the universal approximation capability of neural networks is well known (Hornik et al., 1989).

What is very interesting, and relevant for practical algorithms, is that Theorem 1 shows that it is enough to consider just one time lag. This is to be contrasted to kTDSEP (Harmeling et al., 2003) and xSFA (Sprekeler et al., 2014) which usually use many time lags in the hope of finding enough differences in the autocorrelations, as may be necessary in the Gaussian case. On the other hand, the theorem here requires independence of the sources, in contrast to kTDSEP and xSFA which use only decorrelation.

Finally, we point out important advantages of our approach with respect to maximum likelihood estimation. The likelihood contains the Jacobian of the transformation \(f \) or its inverse. This Jacobian, and especially its derivatives with respect to any parameters defining the demixing function, are extremely difficult to compute (Deco and Brauer, 1995; Dinh et al., 2015). Our algorithm removes the Jacobian by “contrasting” the likelihoods of two different models which have the same Jacobians, which then cancel out. This leads to a simple method which needs hardly any new algorithmic developments, since it is based on formulating the unsupervised learning problem in terms of logistic regression, in the spirit of noise-contrastive estimation (Gutmann and Hyvärinen, 2012), time-contrastive learning (Hyvärinen and Morioka, 2017), and generative adversarial nets (Goodfellow et al., 2014; Gutmann et al., 2014).

3.3 Convergence Theory:
Quasi-Gaussian Case

Next we consider the special case of quasi-Gaussian sources, which includes the case of Gaussian sources. We simplify the situation by using functions \(B_i \) which are adapted to the quasi-Gaussian case, i.e. a functional form similar to the log-pdf of quasi-Gaussian sources in Eq. (5). We further simplify by using linear \(\tilde{\alpha} \) which seems to be sufficient in this special case. Regarding the convergence of PCL we have the following Theorem (proven in Supplementary Material):

Theorem 2 Assume the same as in Theorem 1, but instead of assuming that none of the sources is quasi-Gaussian (Assumption 3), assume they are all quasi-Gaussian. Furthermore, assume \(B_i \) in the regression function has the following form:

\[
B_i(z_1, z_2) = \beta^1_i(z_1) + \beta^2_i(z_2) + \alpha_i z_1 z_2 + \lambda_i
\]

for some functions \(\beta^1_i, \beta^2_i \) (again, universally approximated) and scalar parameters \(\alpha_i, \lambda_i \). Then, after learning PCL we asymptotically have

\[
h_i(x(t)) = \sum_{j=1}^n b_{ij} \tilde{\alpha}_j(s_j(t)) + d_i
\]

for some invertible constant matrix \(B \) with entries \(b_{ij} \), some constants \(d_i \), and the integral functions \(\tilde{\alpha}_i(y) = \int \alpha_i(y) dy \) of the \(\alpha_i \) in the definition of quasi-Gaussianity of each \(s_i \).

This Theorem tells that PCL will solve the nonlinear part of the mixing, and only leave a linear mixing together with point-wise nonlinearities to be resolved. What is left is essentially a linear ICA model, since the nonlinearities \(\tilde{\alpha} \) work on the original sources and do not change their independence. Interestingly, the nonlinear transformations \(\tilde{\alpha}_i \) try to make the sources
Gaussian in the sense that if the sources are pointwise transformations of Gaussian sources as in Lemma 1, they will be transformed to Gaussian, since we will eventually have terms of the form $\tilde{\alpha}(\tilde{x}) = \tilde{x}$ on the RHS of (6).

If some well-known identifiability conditions for linear ICA are met, we can thus perform a further linear ICA on the $h_i(x(t))$ and identify the nonlinear ICA model completely—but such conditions are rather complicated in the case of general temporal dependencies, so we do not treat them in detail here.

If the sources are Gaussian, the nonlinearities $\tilde{\alpha}$ are in fact equal to linear transformations since the α_i are constant. If the autocorrelations are all distinct, Theorem 2 implies that even for Gaussian sources, after applying PCL, we can solve the linear part by linear methods such as SOBI or TDSEP (Belouchrani et al., 1997; Ziehe and Müller, 1998).

In previous literature, there has been no clear proof of whether separation of Gaussian sources is possible from a nonlinear mixture, even in the case of different autocorrelations. Encouraging simulations were presented in the seminal paper by Harmeling et al. (2003), but no identifiability result was provided. An important contribution to the mathematical analysis was made by Sprekeler et al. (2014), who found that some functions of single sources (or products of multiple sources) may be found by SFA. However the rigorous identifiability proof was essentially restricted to the most slowly changing source, and deflating it away (Delfosse and Loubaton, 1995) turned out to be difficult. Thus, it was not clear from that analysis if all the sources can be found and how, although simulations were again promising. Our present result on the Gaussian case extends their results by showing that, indeed, all the sources can be estimated by combining PCL and a linear source separation method, if the autocorrelations are distinct.

3.4 Case of Many Time Lags

While the theory above used a single time lag for simplicity, at least Theorem 1 can be extended to multiple, say m, time lags. We define

Definition 3 An m-dimensional random vector $x = (x_1, x_2, \ldots, x_m)$ is called quasi-Gaussian if for any indices j, k, the cross-derivatives of the log-pdf

$$q_{j,k}(x) := \frac{\partial^2 \log p_x(x)}{\partial x_j \partial x_k}$$

exist and are continuous, and can be factorized as

$$q_{j,k}(x, y) = c \alpha^{j,k}(x_j, x_{-j-k}) \alpha^{j,k}(x_k, x_{-j-k})$$

for some real (possibly zero or negative) constant c and some real-valued function $\alpha^{j,k}$, where x_{-j-k} is the vector x without the j-th and k-th entries. A stationary stochastic process $s(t)$ is called m-th order quasi-Gaussian if the distribution of $(s(t), s(t-1), \ldots, s(t-m+1))$ is quasi-Gaussian.

Here, the condition on factorization is more involved than in the case of a single lag. Again, it includes any point-wise nonlinear transformations of jointly Gaussian variables and Gaussian processes, since if z is Gaussian and g is an invertible nonlinear transformation $\mathbb{R} \to \mathbb{R}$, for $x = (g(z_1), \ldots, g(z_m))$ we have

$$q_{j,k}(x) = -\rho_{j,k}(g^{-1}(x_j)(g^{-1})'(x_k))$$

where $\rho_{j,k}$ is the j, k-th entry in the precision matrix. As another example, the distribution $\log p(x) = \prod_{i=1}^m G(x_i)$ is factorizable for any smooth function G. However, it may be that in the multi-dimensional case the general form of the quasi-Gaussian distributions cannot be given in any simple form, unlike in Eq. (5).

The definition of uniform dependence is generalized in the same way. The estimation method can be extended by defining the two classes as

$$y(t) = \begin{pmatrix} x(t) \\ x(t-1) \\ \vdots \\ x(t-m+1) \end{pmatrix}, \ y^*(t) = \begin{pmatrix} x(t) \\ x(t^1) \\ \vdots \\ x(t^{m-1}) \end{pmatrix}$$

where $t_i, i = 1, \ldots, m - 1$ are randomly chosen time points (with uniform probability over $1, \ldots, T$). Theorem 1 can be generalized to show the convergence of the method using these generalized definitions, and an obvious generalization of Eq. (12); see Supplementary Material for details.

4 SIMULATIONS

Next we conduct simulations to verify and illustrate the theory above, as well as to compare its performance to other methods.

4.1 Simulation 1: Non-Gaussian AR Model

We first conducted a simulation where the sources in the nonlinear ICA model come from a non-Gaussian AR process, discussed in Section 2. Such sources are not quasi-Gaussian, so Theorem 1 should apply.

Methods First, temporally dependent source signals ($n = 20$) were randomly generated according to Eq. (8) by using $G(u) = -|u|$, and equal autoregressive
coefficients \(\rho = 0.7 \) for all components. To generate the observed signals from the source signals, we used a multi-layer perceptron (called “mixing-MLP”) as a nonlinear mixing function \(f(s) \), following the settings used by Hyvärinen and Morioka (2017), in particular we used leaky ReLU units to make the MLP invertible.

As a feature extractor to be trained by PCL, we adopted an MLP (“feature-MLP”) which has the same number of hidden layers as the mixing-MLP, and thus has enough degrees of freedom to represent the inverse-network of the mixing-MLP. The settings for the feature-MLP were basically the same as those used by Hyvärinen and Morioka (2017), except for the activation function of the last hidden layer, which took here the form given in (12), in particular with \(r(y) \) defined as the negative of

\[
\sum_{i=1}^{n} |a_{i,1} h_i(y^1) + a_{i,2} h_i(y^2) + b_i| - (\bar{a}_i h_i(y^1) + \bar{b}_i)^2 + c
\]

where \(\{a_{i,1}, a_{i,2}, b_i, \bar{a}_i, \bar{b}_i, c\} \) are parameters to be trained simultaneously with the feature-MLP. The squared term is a rough approximation of the marginal log-pdf of the AR process. (The marginal log-pdf of \(h_i(y^2) \) cancels out because the absolute value is a conditional pdf due to the AR model, i.e. \(\log p(y^1 | y^2) \).

The MLP was trained by back-propagation with a momentum term. To avoid overfitting, we used \(\ell_2 \) regularization for the parameters. The initial weights of each layer were randomly drawn from a uniform distribution for each layer, scaled as in Glorot and Bengio (2010). The performances were evaluated by averaging over 10 runs for each setting of the number of layers \(L \) and the number of data points \(T \).

For comparison, we also applied a linear ICA method based on a temporal decorrelation source separation (TDSEP, Ziehe and Müller (1998)), which is equivalent to SOBI, and a kernel-based nonlinear ICA method (kTDSEP, Harmeling et al. (2003)) to the observed data. In TDSEP, we used 20 time-shifted covariance matrices. The results of kTDSEP were obtained using 20 time-shifted covariance matrices, a polynomial kernel of degree 7, and k-means clustering with a maximum of 10,000 points considered.

Results Figure 1 shows that after training the feature-MLP by PCL, the logistic regression could discriminate real data samples from permuted ones with high classification accuracies. This implies that the feature-MLP could learn to represent the temporal dependencies of the data at least to some degree. We can see that the larger the number of layers is (which means that the nonlinearity in the mixing-MLP is stronger), the more difficult it is to train the feature-MLP and the logistic regression. The figure also shows that the networks suffered from overfitting (deceptively high classification accuracy on training data) when the number of data points was not sufficient.

Figure 2 shows that PCL could reconstruct the source signals reasonably well even for the nonlinear mixture case (\(L > 1 \)). Again, we can see that 1) a larger amount of data make it possible to achieve higher performance, and 2) more layers makes learning more difficult. TDSEP performed badly even for the linear-mixture case (\(L = 1 \)). This is because we used the same autoregressive coefficient \(\rho \) for all components, so the eigenvalues of time-lagged covariances became equal for all components, which made it impossible for TDSEP to separate the source signals.

4.2 Simulation 2: Gaussian Sources

We further conducted a simulation with Gaussian sources, which is a special case of the quasi-Gaussian sources, treated in Theorem 2.

Methods We generated temporally dependent source signals \((n = 10) \) from a Gaussian first-order autoregressive process. We selected the autoregressive coefficients \(\rho \) with uniform linear spacing between 0.4 to 0.8, to make sure they are distinct. The standard deviations of the generated signals were normalized to 1 for each component. The other settings are exactly the same as in the previous section, except that we...
used the regression function of the form given in Eq (13), with all the nonlinearities set as $\beta(u) = -u^2$.

Due to the indeterminacy shown in Theorem 2, we further applied (linear) TDSEP (with 20 time shifts) to the feature values $h_i(x(t))$ obtained by PCL.

Results
Figure 3 shows that, in the nonlinear case ($L > 1$), PCL could recover the source signals with much higher accuracies than the other methods. Unlike in Simulation 1, TDSEP (or SOBI) was able to reconstruct the source signals in the linear case ($L = 1$) because we selected all the p’s of the generative model to be distinct, so the assumptions of TDSEP were fulfilled. In the linear case ($L = 1$), the performance of PCL was, in fact, exactly the same as that of TDSEP, because any “preliminary” processing by PCL did not change the result of the final TDSEP. In contrast to Simulation 1, PCL seems to have had particular problems with highly nonlinear mixing models ($L > 3$).

5 DISCUSSION

We considered the popular principle for unsupervised feature learning based on “temporal coherence”, “temporal stability”, or “slowness” of the features. We proposed the first rigorous treatment of the identifiability of such models in a nonlinear generative model setting. Lack of rigorous theory has been a major impediment for development of nonlinear unsupervised learning methods.

Our proof was constructive in the sense that we actually proposed a practical algorithm, PCL, for estimating the generative model, and showed its convergence (i.e. statistical consistency). Essentially, we introduced “uniform dependence” as a sufficient condition for identifiability and convergence. We further introduced the concept of quasi-Gaussianity and treated separately the cases of quasi-Gaussian and non-quasi-Gaussian sources. We showed convergence of our algorithm either to the final solution or a linear ICA model, respectively.

It should be noted that the conditions we proposed for identifiability were sufficient but not necessary. In particular, the condition of uniform dependence can presumably be relaxed to some extent. Furthermore, the case where some sources are quasi-Gaussian and others not, remains to be investigated.

The work most related to ours is the framework of time-contrastive learning (TCL) by Hyvärinen and Morioaka (2017), which is based on non-stationarity. The two methods share the idea of using logistic regression, but they are used on datasets defined in very different ways. In fact, our contribution here is strictly complementary to TCL, since we assume stationary sources with autocorrelations, while TCL assumes non-stationarity and sources which are i.i.d. given the time point or segment. In the theory of linear ICA, it is widely accepted that autocorrelations and non-stationarity are two very different kinds of temporal structure: Together with non-Gaussianity of i.i.d. signals, these constitute what Cardoso (2001) called the “three easy routes to [linear] ICA”.

For each practical application, it is thus worthwhile to consider which of the two models (TCL or PCL) gives a better match to the statistical properties of the data. This is a strictly empirical question: One can apply both methods and analyse the statistical properties of the obtained sources to see which assumptions made in the models are a better fit. An important question for future work is to combine the two principles in a single theory and a single algorithm.\(^4\)

\(^4\)This research was supported by JSPS KAKENHI 16J08502 (H.M.) and the Academy of Finland (A.H., H.M.)
References

