Pseudorapidity distributions of charged hadrons in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Abstract: The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range $|\eta_{lab}| < 2.4$. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range $|\eta_{cm}| < 0.5$, the average charged-hadron multiplicity densities $\langle dN_{ch}/d\eta_{cm} \rangle |_{|\eta_{cm}| < 0.5}$ are 17.31 ± 0.01 (stat) ± 0.59 (syst) and 20.10 ± 0.01 (stat) ± 0.85 (syst) at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.

Keywords: Hadron-Hadron scattering (experiments), Heavy-ion collision

ArXiv ePrint: 1710.09355
1 Introduction

Studies of charged-hadron yields have long been a key tool for exploring perturbative and nonperturbative quantum chromodynamics (QCD) phenomena in high-energy particle and nuclear collisions [1]. Measurements in proton-lead (pPb) collisions can shed light on initial-state nuclear effects in these interactions [2]. An example is the nuclear modification of parton distribution functions (PDFs) that can be observed in measurements of hadron [3–7] and jet [8–10] production. Such measurements also provide reference data for understanding the hot, dense medium produced in nucleus-nucleus (AA) collisions. At the CERN LHC energies, measurements of proton-nucleus (pA) collisions allow studies of the nuclear gluon distributions and parton shadowing effects at very small values (10^{-4}–10^{-6}) of the Bjorken x variable [2, 11]. This provides a crucial test of current theoretical approaches for high-energy QCD [11–13], and yields important constraints on phenomenological models and event generators [14–17].

The number of primary charged hadrons, N_{ch}, is commonly characterized by its pseudorapidity density, $dN_{ch}/d\eta$. The pseudorapidity, η, is defined as $-\ln[\tan(\theta/2)]$, where θ is the polar angle of the particle with respect to the beam axis. The center-of-mass energy dependence of $dN_{ch}/d\eta$ constrains the theoretical modeling of particle production arising from hard and soft QCD processes in high-energy hadronic interactions. In the presence of the quark-gluon plasma (QGP), the hot medium produced in AA collisions, modifications of hadron production have been observed. Studying the energy dependence of the pseudorapidity density in different colliding systems (proton-proton (pp), pA, AA), for both total inelastic and non-single-diffractive (NSD) [18–20] collision processes, improves our understanding of these modifications in the AA case by identifying nuclear effects present in the initial state. Monte Carlo (MC) event generators, which reproduce the main characteristics
of experimental results from hadronic collisions at lower energies, can provide predictions for the energy dependence of hadron production using different implementations of QCD effects [21].

In this paper, measurements of $dN_{ch}/d\eta_{lab}$ (where the pseudorapidity is measured in the laboratory frame) in the range $|\eta_{lab}| < 2.4$ are reported for NSD events in pPb collisions delivered by the LHC in 2016 at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV. Following earlier analyses in pp collisions at $\sqrt{s} = 0.9–13$ TeV [22–25] and in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV [26], N_{ch} is restricted to “primary” charged hadrons, defined to include prompt hadrons as well as decay products of all particles with proper decay length $c\tau < 1$ cm, where τ is the proper lifetime of the particle and c is the velocity of light in vacuum. Contributions from prompt leptons and decay products of longer-lived particles and secondary interactions are excluded. For $\sqrt{s_{NN}} = 5.02$ (8.16) TeV, the beam energies per nucleon were 4 (6.5) TeV and 1.58 (2.56) TeV for the proton and lead nucleus, respectively. Because the beam energies were asymmetric and the proton was going in the positive η_{lab} direction, massless particles emitted at midrapidity in the nucleon-nucleon center-of-mass, $\eta_{cm} = 0$, will be detected at $\eta_{lab} = 0.465$. Results are compared to predictions from the KLN model [11], as well as the Epos LHC (v3400) [17, 27], Hijing [14] (versions 1.3 [15] and 2.1 [12]), and Dpmjet-III [16] MC event generators. The $\sqrt{s_{NN}}$ dependence of $dN_{ch}/d\eta_{cm}$ in the region $\eta_{cm} \approx 0$ is also presented.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The silicon tracker measures charged particles within the range $|\eta_{lab}| < 2.5$. It consists of 1440 silicon pixel detector modules. The barrel region of the pixel detector consists of three layers, which are very close to the beam line. They are located at average radii of 4.3, 7.2, and 11.0 cm, and provide excellent position resolution with their 150×100 μm pixels. The forward hadron (HF) calorimeter uses steel as an absorber and quartz fibers as the sensitive material. It consists of two halves, each located 11.2 m from the interaction region, and together they provide coverage in the range $3.0 < |\eta_{lab}| < 5.2$. The beam pickup for timing (BPTX) devices were used to trigger the detector readout. They are located around the beam pipe at a distance of 175 m on either side of the interaction point (IP) and are designed to provide precise information on the LHC bunch structure and the timing of the incoming beams. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [28].

3 Event selection

The data used in this analysis were taken with the beam configuration in which the proton beam traveled in the negative pseudorapidity direction, and selected to contain collision
events recorded during low-intensity beam configurations, with 0.3–0.6% proton-lead interaction probability per bunch crossing. The collision events are selected online by requiring a coincidence of signals from both BPTX devices, indicating the presence of both proton and lead ion bunches crossing the IP, and at least one energy deposit above the readout threshold of 3 GeV on either side of the HF. The offline selection of NSD events is accomplished by requiring that at least one energy deposit greater than 3 GeV is found on each of the two sides of the HF and at least one reconstructed interaction vertex is found. A study of noncolliding bunches shows that these requirements are also sufficient to reject all backgrounds not originating from pPb collisions. The probability to select events in the presence of a single (noncolliding) beam is found to be around 2×10^{-5} per bunch crossing, to be compared to the average number of collisions per bunch crossing of 4.5×10^{-3}. Consequently, the contribution of background events from beam, beam halo, and cosmic ray sources to the observed yields is negligible. The total number of pPb collision events passing the selection criteria is approximately 420 thousand and 3 million at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV, respectively.

The corrections from the detector-level offline event selection to the hadron-level event definition are derived from MC simulations with the Epos generator. The MC simulations are produced with the same vertex distribution along the interaction region as observed in data. The detector response is simulated with Geant4 [29] and processed through the same event reconstruction chain as the collision data.

4 Data analysis

In the presence of a magnetic field, charged particles follow curved trajectories, perturbed mostly by multiple Coulomb scattering. The reconstructed pixel clusters (or “hits”) alone are sufficient to reconstruct vertices and tracks with high precision and purity. The analysis technique is based on tracklets, pairs of hits from two different layers, and relies on the fact that for a primary charged hadron, the differences in pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \phi$) between the two hits are small. This method is sensitive to charged hadrons with transverse momenta p_T as low as 40 MeV/c.

The primary vertex reconstruction is based on pixel hits in the first two layers of the detector, as in ref. [26]. In the first step, a hit from the first layer is selected and a matching hit from the second layer is sought. If the $|\Delta \phi|$ of the hits is smaller than 0.05 (optimized to maximize the vertex reconstruction efficiency), the z positions of the hits (with the z axis defined to be parallel to the beam axis) are extrapolated linearly and projected onto the beam axis. This procedure is repeated for every hit in the first layer, and the projected z positions are saved as vertex candidates. The primary vertex is determined in a second step. If the magnitude of the difference between the z positions of any two vertex candidates is smaller than 0.12 cm, they are combined into a vertex cluster. The vertex cluster with the highest number of associated vertex candidates is selected as the primary vertex, and the final vertex z position, z_v, is given by the average z position of the associated vertex candidates. The typical resolution of z_v is 0.02–0.04 cm, depending on the number of pixel hits. The vertex reconstruction efficiency is found to be high even
for low-multiplicity events with few pixel hits, with around 90 (100)% efficiency for events with 4 (10) hits in the first layer.

The tracklet reconstruction follows a separate algorithm from the vertex reconstruction. There is no requirement on the $\Delta \phi$ of the hits. Instead, a hit on a given layer is paired with the hit on another layer which is closest in η (where η is measured with respect to the primary vertex) and these two hits form a tracklet. No hit can be used more than once. No selection is applied on the hit quality or charge, such that the analysis is rather insensitive to the accuracy of the simulation of pixel cluster charge. Three different types of tracklets can be reconstructed, corresponding to different combinations of the three pixel detector layers: 1+2, 1+3, and 2+3. The reconstruction efficiency, acceptance, fraction of background hits, and sensitivity to particle p_T is different for each type of tracklet. This serves as a consistency check for the analysis, and reduces systematic biases in the measurement.

Figures 1(a) and (b) show the $\Delta \eta$ and $\Delta \phi$ distributions of reconstructed hit pairs for tracklets in data and simulation. To suppress the combinatorial background, while still including most particles in the analysis, only tracklets with $|\Delta \eta| < 0.1$ are considered “signal”. In this kinematic region, there is good agreement between data and simulations with the EPOS generator, indicating that the p_T distributions of both hard and soft particles in data are described well by this MC generator. The HIJING generator, used in this analysis for systematic studies, gives a poorer description of the distributions, especially for $\Delta \phi$. Tracklets corresponding to charged hadrons that originate from the primary vertex have small but nonzero $\Delta \phi$ due to the magnetic field in the detector, while background tracklets from uncorrelated pixel hits form a roughly flat $\Delta \phi$ spectrum over the entire $\Delta \phi$ range, as shown in figure 1(c), where the abscissa is extended to $|\Delta \phi| < 2$. Hence, a sideband region defined by $1 < |\Delta \phi| < 2$ is used to estimate the background fraction, which is then subtracted from the signal region ($|\Delta \phi| < 1$) to obtain the uncorrected $dN_{ch}/d\eta_{lab}$ [26]. The background estimation and subtraction is performed as a function of η_{lab}, z_v, and tracklet multiplicity. Typical values of the estimated background fraction in the signal region in data increase with $|\eta_{lab}|$ from 10–25%. The η_{lab} range is restricted to $|\eta_{lab}| < 2.4$ to avoid a large acceptance correction.
The final results need to be corrected for contributions from decaying particles with $ct > 1 \text{ cm}$, particles created in secondary interactions, and prompt leptons. The contribution of these particles to $dN_{\text{ch}}/d\eta_{\text{lab}}$ is removed using a correction factor found using MC simulations. In addition, corrections are needed to account for the selection, efficiency, and acceptance of reconstructed tracklets, as well as trigger and vertexing efficiencies. The acceptance factor includes the extrapolation down to $p_T = 0 \text{ GeV}/c$. Correction factors (with a typical total of <15%) are derived using the EPOS event generator as a reference and are calculated as a function of η_{lab}, z_v, and tracklet multiplicity, as was done in ref. [26].

To account for the differences between data and MC in the pixel detector geometry and its alignment conditions, an additional correction is applied as a function of η_{lab} and z_v. This correction is obtained by taking the ratio between data and simulation of the geometrical distribution of tracklets in (η_{lab}, z_v) intervals. The size of this correction ranges from 0 to 5%, where the largest correction factors are associated with the presence of inactive tracker modules.

4.1 Systematic uncertainties

The systematic uncertainties in the final results arise from several sources: detector misalignment, pixel hit reconstruction inefficiency, pixel cluster splitting, background modeling, selection of signal and sideband regions, parametrization of the correction factors, and the NSD event selection. For each source of uncertainty, that part of the analysis procedure is varied independently and the change is propagated to the final results. The individual contributions are then summed in quadrature to give the total systematic uncertainty.

To estimate the uncertainty from detector misalignment, each pixel hit is offset by a small distance corresponding to the uncertainty in the alignment of the pixel detectors. The effects of pixel hit reconstruction inefficiency are studied by randomly excluding 0.5% of the pixel hits from the analysis. The 0.5% inefficiency value is determined by studying tracklets reconstructed from pixel hits in layers 1 and 3, and taking the double ratio in data and simulation of the fraction of tracklets that have no corresponding hit in layer 2. Pixel cluster splitting refers to the situation where the charge deposit in the pixel detector from a single charged particle is reconstructed as two separate pixel clusters. Its effect on the measurement is estimated by randomly splitting pixel clusters with a probability of 1.2%, as determined by previous studies [22]. The contributions from the above three sources are all below 1%.

The remaining uncertainties are associated with the MC correction factors. Additional pixel hits, randomly sampled from the hit distributions in data, are added such that the $\Delta \phi$ sidebands match between data and MC. The percentage of additional pixel hits needed is less than 5%. The variations observed compared to the nominal results are around 1.5–2.5%. The signal and sideband regions are also varied to $|\Delta \phi| < 1.5$ and $1.5 < |\Delta \phi| < 3.0$, respectively. A variation of 0.6–1.5% is found as compared to the nominal setting, which is propagated as a systematic uncertainty. Different multiplicity variables are used to parametrize the correction factors, in addition to the background-subtracted tracklets variable used for the nominal results: number of tracklets (before background subtraction), number of pixel hits in the first pixel layer used (layer 1 for tracklet type 1+2 and 1+3, and
Table 1. Summary of the systematic uncertainties from various sources, for pPb collisions at 5.02 and 8.16 TeV. The range of values indicates the minimum and maximum uncertainties across the η_{lab} range.

<table>
<thead>
<tr>
<th>Source</th>
<th>5.02 TeV</th>
<th>8.16 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector misalignment</td>
<td>0.2 – 1.0</td>
<td>0.2 – 1.0</td>
</tr>
<tr>
<td>Pixel hit reconstruction inefficiency</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Pixel cluster splitting</td>
<td>0.3 – 0.8</td>
<td>0.3 – 0.6</td>
</tr>
<tr>
<td>MC corrections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background modeling</td>
<td>1.3 – 3.2</td>
<td>1.5 – 2.5</td>
</tr>
<tr>
<td>Signal and sideband region selection</td>
<td>0.5 – 1.5</td>
<td>0.6 – 1.5</td>
</tr>
<tr>
<td>Choice of parametrization variable</td>
<td>1.6 – 2.5</td>
<td>1.5 – 3.5</td>
</tr>
<tr>
<td>NSD selection</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>3.0 – 4.3</td>
<td>3.7 – 4.6</td>
</tr>
</tbody>
</table>

layer 2 for tracklet type 2+3). The maximum deviation in each η_{lab} interval, 1.5–2.5%, is quoted as an uncertainty. An uncertainty is assigned for the selection of NSD events. The fraction of the single-diffractive events removed by the event selection, as determined from the Epos generator, is 16% when the tracklet multiplicity in the event is less than 10, and falls quickly to 0% with increasing tracklet multiplicity. This fraction is varied from 0% to twice the nominal value, and the maximum deviation from the final results, 1.2%, is quoted as the uncertainty. A summary of the systematic uncertainties for the measurements at 5.02 and 8.16 TeV is shown in table 1.

5 Results

Pseudorapidity density distributions of charged hadrons in the region $|\eta_{lab}| < 2.4$ for NSD pPb collisions are shown in figure 2. The distributions shown are the average of the measured distributions from the three types of tracklets (1+2, 1+3, and 2+3), which are consistent with each other within 3%. A clear difference in the particle densities between the lead ion ($\eta_{lab} < 0$) and the proton ($\eta_{lab} > 0$) beam directions is observed. The measured $dN_{ch}/d\eta_{lab}$ distribution at 5.02 TeV agrees with the measurement by the ALICE Collaboration [30]. The multiplicities at 8.16 TeV are significantly higher than those at 5.02 TeV.

Figure 3 shows a comparison between the measurement at 8.16 TeV and theoretical calculations from the HIJING (versions 1.3 and 2.1), EPOS LHC (v3400), and DPMJET-III MC generators, and the KLN model. The HIJING and EPOS generators were tuned to data from RHIC and the LHC, respectively. Calculations from HIJING 2.1, a two-component model that combines perturbative QCD descriptions of hard parton scatterings with a string excitation model for soft interactions, agree with the experimental data in the region $-0.5 < \eta_{lab} < 1.5$ when the nuclear modification of the initial parton distributions (shadowing) is included in the calculation. The HIJING 1.3 calculation overpredicts the particle density because it has an older implementation of the gluon shadowing effects. The
Figure 2. Distributions of the pseudorapidity density of charged hadrons in the region $|\eta_{\text{lab}}| < 2.4$ in NSD pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ (open squares) and 8.16 TeV (full squares). The measurement at 5.02 TeV by the ALICE Collaboration [30] is shown as filled circles. The shaded boxes indicate the systematic uncertainties which, in the case of the CMS data, are correlated between the two beam energies. The proton beam goes in the positive η_{lab} direction.

importance of shadowing can be assessed using the comparison of HIJING 2.1 simulations generated with and without this physics process included. The results are significantly higher than the data when shadowing is disabled. The KLN parton saturation model combines Glauber modeling of the collision geometry with a simple model for the unintegrated parton distributions that accounts for the existence of a saturation momentum scale [31, 32]. It describes the particle density accurately for $|\eta_{\text{lab}}| < 1$ but overall shows a steeper increase of density versus η_{lab} than observed in the data, similar to what was observed in the comparisons to the PHOBOS deuteron-gold (dAu) data at 200 GeV [33] and ALICE data at 5.02 TeV [30]. The DPMJET-III generator, commonly used in the description of cosmic ray, nucleon-nucleon, and nucleon-nucleus interactions, is based on the dual parton model [34], which generates soft hadronic interactions by considering the expansion of nonperturbative QCD in the limit where the number of color and flavor states are large [35]. This generator is found to predict both a steeper increase versus η_{lab} and a higher particle density over the measured η_{lab} interval. The EPOS generator, which is based on the Gribov-Regge theory and includes the effect of collective hadronization in hadron-hadron scattering, was found to describe pp data up to 13 TeV [25], but underpredicts the observed $dN_{\text{ch}}/d\eta_{\text{lab}}$ by a roughly constant factor over the entire measured range for pPb at 8.16 TeV.

One of the main goals of the heavy ion studies is to understand hadron production in the extremely dense medium formed in AA collisions. One way to approach this goal is to consider a direct comparison between the charged-hadron multiplicity density in minimum
bias pp and pA collisions, reference systems for particle production in the absence of a QGP, and central AA collisions (the most extreme type of collisions with the highest particle multiplicities). The comparison is made by dividing $dN_{ch}/d\eta_{cm}$ by the number of participating nucleons, N_{part}, determined by a Glauber model calculation [4, 36]. This normalization is the one assumed in two-component models (e.g. HIJING) for the bulk of the particle production.

In order to compare particle production in pPb collisions to that in symmetric collision systems such as pp or AA, the rapidity shift due to the asymmetric beam energies must be taken into account. The average charged-hadron multiplicity density at midrapidity in the center-of-mass frame, $\langle dN_{ch}/d\eta_{cm} \rangle |\eta_{cm}|<0.5$, in pPb collisions is calculated by integrating the data in the interval $-0.035 < \eta_{lab} < 0.965$, corresponding to $|\eta_{cm}| < 0.5$ for massless particles. A correction is applied to account for the massless assumption entering the calculation of the pseudorapidity shift: 0.1 and 0.2% for the 5.02 TeV and 8.16 TeV analyses, respectively, as obtained from the EPOS generator. The 1% variation in the results, obtained when this correction is evaluated from HIJING, is quoted as an additional uncertainty for the $\langle dN_{ch}/d\eta_{cm} \rangle |\eta_{cm}|<0.5$ results. In the range $|\eta_{cm}| < 0.5$, values of 17.31 ± 0.01 (stat) ± 0.59 (syst) and 20.10 ± 0.01 (stat) ± 0.85 (syst) are obtained for pPb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV, respectively.

Figure 4 shows the dependence of normalized $dN_{ch}/d\eta_{cm}$ on the collision energy for various collision systems and event selections. The NSD pA results are found to be lower than those from central AA collisions [26, 37–50] ($s_{NN}^{0.158}$ dependence) and NSD pp collisions.
Figure 4. Comparison of the measured \(\frac{dN_{ch}}{d\eta_{cm}} \) at midrapidity, scaled by the number of participating nucleons (\(N_{part} \)) in pPb [30, 51], pAu [52], dAu [33, 48, 53] and central heavy ion collisions [26, 37–50], as well as NSD [22, 23, 50, 54–57] and inelastic [25, 37, 56, 58, 59] pp collisions. The AA data points at \(s_{NN} = 2.76 \text{ TeV} \) have been shifted horizontally for visibility. The dashed curves, included to guide the eye, correspond to a fit to the data points using the same functional form as in refs. [46, 59].

\((s_{NN}^{0.110}) \) dependence at similar center-of-mass energies, but coincide with the trend observed in inelastic pp collisions (\(s_{NN}^{0.103} \) dependence). While the difference between the NSD pp and pA results could be attributed to non-QGP nuclear effects, the similarity between the NSD pA and total inelastic pp is yet to be understood.

6 Summary

The pseudorapidity distributions of primary charged hadrons have been measured by the CMS experiment at the LHC in proton-lead collisions at \(s_{NN} = 5.02 \) and 8.16 TeV. Based on pairs of pixel clusters from two different layers of the barrel region of the CMS pixel detector, the distributions have been obtained for NSD pPb events at both collision energies. The measured \(\frac{dN_{ch}}{d\eta_{lab}} \) distribution at 5.02 TeV is consistent with published results by the ALICE Collaboration. At 8.16 TeV, the measured \(\frac{dN_{ch}}{d\eta_{lab}} \) distribution is higher than the predictions of EPOS LHC, but significantly lower than the predictions from the HIJING 1.3 and DPMJET-III event generators. At \(\eta_{lab} \approx 0 \), the measured distributions are in good agreement with calculations from the KLN gluon saturation model and predictions from the HIJING 2.1 event generator with the effects of gluon shadowing included. The charged-hadron multiplicity densities in the nucleon-nucleon center-of-mass frame, \(\frac{dN_{ch}}{d\eta_{cm}} \) \(|\eta_{cm}| < 0.5 \), are 17.31 ± 0.01 (stat) ± 0.59 (syst) and 20.10 ± 0.01 (stat) ± 0.85 (syst) at \(s_{NN} = 5.02 \) and 8.16 TeV, respectively. When comparing the average charged-particle...
density per participant nucleon for pp, pA, and AA collisions as a function of collision energy, the pA results are found to be below those in central AA collisions and NSD pp collisions, but coincide with the trend seen in inelastic pp collisions. These results represent the first measurement of hadron production at this new center-of-mass energy frontier in nuclear collisions, and provide constraints for the understanding of nonperturbative QCD effects in high-energy nuclear collisions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the
Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[20] CMS collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9 and 2.36 TeV, JHEP 02 (2010) 041 [arXiv:1002.0621] [INSPIRE].

[22] CMS collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s = 0.9, 2.36 and 7 TeV, JHEP 01 (2011) 079 [arXiv:1011.5531] [INSPIRE].

[27] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].

[52] NA35 collaboration, T. Alber et al., *A study of the general characteristics of pp collisions at $\sqrt{s} = 0.2$ TeV to 0.9 TeV*, *Nucl. Phys. B* **335** (1990) 261 [SPIRE].

[54] UA1 collaboration, C. Albajar et al., *A study of the general characteristics of pp collisions at $\sqrt{s} = 0.2$ TeV to 0.9 TeV*, *Nucl. Phys. B* **335** (1990) 261 [SPIRE].

[56] UA5 collaboration, G.J. Alner et al., *Scaling of pseudorapidity distributions at c.m. energies up to 0.9 TeV*, *Z. Phys. C* **33** (1986) 1 [SPIRE].

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa

Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang6, X. Gao6, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Seulac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger8, M. Finger Jr.8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9,10, Y. Mohammed11, E. Salama12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadasitik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou

National Technical University of Athens, Athens, Greece
K. Kousouris

University of Ioánnina, Ioánnina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, A. Hunyadi, F. Sikler, V. Veszprémi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsányi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma
Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergò, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, K. Chatterjeea,b, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, P. Lenzia,b, M. Meschinia, S. Paolettia, L. Russoa,31, G. Sguazzonia, D. Stroma, L. Viliania,b,17

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera17

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
V. Calvellia,b, F. Ferroa, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Beschi, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b, M.E. Dinardoa,b, S. Fiorentinia,b, S. Gennaia, A. Ghezzia, P. Govonia,b, M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b, K. Pauwelsa,b, D. Pedrinia, S. Pigazzinia,b,32, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,17, F. Fabozzia,c, F. Fiengaa, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,17, P. Paoluccia, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Menichellia, A.T. Meneguzzoa,b, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bacchettaa, L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b, E. Manonia, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria,17, G. Bagliesia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, L. Gianninia,c, A. Giassia, M.T. Grippoa,31, F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa
A. Rizzi, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea
A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali34, F. Mohamad Idris35, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemeriita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk37, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasieva, P. Bunin, M. Gavrilenko, I. Goludvina, I. Gorbunov, A. Kamenev, V. Karjavina,
A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha,
N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, I. Oreshkin, I. Smirnov,
V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,
N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,
A. Spiridonov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
M. Chadeeva, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova,
V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev,
I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, Y. Skovpen, D. Shtol

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov,
P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian,
A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, U.S.A.
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, U.S.A.
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, U.S.A.
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, U.S.A.

University of California, Davis, Davis, U.S.A.

University of California, Los Angeles, U.S.A.
University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.

The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, U.S.A.
F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.
Massachusetts Institute of Technology, Cambridge, U.S.A.

University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.

State University of New York at Buffalo, Buffalo, U.S.A.
J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.

University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik, S. Norberg
University of Wisconsin — Madison, Madison, WI, U.S.A.

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Helwan University, Cairo, Egypt
10: Now at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Yazd University, Yazd, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
33: Also at Purdue University, West Lafayette, U.S.A.
34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, U.S.A.
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Gaziosmanpasa University, Tokat, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Adiyaman University, Adiyaman, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Necmettin Erbakan University, Konya, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, U.S.A.
66: Also at Beykent University, Istanbul, Turkey
67: Also at Bingol University, Bingol, Turkey
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Sinop University, Sinop, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea