
Palindromic Length in Linear Time
Kirill Borozdin1, Dmitry Kosolobov2, Mikhail Rubinchik3, and
Arseny M. Shur4

1 Ural Federal University, Ekaterinburg, Russia
borozdin.kirill,@gmail.com

2 University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru

3 Ural Federal University, Ekaterinburg, Russia
mikhail.rubinchik@gmail.com

4 Ural Federal University, Ekaterinburg, Russia
arseny.shur@urfu.ru

Abstract
Palindromic length of a string is the minimum number of palindromes whose concatenation is
equal to this string. The problem of finding the palindromic length drew some attention, and a
few O(n logn) time online algorithms were recently designed for it. In this paper we present the
first linear time online algorithm for this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases palindrome, palindromic length, palindromic factorization, online

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.23

1 Introduction

Algorithmic and combinatorial problems involving palindromes attracted the attention of
researchers since the first days of stringology. Recall that a string w = a0a1 · · · an−1 is
a palindrome if it is equal to the string ←w = an−1 · · · a1a0. The early works [4, 6, 8, 11]
considered palindromes as structures that might provide examples of (context-free) languages
that are impossible to recognize in linear time, thus provably restricting the computational
power of some models (RAM, in particular). Subsequently, it was shown that many of such
languages are, in fact, linear recognizable. Recently it was proved [7] that the language Pk,
where P is the set of all palindromes on a given alphabet, is recognizable online in O(kn)
time, where n is the length of the input string. Roughly at the same time, a closely related
notion of palindromic length of a string was introduced: this is the minimal number k such
that the string belongs to Pk. In 2014–2015 three different algorithms that compute the
palindromic length of a string of length n in O(n logn) time were presented in [3, 5, 10]
(however, they all are based on similar principles). In this paper we present the first linear
algorithm computing the palindromic length. Moreover, our algorithm is online, i.e., it reads
the input string sequentially from left to right and computes the palindromic length for each
prefix after reading the rightmost letter of that prefix. Thus, we prove the following theorem.

I Theorem 1. Palindromic length of a string is computable online in linear time.

The implementation of our algorithm and tests for it can be found in [9]. Due to a large
constant under the big-O, it is slower in practice (for 32/64 bit machine words) than the
existing O(n logn) solutions; the fastest algorithm is the one of [10].

© Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Palindromic Length in Linear Time

The paper is organized as follows. Section 2 contains a high-level description of the
algorithm: it starts with a naive O(n2) algorithm, then improves the time to O(n logn), and,
finally, describes on a high level a modified O(n)-time version of the O(n logn) algorithm.
In Section 3 we discuss the main components of the linear algorithm in details.

1.1 Preliminaries
Let w be a string of length n = |w|. We write w[i] for the ith letter of w (i = 0, . . . , n−1) and
w[i..j] for w[i]w[i+1] · · ·w[j]. A string u is a substring of w if u = w[i..j] for some i, j. Such
pair (i, j) is not necessarily unique; i specifies an occurrence of u at position i. A substring
w[0..j] (resp., w[i..n−1]) is a prefix (resp. suffix) of w. The empty string is denoted by ε. For
any i, j, [i..j] denotes the set {k ∈ Z : i ≤ k ≤ j}; let (i..j] = [i..j] \ {i}, [i..j) = [i..j] \ {j},
(i..j) = [i..j) ∩ (i..j]. Our notation for arrays is the same as for strings.

A substring (resp. suffix, prefix) that is a palindrome is called a subpalindrome (resp.
suffix-palindrome, prefix-palindrome). If w[i..j] is a subpalindrome of w, then the number
(j + i)/2 is the center of w[i..j] and the number b(j − i+ 1)/2c is the radius of w[i..j]. The
following remarkable property of palindromic lengths is crucial for our algorithm.

I Lemma 2 (see [10, Lemma 11]). Denote by `0, `1, . . . , `n−1, resp., the palindromic lengths of
the prefixes w[0..0], w[0..1], . . . , w[0..n−1] of a string w. Then, for any i ∈ (0..n), |`i−`i−1|≤1.

An integer p is a period of w if w[i] = w[i+p] for any i ∈ [0..n−p). As the previous
results [3, 5, 10], our approach relies on a number of periodic properties of palindromes.

I Lemma 3 (see [7, Lemmas 2, 3]). For any palindrome w and any p ∈ (0..|w|], the following
conditions are equivalent: (1) p is a period of w, (2) there are palindromes u, v such that
|uv| = p and w = (uv)ku for some k ≥ 1, (3) w[p..|w|−1] (w[0..|w|−p−1]) is a palindrome.

I Lemma 4 (see [7, Lemma 7]). Suppose that w = (uv)ku for k ≥ 1 and for palindromes u
and v such that |uv| is the minimal period of w; then, the center of any subpalindrome x of
w such that |x| ≥ |uv|−1 coincides with the center of some u or v from the decomposition.

Henceforth, let s denote the input string of length n. We assume that the algorithm
works in the unit-cost word-RAM model with Θ(logn)-bit machine words (an assumption
justified in, e.g., [2]) and standard operations like in the C programming language.

2 High-Level Description of the Algorithm

Our aim is to maintain an array ans[0..n−1] in which each element ans[i] is the palindromic
length of s[0..i]. We always assume n to be the length of the string s processed so far (i.e.,
s = s[0..n−1]). Processing the next letter s[n], we compute ans[n] and then increment n.

2.1 Naive approach
An easy quadratic-time approach is to maintain the list of all non-empty suffix-palindromes
u1, . . . , uk of the string s and calculate ans[n] = 1 + mini∈[1..k] ans[n−|ui|]. The list can be
updated in linear time: the suffix-palindromes of wa have the form aua, where u is a suffix
palindrome of w, plus the palindrome a and, optionally, aa. As a first speedup to this basic
approach, we utilize the (palindromic) iterator, introduced in [7]; this data structure contains
a string s and supports the following operations:

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:3

1. add(a) appends the letter a to the end of s;
2. maxPal returns the center of the longest suffix-palindrome of s;
3. rad(x) returns the radius of the longest subpalindrome of s with the center x;
4. nextPal(x) returns the center of the longest proper suffix-palindrome of the suffix-

palindrome of s with the center x; undefined if x is not the center of a suffix-palindrome.

The iterator can be implemented so that all its operations work in O(1) time (amortized,
for add) [7, Prop. 1]. The same time bound applies to computing length of the longest
subpalindrome centered at x: len(x) = 2 · rad(x) + bxc − bx− 1

2c. Still, the iterator alone
cannot lower the asymptotic time of the naive algorithm; its improved version looks as follows:

1: add(s[n]); ans[n]← +∞
2: for (x← maxPal; x 6= n + 1

2 ; x← nextPal(x)) do ans[n]← min{ans[n], 1 + ans[n− len(x)]}

2.2 Algorithm working in O(n log n) time
All subquadratic algorithms for palindromic length heavily use grouping of suffix-palindromes
into series. Let u1, . . . , uk be all non-empty suffix-palindromes of a string s in the order of
decreasing length. Since uj is a suffix of ui for any i < j, any period of ui is a period of
uj ; hence the sequence of minimal periods of u1, . . . , uk is non-increasing. The groups of
suffix-palindromes with the same minimal period are series of palindromes (of s):

u1, . . . , ui1︸ ︷︷ ︸
p1

, ui1+1, . . . , ui2︸ ︷︷ ︸
p2

, . . . , uit−1+1, . . . , uk︸ ︷︷ ︸
pt

.

We refer to the longest and the shortest palindrome in a series as its head and baby respectively
(they coincide in the case of a 1-element series); we enumerate the elements of a series from
the head to the baby. Given an integer p, the p-series is the series with period p. A very
useful observation [3, 5, 7] is that the length of a head is multiplicatively smaller than the
length of the baby from the previous series, and thus every string of length n has O(logn)
series. (As it was shown in [3], strings with Ω(logn) series for Ω(n) prefixes do exist.)

The idea of the O(n logn) solution is to use the dynamic programming rule ans[n] =
1 + minU minu∈U ans[n−|u|], where U runs through the series of s, and compute the internal
minimum in O(1) time using precalculations based on the structure of series. The structure
of any series is described in the following lemma, which is easily implied by Lemmas 3, 4.

I Lemma 5. For a string s and p ≥ 1, let U be a p-series of palindromes. There exist k ≥ 1
and unique palindromes u, v with |uv| = p, v 6= ε such that one of three conditions hold:

U = {(uv)k+1u, (uv)ku, . . . , (uv)2u} and the next series begins with uvu,
U = {(uv)ku, (uv)k−1u, . . . , uvu} and the next series begins with u,
U = {vk, vk−1, . . . , v}, p = 1, |v| = 1, u = ε, and U is the last series for s.

Let U be a p-series for s[0..n] with k > 1 palindromes (w.l.o.g., U = {(uv)ku, . . . , uvu}).
Updating ans[n] using this series, we compute m = min{ans[n−kp−|u|], . . . , ans[n−p−|u|]}.
Now note that s[0..n] ends with (uv)ku but not with (uv)k+1u: otherwise, the latter
string would belong to U . Then s[0..n−p] ends with (uv)k−1u but not with (uv)ku and
thus has the p-series U ′ = {(uv)k−1u, . . . , uvu}. Thus, at that iteration we computed
m′ = min{ans[n−kp−|u|], . . . , ans[n−2p−|u|]} for updating ans[n−p]. If we save m′ into
an auxiliary array, then m = min{m′, ans[n− p− |u|]} is computable in constant time, as
required. Let us implement this construction using the iterator.

We start an iteration calling add(s[n]). Let x be the center of a suffix-palindrome u. By
Lemma 3, the minimal period p of u equals len(x) − len(nextPal(x)). Let cntr(d) denote

CPM 2017

23:4 Palindromic Length in Linear Time

the center of the length d suffix-palindrome of s[0..n] (i.e., cntr(d) = n − (d − 1)/2). Let
x′ = cntr(p+ (len(x) mod p)). By Lemma 5, x′ is the center either of the baby of the p-series
or of the head of the next series, depending on the period len(x′)− len(nextPal(x′)) of this
suffix-palindrome. All these computations take O(1) amortized time using the iterator.

Our algorithm maintains an array left[1..n]: for p ∈ [1..n], if there is a p-series, then
s[left[p]+1..n] is the longest suffix (which is not necessarily a palindrome) of s[0..n] with
period p; otherwise, left[p] is undefined. E.g., if s[0..n] = · · · aaabaaba and p = 3, then the
mentioned suffix is s[n−6..n] = aabaaba and left[3] = n−7. Computing left[p] in O(1) time is
done as follows. Let w = (uv)ku be the head of the p-series (see Lemma 5), x be the center of
w, and z(uv)ku be the longest suffix of s[0..n] with period p (in our example, u = ε, v = aba,
x = n− 5/2, z = a). Then z is a proper suffix of uv. Hence len(x1) = 2|z|+ |u|, where x1 is
the center of the prefix-palindrome u of w (in the example, x1 = n− 11/2, len(x1) = |aa|).
Note that |u| = len(x) mod p and x1 = 2x− x2, where x2 = cntr(len(x) mod p) is the center
of the suffix u of w. Thus, |z| and left[p] = n−len(x)−|z| are computed in O(1) time.

All precalculated minimums are stored in an array pre[1..n], where each pre[p] is, in
turn, an array pre[p][0..p−1] (we discuss in the next subsection why only O(n) of possible
O(n2) elements of pre are actually stored). For each j such that n− j > left[p], the string
s[0..n−j] usually has a suffix-palindrome with period p and thus can have a p-series; the
array pre[p][0..p−1] contains the precalculations made for all these series. Formally,

pre[p][i] = min{ans[t] :
(t− left[p]) mod p = i and s[t+1..n] has a prefix-palindrome of minimal period p};

pre[p][i] is undefined if there is no such t (i.e., no p-series for the corresponding string). So if
u1, . . . , uk is a p-series for s[0..n], then pre[p][n−|u1|−left[p]] = min{ans[n−|ui|] : i ∈ [1..k]}.
Hence, given a new letter s[n], we compute ans[n] as follows:

1: add(s[n]); ans[n]← +∞;
2: for (x← maxPal; x 6= n + 1

2 ; x← nextPal(cntr(d))) do . goes to next head each time
3: p← len(x)− len(nextPal(x)); . min. period of the suf.-pal. centered at x

4: d← p + (len(x) mod p); . length of the baby in the p-series
5: if len(cntr(d))− len(nextPal(cntr(d))) 6= p then d← d + p; . corrected length
6: compute left[p]; . in O(1) time, see above
7: if len(x) = d then pre[p][n−len(x)−left[p]]← ans[n−d];
8: pre[p][n−len(x)−left[p]]← min{pre[p][n−len(x)−left[p]], ans[n−d]};
9: ans[n]← min{ans[n], 1 + pre[p][n−len(x)−left[p]]};

Let u1, . . . , uk be a p-series, i = n−|u1|−left[p]. If k = 1, there was no p-series p iterations
ago, so we set the undefined value pre[p][i] to ans[n−|uk|] in line 7. Otherwise, by the
definition of pre, we have pre[p][i] = min{ans[n−|u1|], . . . , ans[n−|uk−1|]}. We update this
value using ans[n−|uk|] in line 8. So pre is correctly maintained, and the above algorithm
computes the array ans in O(n logn) time due to logarithmic number of series.

2.3 Sketch of the linear algorithm
The idea of the linear solution is to perform the above log-time processing of all series of the
current string not n times, but only O(n

log n) times during the run of the algorithm. (However,
we are able to make Θ(n) calls to the iterator.) To achieve this, during the processing of
a series we replace each computation of the minimum ans[n] ← min{ans[n], 1 + z}, for a
precomputed value z from pre, with the simultaneous computation (“prediction”) for the range
of values ans[n..n+b], where b = b log n

8 c: we compute in advance ans[j]← min{ans[j], 1 + zj}

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:5

a a b a a a c e c a a b a c a b a a c e c a a a b
0 x n

︷︸︸︷︷ ︸︸ ︷
maxPal

︷ ︸︸ ︷
` = live(x)

b
`

b

Figure 1 Predictable extensions.

for all j ∈ [n..n+b] and corresponding precomputed zj from pre. It is proved below that
the arrays ans and pre can be organized so that, after a linear time preprocessing, such
range operations on O(b) elements of ans will take O(1) time (this type of bit compression
techniques is referred to as the four Russians’ trick [1]).

Let us extend s[0..n−1] with s[n] = a. We say that a suffix-palindrome u of s[0..n−1],
centered at x, survives if s[0..n] has the suffix aua (i.e, x remains the center of a suffix-
palindrome), and dies otherwise. We say that an extension of s[0..n−1] by s[n] is predictable
if it retains maxPal, i.e., if the longest suffix-palindrome survives. From maxPal it can be
calculated which of the other suffix-palindromes survive. If a suffix-palindrome of s centered
at x survives d ≥ 0 consecutive predictable extensions but dies after the (d+1)th such
extension (or the (d+1)th predictable extension is not possible), we write live(x) = d. We
have live(maxPal) = n − len(maxPal) and live(x) = rad(refl(x)) − rad(x) for x 6= maxPal;
here refl(x) = 2 ·maxPal − x is the position symmetric to x w.r.t. maxPal. (See Fig. 1 for
clarification; e.g., in Fig. 1 live(x) = 2 and live(maxPal) = 6.)

Suppose that ans[n+j] = +∞ for j ∈ [0..b]. Having performed add(s[n]), we get access to
the suffix-palindromes of s[0..n]. If, for the center x of each such palindrome, we perform

ans[n+j]← min{ans[n+j], 1 + ans[n−len(x)−j]} for all j ∈ [0..min{b, live(x)}], (1)

then we accumulate all information we can obtain from these palindromes during the next b
predictable extensions. Thus we get an approximation of ans[n..n+b], which later will be
updated using suffix-palindromes with the centers x ≥ n+ 1

2 . One phase of our algorithm is
roughly as follows:

append s[n] to the iterator, update precalculations, and “predict” ans[n..n+b] with the
assignments (1), using operations on blocks of bits (ans[n] is computed exactly);
append subsequent letters, each time updating the predictions with either one or two
new palindromes (after processing s[n+j], ans[n..n+j] contains correct values);
stop after b iterations or at the moment when an unpredicted letter is encountered;
discard unused predictions and start a new phase with the first unpredicted letter.

For arrays α, β and numbers i, j, ` ≥ 0, denote by α[i..i+`] min← β[j..j+`] the sequence of
assignments α[i+k]← min{α[i+k], β[j+k]} for all k ∈ [0..`]. Let increv(i, j) be the function
returning an array a[0..j−i] such that a[k] = 1 + ans[j−k] for k ∈ [0..j−i] (“increment &
reverse”). The predictions are made by the function predict that uses precalculations stored
in pre to perform in a fast way the assignments ans[n..n+c] min← increv(n−len(x)−c, n−len(x)),
where c = min{b, live(x)}, for all centers x of suffix-palindromes. (Hence predict computes
the value ans[n] correctly even if c = 0 for some x.) Let precalc be a function that updates
(possibly once in several iterations) the array pre to the actual state. The implementations
of predict and precalc are discussed in Section 3. Our algorithm is as follows:

1: for (n← 0, end← 0; not(end_of_input); n← n + 1) do
2: if n = end or len(maxPal) = n or s[n] 6= s[n−len(maxPal)−1] then . new phase
3: add(s[n]); precalc; predict; end← n + b

4: else add(s[n]) . old phase continues, s[n] is predictable
5: c← min{b, live(n)}; ans[n..n+c] min← increv(n−1−c, n−1)
6: if s[n] = s[n−1] then c← min{b, live(n− 1

2)}; ans[n..n+c] min← increv(n−2−c, n−2)

CPM 2017

23:6 Palindromic Length in Linear Time

This algorithm computes the same values ans[n] as the O(n logn) algorithm above,
because finally all suffix-palindromes of s[0..n] are used. So, the algorithm is correct.

Let t be the number of series in the current string s[0..n] and q is the time required to
perform all the calls add(s[n]), add(s[n−1]), . . . , add(s[n′+1]), where s[0..n′] is the string for
which precalc was called last time. Below we show that predict and precalc work in O(t) and
O(t+ q) time respectively, and the array ans can be organized so that the range operations
in lines 5–6 can be performed in O(1) time using the four Russians’ trick. Let us estimate
the running time of the algorithm under these assumptions.

During predictable extensions, line 3 is reached iff n = end, i.e., at most O(n
b) times. Since

add works in O(1) amortized time (see [7, Prop. 1]), the sum of all q’s in the working time of
precalc is O(n). Since O(t) = O(logn), all predictable extensions take O(n+ n

b logn) = O(n)
overall time. To estimate the running time of unpredictable extensions, consider the value
γi = live[maxPal] = i− len(maxPal) after processing s[0..i]. If s[i+1] is predictable, one has
γi+1 = (i + 1) − (len(maxPal) + 2) = γi − 1. If s[i+1] is unpredictable, γi+1 ≥ (i + 1) −
(len(nextPal(maxPal)) + 2); by Lemma 5, γi+1 − γi ≥ p− 1, where p is the minimal period
of the longest suffix-palindrome of s[0..i]. By Lemmas 4 and 5, the length of the longest
suffix-palindrome whose minimal period differs from p is less than 2p. Therefore, predict and
precalc take O(p+ q) time during this unpredictable extension (actually, O(log p+ q)). Since
γn − γ1 < n, the sum of the working times of all calls to predict and precalc is O(n).

2.4 Organization of the arrays ans and pre

Informally, the four Russians’ trick allows us to compute any operation on structures
of size ≤ε logn bits in O(1) time using a precomputed table of size O(nε logO(1) n) bits.
For example, let a b log n

2 c-bit integer x encode a sequence x1, . . . , xblog n/4c so that xj =
1− (bx/22j−2c mod 4), i.e., (2j−1)th and (2j−2)th bits of x encode xj . We can compute,
for j ∈ [1.. logn/4], the sum x1 + · · ·+ xj in O(1) time using a table T [0..b

√
nc][1..blogn/4c]

such that T [x][j] = x1 + · · ·+ xj for any x ∈ [0..2log n/2] = [0..
√
n] and j ∈ [1.. logn/4]. The

table T can be precomputed in O(
√
n logO(1) n) time.

In our case, we split ans into blocks of length b. By Lemma 2, adjacent elements of
ans differ by at most one. This allows us to encode each block ans[ib+1..(i+1)b] as the
number ans[ib+1] and the sequence x1, x2, . . . , xb such that xj ∈ {−1, 0, 1} and ans[ib+j] =
ans[ib+1] +x1 + · · ·+xj for any j ∈ [1..b]. This sequence x1, x2, . . . , xb is encoded in a 2b-bit
integer exactly as in the example above (note that 2b ≤ b log n

4 c). Using a precomputed table
of size O(4

√
nb), we can extract any element ans[j] in O(1) time. It is shown in Sect. 3 that

arrays in pre can be encoded in a similar way (with some additional complications).
Applying a similar trick, one can perform many other operations. Let c[0..`] be an

array of integers such that ` ∈ [0..b], |c[i−1] − c[i]| ≤ 1, and c is encoded, like a block of
ans, by c[0] and a 2b-bit integer. Let us show how to perform in O(1) time the operation
ans[n..n+`] min← c[0..`] as in lines 5–6 of the algorithm (similar operations are also performed
in predict). We first check whether c[0] > ans[n] + 2`: if so, then ans remains unchanged.
It is guaranteed by the algorithm that c[0] ≥ ans[n−1] − 1. Then, we concatenate bit
representations of all required components: the (at most) two blocks ans[ib+1..(i+1)b] and
ans[(i+1)b+1..(i+2)b] encoding the subarray ans[n..n+`] are stored as two 2b-bit sequences
(encoding the differences ans[i] − ans[i−1] for i ∈ [ib+2..(i+2)b] as above), c[0..`] is also
stored as a 2b-bit sequence, the offset (n−ib) and the difference c[0]− ans[n−1] are stored as
O(log b)-bit integers; 6b+O(log b) bits in total. We precompute a table T that, for a given

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:7

combined bit representation, stores two 2b-bit sequences encoding two blocks that represent
the resulting modified ans[n..n+`] array. It should be noted that the information provided
in the given representation suffices to compute the result and, since the resulting array ans
satisfies Lemma 2, we may put ans[n+`+j] = min{ans[n+`+j], ans[n+`] + j} for j ≥ 1 so
that the structure of the last block is preserved. Since 6b≤ 3

4 logn, the size of the table T
is O(b · 26b+O(log b)) = O(n3/4 logk n) for some k = O(1). Obviously, T can be precomputed
in O(n3/4 logk+O(1) n) time. Analogously, we precompute tables that allow us to calculate
increv(i, j) in O(1) time if j − i ≤ b; the resulting array of increv is encoded, like the array
c, by the first element and a 2b-bit integer. Thus, all range operations in lines 5–6 of the
algorithm can be performed in O(1) time.

We use a number of different range operations on the arrays ans and pre in Section 3 but
all of them are similar to the discussed ones, so we omit detailed descriptions.

3 Implementation of the Main Functions

Now it remains to describe the functions predict and precalc and prove their time complexity.

3.1 Function predict
At the beginning, the function predict sets ans[n+j] ← ans[n−1]+j+1 for j ∈ [0..b]. By
Lemma 2, the assigned values are upper bounds for the elements of ans[n..n+b]. The
assignments are performed in O(1) time using range operations. Then predict processes each
of the t series; let us describe precisely how we process a p-series u1, . . . , uk.

Let u, v be the palindromes described in Lemma 5, xi be the center of ui for i ∈ [1..k]. If
len(xi) < n− left[p] (i.e., either i > 1 or i = 1 and u1 is not the longest suffix of s with period
p), then xi will remain the center of a new suffix-palindrome after the appending of s[n] iff
s[n] = s[n−p] = v[0]. In this case, the period p “extends” and xi remains the center of a
suffix-palindrome with the minimal period p. In the remaining case len(x1) = n− left[p] (u1
is the longest suffix with period p) x1 will remain the center of a suffix-palindrome iff s[n] =
s[left[p]]; the period p breaks and the palindrome s[n]u1s[n] will belong to a different series.

Suppose that d upcoming predictable extensions extend the period p of the suffix
s[left[p]+1..n−1] and the (d+1)st predictable extension breaks this period. It follows from
the previous paragraph that the only suffix-palindrome ui that can survive the (d+1)st
extension (in other words, for which live(xi) > d) must have length n− left[p]− d (see Fig. 2).
So if d is known, we check whether x = cntr(n−left[p]−d) is the center of a suffix-palindrome
(i.e., cntr(len(x)) = x) and, if so, we compute ans[n..n+c] min← increv(n−len(x)−c, n−len(x)),
where c = min{b, live(x)}, in O(1) time using range operations.

Now it remains to find d and change ans[n..n+ min{b, d}] taking u1, . . . , uk into account.
Since predictable extensions append the letters s[n−len(maxPal)], s[n−len(maxPal)−1], . . .
to the right of s, we can approximately find d looking at the string s[0..n−len(maxPal)−1].
Put d′ = min{live(cntr(|u|)), live(cntr(|uvu|))} (see Fig. 2). Let us show that we can use d′
instead of d. If d′ < n − left[p] − |uvu|, then the longest suffix-palindrome is preceded by
the reversed prefix of (vu)∞ of length d′. In turn, this prefix either is preceded by a letter
that breaks the period p of this prefix (the letter e in Fig. 2) or is a prefix of the whole
string. In either case, d′ = d. If d′ ≥ n− left[p]− |uvu|, then the longest suffix-palindrome is
also preceded by the reversed prefix of (vu)∞ of length d′ but d ≥ d′ in general. However,
even in this case, we can use d′ in the sequel since none of the suffix-palindromes from our
series survives after n− left[p]− |uvu| predictable extensions; therefore, also, the possible
processing of a suffix-palindrome of length n− left[p]− d′ mentioned above is not required.

CPM 2017

23:8 Palindromic Length in Linear Time

e a b a b a b a b a b a b a b a b a c c c a b a b a b a b a b a b a b a b a c

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
x1x2x3x4x5

nleft[p]

maxPal

p = 2
d = 6

p p pd′

refl(cntr(|a|)) = refl(n) refl(cntr(|aba|))
Figure 2 A series x1, . . . , x5: live(x4) > d, the shaded region corresponds to ans[n..n+d].

x b a a b a b a a b a a b a b a a b a a b a b a
n

u︷ ︸︸ ︷ u︷ ︸︸ ︷ u︷ ︸︸ ︷v︷︸︸︷ v︷︸︸︷left[p]

0 k1 k2 k3
p = 8

φ0 = φ1 = 0, φ2 = φ3 = 1,
φ4 = φ5 = φ6 = 0, φ7 = −1.

Figure 3 Partition of [0..p) in Lemma 6.

Let us track the set S = {`1 = n−len(x1)+1, . . . , `k = n−len(xk)+1} of the leftmost
positions of the suffix-palindromes centered at x1, x2, . . . , xk in the d′ predictable extensions:
all these positions shift to the left by one after each extension; if a position reaches left[p], the
corresponding palindrome dies and this position is excluded from S. By Lemma 3, for any
i ∈ [1..k], if `i is in the set after f ∈ [0..d′] predictable extensions, then the suffixes s[`i+jp..n]
(here n is increased by f) are palindromes for all integers j ≥ 0 such that `i+jp ≤ n; therefore,
along with the assignments ans[n] min← 1 + ans[`i−1] (here n is increased by f) that we are
intended to perform, we can occasionally perform ans[n] min← 1 + ans[`i+jp−1] for any such j.

Obviously, |u1|+ p > n− left[p] since otherwise uvu1 would be a longer suffix-palindrome
with the minimal period p. Based on the above observation, we perform the assignments
ans[n+j] min← 1+pre[p][r(j)] for all j ∈ [0..min{b, d′}], where r(j) = (n−|uk|−left[p]−j) mod p
(see Fig. 3; r(j) cyclically runs through the range [0..p) from right to left when j increases).
Recall that, immediately before the execution of predict, the function precalc recalculates
the array pre. After this recalculation pre[p] stores an array pre[p][0..p−1] for each p ∈ [1..n]
such that p is the minimal period of a suffix-palindrome of s[0..n]. For i ∈ [0..p) we have
pre[p][i] = min{ans[left[p]+i+jp] : j ∈ [0..φi]}, where φi ≥ 0 is the maximal integer such that
the string s[left[p]+i+φip+1..n] has a prefix-palindrome with the minimal period p; if there
is no such φi, we put pre[p][i] = +∞ and φi := −1.

We perform ans[n+j] min← 1 + pre[p][r(j)], for all j ∈ [0..min{b, d′}], in O(1) time using
range operations on the arrays pre and ans. (These operations are discussed below.) It follows
from Lemma 5 that, after f ∈ [0..d′] predictable extensions, the strings s[`i..n

′] (here n′
denotes the value of n before the extensions), for i ∈ [1..k) such that `i is still in the set S, have
prefix-palindromes with the minimal period p. Therefore, the above assignments will really
process the palindromes u1, . . . , uk−1 for the upcoming d′ predictable extensions (see Fig. 2)
but will, probably, perform some additional unnecessary assignments for suffix-palindromes
with period p that will appear only after a number of predictable extensions; but this does
not harm since such assignments will be performed anyway in the future. For the baby
uk, we compute explicitly ans[n..n+c] min← increv(n−len(xk)−c, n−len(xk)), where c = min{b,
live(xk)}, in O(1) time using range operations. It remains to describe the structure of the
array pre that allows us to perform constant time range operations on subarrays of length ≤b.

I Lemma 6. For each i ∈ [0..p), let φi be the minimal integer such that the string
s[left[p]+i+(φi+1)p+1..n] has no prefix-palindromes with the minimal period p. Then, the
segment [0..p) can be split into subsegments [k0..k1), . . . , [k6..k7), for 0 = k0 ≤ · · · ≤ k7 = p,
such that, for i ∈ (0..p), we have φi = φi−1 whenever i and i−1 belong to the same subsegment
(see Fig. 3).

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:9

Proof. For i ∈ [0..p) and j ≥ 0, denote i(j) = left[p]+i+jp. Let k be an integer such that,
for i = p − 1, we have i(k) < n and i(k) + p ≥ n. So, for i ∈ [0..p), we obtain φi = j′i − 1,
where j′i is the minimal integer such that j′i ∈ [0..k] and the string s[i(j′i)+1..n] has no
prefix-palindromes with the minimal period p. While i descends from p−1 to 0 with step one,
some of the suffixes s[i(j)+1..n] may acquire prefix-palindromes with the minimal period p
and some may lose such prefix-palindromes thus changing the value of φi (see Fig. 3).

Let us choose i ∈ [0..p) that maximizes the value of φi. Denote j′ = φi for this i. If
j′ ≥ 0, then s[i(j′)+1..n] has a prefix-palindrome w with the minimal period p; by Lemma 3,
there are palindromes u and v such that |uv| = p and w = (uv)ru for r ≥ 1. Thus, for
any j′′ ∈ [0..j′−2], the suffix s[i(j′′)+1..n] has prefix-palindromes (uv)3u and (uv)2u both
having the minimal period p. When i further decreases to 0, the prefix-palindrome (uv)2u

“grows” together with s[i(j′′)+1..n] and, when i increases, (uv)3u “shrinks”; in both cases
s[i(j′′)+1..n] retains a prefix-palindrome with the minimal period p while i ∈ [0..p). Hence,
only suffixes s[i(j′−1)+1..n] and s[i(j′)+1..n] may lose or acquire a prefix-palindrome with
the minimal period p while i changes from p−1 to 0, i.e., φi varies in the range [j′−2..j′].

Let us prove that any suffix s[i(j)+1..n] can lose a prefix-palindrome with the minimal
period p at most once during the descending of i from p−1 to 0. Then, the existence of the
desired numbers k0, k1, . . . , k7 follows from a simple analysis of possible cases.

Suppose that s[i(j)+1..n] has a prefix-palindrome centered at x with the minimal period
p. When i decreases, s[i(j)+1..n] grows and the prefix-palindrome “grows” simultaneously.
Then, before s[i(j)+1..n] loses the prefix-palindrome, we have |s[i(j)+1..n]| = len(x) for
some i ∈ [0..p). By Lemma 4, there are palindromes u′ and v′ such that |u′v′| = p and
s[n−len(x)+1..n] = (u′v′)r′u′ for r′ ≥ 1. If, for some smaller i ∈ [0..p), s[i(j)+1..n] again
acquires a prefix-palindrome with the minimal period p, then, by Lemma 4, the center x′
of this prefix-palindrome must coincide with the center of u′ or v′ from the decomposition.
Hence x′ ≤ x− p/2. Then, this prefix-palindrome can be lost only after p decrements of i
once we have had |s[i(j)+1..n]| = len(x). This proves the claim. J

We partition pre[p][0..p−1] into subarrays pre[p][k0..k1−1], . . . , pre[p][k6..k7−1] according
to Lemma 6. Consider a segment [a..b] ⊂ [0..p) such that φi1 = φi2 and φi1 6= −1 whenever
i1, i2 ∈ [a..b]. Since pre[p][i] = min{ans[left[p]+i+jp] : j ∈ [0..φi]} and, by Lemma 2, |ans[j]−
ans[j−1]| ≤ 1 for any j ∈ (0..n), we easily obtain |pre[p][i]− pre[p][i−1]| ≤ 1 for any i ∈ (a..b].
Therefore, by Lemma 6, each of the subarrays of pre either contains only +∞ or has a
structure similar to the structure of ans described in Lemma 2. We do not store the subarrays
that contain +∞ and encode all other subarrays in a way described for ans in Sect. 2.4: we
split them into blocks of length b and encode each block as its starting element and a 2b-bit
integer encoding the differences between adjacent elements (the last block may contain less
than b elements). The linear size of pre measured in machine words (but not in the number
of elements) follows from the overall linear running time of the function precalc maintaining
pre; this analysis is given below.

To perform ans[n+j] min← pre[p][r(j)] for all j ∈ [0..min{b, d′}], we concatenate 2b-bit
integers from the blocks covering the subarray ans[n..n+ min{b, d′}], 2b-bit integers from a
constant number of blocks covering the subarrays of pre[p][0..p−1] containing positions r(j)
for j ∈ [0..min{b, d′}], and some other lightweight auxiliary data similar to the data used in
the operation min← considered above; then we compute the resulting array ans[n..n+ min{b, d′}]
using the obtained bit string and a precomputed table of size o(n). This might require
to duplicate the content of pre[p] if p < min{b, d′} (see the shaded region in Fig. 2); these
duplications must be already precalculated in the tables. Note that thus defined changes of
ans may affect the whole subarray ans[n..n+b] and not only ans[n..n+ min{b, d′}]: e.g., if we

CPM 2017

23:10 Palindromic Length in Linear Time

. . . e a b a a b a b a a b a a b a b a a b a a b a

︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷︷︸︸︷︸ ︷︷ ︸ ︸ ︷︷ ︸
w

ũ ṽ ũ

v u v u
n′−|w|−left[p]

left[p]

nn′

Figure 4 Palindrome w with the center x, the minimal period p = 8; for i = 1, 2, 3, j = 0.

perform ans[n] min← x, then, to maintain the property of ans described in Lemma 2, we must also
perform ans[n+j] min← x+ j for j ∈ [1..b] (it is guaranteed by the algorithm that the elements
of ans[0..n−1] cannot be affected analogously since always |ans[n−1]− ans[n]| ≤ 1). Similar
“normalizations” must be included in the precomputed assignments ans[n+j] min← pre[p][r(j)]
for all j ∈ [0..min{b, d′}]. Thus, the structure of ans is preserved.

The computations seem to be quite sophisticated but, nevertheless, since all involved
structures occupy ε logn bits, for ε < 1, all required precalculations can be performed in
O(nε logO(1) n) time at the beginning of our algorithm. The tedious details are omitted here
and can be retrieved from the implementation [9].

3.2 Function precalc
Denote by n′ the value of n at the moment of the last call of precalc. (The first call of precalc
for n = 0 is trivial.) Our goal is to compute the array pre[p][0..p−1] for each p for which
there exists a p-series in s[0..n]. Note that since, as described above, pre[p][0..p−1] is stored
as a constant number of pointers to subarrays containing non-infinite values, we can fill
pre[p][0..p−1] with +∞ in O(1) time simply removing all these pointers.

The function precalc loops through all series in s[0..n] and processes each p-series as
follows: precalc computes the new value of left[p] in O(1) time and, if left[p] has changed since
s[0..n′] (this is where we really use the array left), then fills pre[p][0..p−1] with +∞ in O(1)
time; otherwise, precalc uses the array pre[p][0..p−1] calculated for s[0..n′]. In either case, for
each i ∈ [0..p), if there is an integer j ≥ 0 such that s[left[p]+i+jp..n′] does not have a prefix-
palindrome with the minimal period p and s[left[p]+i+jp..n] has such a prefix-palindrome,
then pre[p][i] is updated by performing pre[p][i] min← ans[left[p]+i+jp−1]. The methods by
which we find such i ∈ [0..p) and really perform the later assignments are described below. It
follows from the definition of pre that thus defined precalc computes the arrays pre[p][0..p−1]
for s[0..n].

Let us process all centers x for which there are i ∈ [0..p) and j ≥ 0 such that x is the center
of a prefix-palindrome of s[left[p]+i+jp..n] with the minimal period p but s[left[p]+i+jp..n′]
does not have a prefix-palindrome with the minimal period p. We consider two cases.

Case 1. Suppose that such x is less than n′+1 and the longest subpalindrome w in s[0..n′]
centered at x has the minimal period p. Clearly, the leftmost position of w is greater than
left[p] + i+ jp and w must be a suffix-palindrome of s[0..n′]. Let us describe all positions
hm = n′−|w|−m such that x is the center of a prefix-palindrome of s[hm+1..n] and is not
the center of a prefix-palindrome of s[hm+1..n′]. Obviously m > 0. After n′−|w|−left[p]+1
extensions of s[0..n′], the suffix-palindrome centered at x dies because it reaches left[p]
by its leftmost position (see Fig. 4). So, since w grows at most n − n′ times, we obtain
m ∈ [1..min{n−n′, n′−|w|−left[p]}]. For each such m, the prefix-palindrome of s[hm+1..n]
centered at x has length |w| + 2m and the minimal period p since the minimal period
of w, centered at x, is p and the palindrome with the length |w| + 2m and the center x,
for the given m, is a substring of the suffix of s with period p. Hence, we can perform

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:11

pre[p][(r−m) mod p] min← ans[n′−|w|−m], where r = n′ − |w| − left[p], for all such m. Among
these assignments there is the required pre[p][i] min← ans[left[p]+i+jp−1] (see Fig. 4). Since
n− n′ ≤ b, once x is known, we can perform all these assignments in O(1) time using range
operations and precomputed tables; the boundaries of subarrays of pre can be adjusted
appropriately after these calculations. Now it remains to find all such centers x.

By Lemma 3, there are palindromes ũ and ṽ such that p = |ũṽ| and w = (ũṽ)rũ for
r ≥ 1 (see Fig. 4). If the minimal period of (ũṽ)r−1ũ is p, then all strings s[h..n′], for
h ∈ (left[p]..n′−|w|], have prefix-palindromes of the form α(ũṽ)r−1ũ

←
α, where α is a suffix of

ũṽ, with the minimal period p. But, by our assumption, s[left[p]+i+jp..n′] cannot have such
a prefix-palindrome. Therefore, w is the baby in the p-series of the string s[0..n′], i.e., either
w = ũṽũ or w = ũṽũṽũ. We find the baby in O(1) time by the techniques described above
using an instance of the iterator and the list of all series of suffix-palindromes for the string
s[0..n′]; these iterator and list are further discussed below.

Case 2. It remains to detect all x such that x is the center of a prefix-palindrome of
s[left[p]+i+jp..n] with the minimal period p, for some i ∈ [0..p) and j ≥ 0, and either x > n′

or the minimal period of any subpalindrome in s[0..n′] centered at x is not p. Hence, a
subpalindrome with the minimal period p and the center x appeared after several extensions
of s[0..n′] and, thus, was a suffix-palindrome at that moment. To catch the moments when
growing suffix-palindromes acquire new minimal periods, we need a device tracking changes
of periods in all suffix-palindromes after extensions. The iterator can serve as such a device.

Let w be a suffix-palindrome of s[0..n′] with the minimal period p′. By Lemma 3, we have
p′ = |w| − |u|, where u is the longest proper suffix-palindrome of w. Suppose that s[0..n′]
is extended by the letter a = s[n′+1] and awa is a suffix-palindrome of the new string. By
Lemma 3, awa has period p′ iff aua is a suffix-palindrome of s[0..n′+1]. Thus, to detect new
suffix-palindromes with a given period p, we can track, during the extensions of s, changes
in the list of the centers of all suffix-palindromes. The iterator maintains such list. The
following lemma is a straightforward corollary of the proof of [7, Prop. 1].

I Lemma 7. The iterator maintains a linked list of the centers of all suffix-palindromes of
s[0..n]. The function add(a) removes a number of centers from the list, adds the centers
n+ 1

2 (if a = s[n]) and n+1 to the end of the list, and thus obtains a new list for the string
s[0..n]a; all in Ω(1 + c) time, where c is the number of removed centers.

We maintain an instance of the iterator for the previously processed string s[0..n′] and
store the list of the centers of all suffix-palindromes of s[0..n′] since the last call of precalc.
The function precalc performs add(s[n′+1]), . . . , add(s[n]) and thus consecutively obtains the
lists of the centers of all suffix-palindromes of s[0..n′+1], . . . , s[0..n].

Consider, for n′′ ∈ (n′..n], such list x1, . . . , xk for s[0..n′′−1] so that x1 < · · · < xk. By
Lemma 7, the call to add(s[n′′]) gives us a sublist xi1 , . . . , xic

of the centers removed from
x1, . . . , xk. By Lemma 3, for xi /∈ {xi1 , . . . , xic} the minimal period of the suffix-palindrome
with the center xi has changed iff xi+1 ∈ {xi1 , . . . , xic

}. We easily find all such xi parsing the
list xi1 , . . . , xic from left to right and compute the new period as p = len(xi)− len(nextPal(xi)).
Denote by ` the number that is equal to len(xi) for s[0..n′′]. By the definition of pre, we
must perform pre[p][r] min← ans[n′′−`], where r = (n′′ − `− left[p]) mod p, if the string s[0..n]
has a p-series. In this case, we must also perform pre[p][(r−m) mod p] min← ans[n′′−`−m]
for all m ∈ [0..min{n− n′′, n′′ − `− left[p]}] because the strings s[n′′−`−m..n] have prefix-
palindromes of length `+2m centered at xi with the minimal period p; after n′′−`− left[p]+1
extensions, such palindrome dies since it reaches left[p] by its leftmost position and thus its
period breaks. Since n − n′′ ≤ b, these assignments, for all such m, can be performed by

CPM 2017

23:12 Palindromic Length in Linear Time

range operations on pre and ans in O(1) time using precomputed tables like those described
in Sect. 2.4 (subarrays of pre[p] can be also adjusted appropriately).

Thus, precalc works in O(t+ q) time as required, where t is the number of series in s[0..n]
and q is the time required to perform the sequence of calls add(s[n′+1]), . . . , add(s[n]). This
finishes the proof of the linear time complexity of main algorithm.

References
1 Vladimir Arlazarov, Efim Dinic, Mikhail Kronrod, and Igor Faradzev. On economical

construction of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR,
194(11):1209–1210, 1970.

2 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,
Proc. of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
volume 2676 of LNCS, pages 55–69. Springer, 2003. doi:10.1007/3-540-44888-8_5.

3 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic al-
gorithm for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014.
doi:10.1016/j.jda.2014.08.001.

4 Zvi Galil and Joel I. Seiferas. A linear-time on-line recognition algorithm for “palstar”. J.
ACM, 25(1):102–111, 1978. doi:10.1145/322047.322056.

5 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing palindromic factorizations and palindromic covers on-line. In Alexander S.
Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner, editors, Proceedings of the 25th Annual
Symposium on Combinatorial Pattern Matching (CPM 2014), volume 8486 of LNCS, pages
150–161. Springer, 2014. doi:10.1007/978-3-319-07566-2_16.

6 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

7 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palk is linear recognizable
online. In Giuseppe F. Italiano, Tiziana Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques
Quisquater, and Roger Wattenhofer, editors, Proceedings of the 41st International Con-
ference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2015),
volume 8939 of LNCS, pages 289–301. Springer, 2015. doi:10.1007/978-3-662-46078-8_
24.

8 Glenn K. Manacher. A new linear-time "on-line" algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975. doi:10.1145/321892.321896.

9 Palindromic Length. Sources and tests for linear palindromic length problem, 2017. URL:
https://github.com/kborozdin/palindromic-length.

10 Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for pro-
cessing palindromes in strings. In Zsuzsanna Lipták and William F. Smyth, editors, Proc.
of the 26th International Workshop on Combinatorial Algorithms (IWOCA 2015), volume
9538 of LNCS, pages 321–333. Springer, 2015. doi:10.1007/978-3-319-29516-9_27.

11 Anatol O. Slisenko. A simplified proof of the real-time recognizability of palindromes on
turing machines. J. Soviet. Math., 15(1):68–77, 1977. doi:10.1007/BF01404109.

http://dx.doi.org/10.1007/3-540-44888-8_5
http://dx.doi.org/10.1016/j.jda.2014.08.001
http://dx.doi.org/10.1145/322047.322056
http://dx.doi.org/10.1007/978-3-319-07566-2_16
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1145/321892.321896
https://github.com/kborozdin/palindromic-length
http://dx.doi.org/10.1007/978-3-319-29516-9_27
http://dx.doi.org/10.1007/BF01404109

	Introduction
	Preliminaries

	High-Level Description of the Algorithm
	Naive approach
	Algorithm working in O(n*log(n)) time
	Sketch of the linear algorithm
	Organization of the arrays ans and pre

	Implementation of the Main Functions
	Function predict
	Function precalc

