Measurement of the b_0 Lifetime in $b_0'c+\bar{c}$ Decays in pp Collisions at $\sqrt{s}=1.96$ TeV

Aaltonen, Timo

2010

Aaltonen, T., Mehtälä, P., Orava, R., Saarikko, H., Österberg, K. & CDF Collaboration

2010, 'Measurement of the b_0 Lifetime in $b_0'c+\bar{c}$ Decays in pp Collisions at $\sqrt{s}=1.96$ TeV' Physical Review Letters, vol. 104, no. 10, pp. 102002. https://doi.org/10.1103/PhysRevLett.104.102002

http://hdl.handle.net/10138/24090
https://doi.org/10.1103/PhysRevLett.104.102002

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Measurement of the Λ^0 Lifetime in $\Lambda^0 \rightarrow \Lambda^+_c \pi^-$ Decays in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 University of Athens, 157 71 Athens, Greece
4 Institut de Física d’Altes Energies, Universitat Autònoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798
6 Istituto Nazionale di Fisica Nucleare Bologna, cc University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254
8 University of California, Davis, Davis, California 95616
9 University of California, Los Angeles, Los Angeles, California 90024
10 University of California, San Diego, La Jolla, California 92093
11 University of California, Santa Barbara, Santa Barbara, California 93106
12 Instituto de Física de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, PA 15213
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
19 University of Florida, Gainesville, Florida 32611
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138
24 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
25 University of Illinois, Urbana, Illinois 61801
26 The Johns Hopkins University, Baltimore, Maryland 21218
27 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
We report a measurement of the lifetime of the $Λ_0^b$ baryon in decays to the $Λ_+^cπ^−$ final state in a sample corresponding to 1.1 fb^{-1} collected in pp collisions at $\sqrt{s} = 1.96 \text{ TeV}$ by the CDF II detector at the Tevatron collider. Using a sample of about 3000 fully reconstructed $Λ_0^b$ events we measure $\tau(Λ_0^b) = 1.401 \pm 0.046 \text{ (stat)} \pm 0.035 \text{ (syst)} \text{ ps}$ (corresponding to $c\tau(Λ_0^b) = 420.1 \pm 13.7 \text{ (stat)} \pm 10.6 \text{ (syst)} \text{ μm}$, where c is the speed of light). The ratio of this result and the world average B^0 lifetime yields $\tau(Λ_0^b)/\tau(B^0) = 0.918 \pm 0.038 \text{ (stat and syst)}$, in good agreement with recent theoretical predictions.

PACS numbers: 14.20.Mr, 13.30.-a, 12.39.Hg
In the decays of beauty to charm hadrons the fundamental force underlying the decay of a b quark to a c quark is the weak interaction. However, the heavy b quark is surrounded by a cloud of light quarks and gluons so the strong interaction must be taken into account. In the limit of an infinite mass of the b quark, the heavy quark decouples from the light degrees of freedom. For a finite m_b the decay rates can be computed as a series expanded in the small parameter Λ_{QCD}/m_b, where m_b is the mass of the b quark and Λ_{QCD} is the energy scale of the QCD interactions within the hadron. This is known as the heavy-quark expansion (HQE) \cite{1}. The application of HQE to the decays of the $Λ_b^0$ baryon (udb) and the beauty mesons ($B^0, b\bar{d}, B^+_1, b\bar{u}$) does not result in an identical series. For example, in the $(\Lambda_{QCD}/m_b)^3$ term W-boson exchange contributions are quite different \cite{2}, leading to a prediction of $\tau(Λ_b^0)/τ(B^0) \neq 1$. Experimental studies of beauty hadron lifetimes therefore help us to test the theoretical understanding of the HQE series, and consequently the underlying QCD physics.

Over the past five years theoretical predictions of the lifetime ratio $\tau(Λ_b^0)/τ(B^0)$ have not agreed with experimental values. In 2004 an HQE calculation including $O(1/m_b^4)$ effects resulted in $\tau(Λ_b^0)/τ(B^0) = 0.86\pm0.05$ \cite{3}. This was in good agreement with the 2006 experimental world average of 0.804 ± 0.049 \cite{4}. In 2006 the CDF collaboration reported a measurement \cite{5} of the $Λ_b^0$ lifetime in the $Λ_b^0 → J/ψΛ^0$ channel such that $\tau(Λ_b^0)/τ(B^0)$ differed by $+2\sigma$ from the 2006 world average \cite{4}, was significantly higher than the 2004 HQE calculation \cite{3}, but was compatible with earlier HQE predictions \cite{6}. A more recent measurement by the DØ collaboration \cite{7} in the same channel leads to a value of $\tau(Λ_b^0)/τ(B^0)$ which is compatible with both the 2006 world average \cite{4} and the CDF value \cite{5}.

In this paper we present the first measurement of the $Λ_b^0$ lifetime in a fully hadronic final state. The data sample is produced in pp collisions at $\sqrt{s} = 1.96$ TeV at the Tevatron and corresponds to an integrated luminosity of 1.1 fb$^{-1}$. We reconstruct $Λ_b^0$ in the $Λ_b^0 → Λ^+_cπ^−$ decay channel where $Λ^+_c$ subsequently decays as $Λ^+_c → pK^−π^+$. Throughout the paper, reference to a specific charge state also implies the charge conjugate state.

The components of the CDF II detector \cite{8} most relevant for this analysis are the tracking system and the displaced vertex trigger system. The tracking system lies within a uniform axial magnetic field of 1.4 T. The inner tracking volume is instrumented with either 6 or 7 layers of double-sided silicon microstrip detectors up to a radius of 28 cm from the beamline \cite{9}. These surround a layer of single-sided silicon mounted directly on the beam pipe at a radius of 1.5 cm \cite{10}. This system provides an excellent resolution (about 40 µm) on the impact parameter (d_0), which is defined as the distance of closest approach of the charged particle to the pp interaction point in the plane transverse to the beam direction. The d_0 resolution of 40 µm includes an approximate 30 µm contribution from the uncertainty of the interaction point in the transverse plane (added in quadrature). The outer tracking volume contains an open-cell drift chamber (COT) up to the radius of 137 cm \cite{11}.

CDF II employs a three-level trigger system. The extremely fast tracker (XFT) \cite{12} at the first level groups all hits into tracks in the transverse plane. At the second level, the silicon vertex trigger (SVT) \cite{13} adds silicon hits to the tracks found by the XFT, improving the resolution of the track position and thus allowing selection based on the transverse displacement from the beam line that is measured in real time. The displaced vertex trigger \cite{14} requires two charged particles with momentum transverse to the beam direction (p_T) greater than 2 GeV/c, and with impact parameters in the range $0.12 < |d_0| < 1$ mm. The intersection point of the two particle trajectories must have a transverse displacement (L_{xy}) from the interaction point of at least 200 µm. The pair must also have a scalar sum $p_T(1) + p_T(2) > 5.5$ GeV/c. This trigger configuration based on a pair of tracks is called the two-track trigger (TTT) and is the basis for the collection of many fully hadronic bottom and charm decays at CDF.

We reconstruct a $Λ_b^0$ candidate via its decay to $Λ^+_cπ^−$, where the $Λ^+_c$ further decays to a $pK^−π^+$ final state. All four tracks are required to have a sufficient number of hits in the tracking detectors for high-quality position measurement. Several requirements are imposed to suppress background in the reconstructed sample which are optimized using simulated signal and data background samples \cite{15}. Each particle must have $|d_0| < 1000$ µm. We construct $Λ^+_c$ candidates by combining three tracks assuming the ($pK^−π^+$) hypothesis. The p candidate and the $π^−$ are required to have $p_T > 2.0$ GeV/c. The proton p_T must exceed the p_T of the $π^+$ from the $Λ^+_c$, which has the same charge. This prevents the same pair of
tracks being considered both as \((p, \pi^+)\) and as \((\pi^+, p)\). The three tracks from the \(\Lambda^+_c\) candidate are first constrained to a common vertex in a kinematic fit. Next we add a track and construct \(\Lambda^0_b\) candidates through a further kinematic fit, which intersects the fourth track with the \(\Lambda^+_c\) candidate trajectory. The mass of the \(\Lambda^+_c\) candidate is constrained to the world average \(\Lambda^+_c\) mass \((2.286 \text{ GeV}/c^2)\). This second kinematic fit allows us to calculate \(ct=L_{xy}cM/p_T\) and its uncertainty, \(\sigma_{ct}\), where \(c\) is the speed of light, and \(t\) and \(M\) are the proper decay time and measured mass of the \(\Lambda^+_c\), respectively.

We apply additional selection requirements in order to suppress background. The requirements on \(ct(\Lambda^0_b) > 250\ \mu m\), its significance \(ct(\Lambda^0_b)/\sigma_{ct} > 10\), and \(|d_0(\Lambda^0_b)| < 80\ \mu m\) primarily suppress the background arising from random combinations of tracks, many of which originate from the primary interaction point (combinatorial background). Another important source of background is the decay of \(B\) mesons with misidentified decay products. Decays like \(B^0 \to D^+\pi^-\) are especially insidious since they are abundant (compared to \(\Lambda^0_b \to \Lambda^+_c\pi^-\) decays) and \(D^+ \to K^-\pi^+\pi^+\) decays can easily mimic the \(\Lambda^+_c \to K^-\pi^+\pi^+\) signature. These backgrounds are suppressed by selecting a narrow region of the invariant mass spectrum of the \(\Lambda^+_c \to pK^-\pi^+\) candidate: \(|m(pK^-\pi^+) - m(\Lambda^+_c)_{PDG}| < 16 \text{ MeV}/c^2\). Further \(D^+\) candidates are removed by a requirement on the \(ct\) of \(\Lambda^+_c\) candidates with respect to the \(\Lambda^0_b\) vertex, since the \(\Lambda^+_c\) candidates are usually much shorter lived than the \(D^+\) candidates. We require \(-70 < ct(\Lambda^+_c \text{ w.r.t.} \Lambda^0_b) < 200\ \mu m\). Lastly, the TTT criteria are confirmed using the reconstructed candidate tracks.

The lifetime of the \(\Lambda^0_b\) baryon is determined from two sequential maximum likelihood fits. The first is a fit to the invariant mass of \(\Lambda^+_c\pi^-\) candidates and is used to establish the composition of the sample. This gives the normalization of each of the fit components for both the whole domain of \(4.82 < m(\Lambda^0_b) < 7.0 \text{ GeV}/c^2\), as well as the signal region \((5.565 < m(\Lambda^0_b) < 5.670 \text{ GeV}/c^2)\). The second fit is an unbinned maximum likelihood fit of \(ct\) and \(\sigma_{ct}\) in the signal region to extract the \(\Lambda^0_b\) lifetime with the normalizations of each component fixed.

The invariant mass distribution of \(\Lambda^+_c\pi^-\) candidates is shown in Fig. 1 with the fit projection overlaid. Small deviations of the model from data below the \(\Lambda^0_b\) mass do not affect the lifetime as they occur outside the signal region. The \(\Lambda^+_c\pi^-\) mass distribution is described by several components: the \(\Lambda^0_b \to \Lambda^+_c\pi^-\) signal, a combinatorial background, partially and fully reconstructed \(B\) mesons that pass the \(\Lambda^+_c\pi^-\) selection criteria, partially reconstructed \(\Lambda^0_b\) decays, and fully reconstructed \(\Lambda^0_b\) decays other than \(\Lambda^+_c\pi^-\) (e.g., \(\Lambda^0_b \to \Lambda^+_cK^-\)). The combinatorial background is modeled with an exponentially decreasing function of \(\Lambda^+_c\pi^-\) mass. All other components are represented in the fit by fixed shapes derived from Monte Carlo (MC) simulations whose relative contributions are constrained using data when possible. Significant differences between fit and data are only observed outside the signal region. The mass fit has 2905±58 \(\Lambda^0_b \to \Lambda^+_c\pi^-\) signal events, 252±46 other fully reconstructed \(\Lambda^0_b\) candidates (which are also used to determine the \(\Lambda^0_b\) lifetime), and 11% background in the signal region.

![Figure 1](https://example.com/figure1.png)

FIG. 1: The distribution of the invariant mass of \(\Lambda^0_b \to \Lambda^+_c\pi^-\) candidates (points) with the fit overlaid (solid black line).

Due to the trigger requirements on the track \(d_0\) and track-pair \(L_{xy}\), the observed \(\Lambda^0_b\) \(ct\) distribution is not a simple exponential. Consequently, an efficiency \((\epsilon(\text{ct}))\) must be included to model the acceptance of the trigger and offline selection. The largest corrections are due to the \(d_0\) requirements of the TTT. The two-dimensional \(ct - \sigma_{ct}\) probability density function (pdf) for the signal and other fully reconstructed \(\Lambda^0_b\) components is given by

\[
P(\text{ct}, \sigma_{\text{ct}}; S_{1,2}) = P(\text{ct}|\sigma_{\text{ct}}, S_{1,2}) \cdot P(\sigma_{\text{ct}}) \cdot \epsilon(\text{ct}).
\]

where \(S_{1,2}\) are the two \(\sigma_{\text{ct}}\) scale factors obtained from a two-Gaussian modeling of the resolution function in MC (one for each Gaussian). The scale factor is necessary because the kinematic fitter underestimates the uncertainty on the \(ct\) (the same scale factor is used for signal and background). \(P(\text{ct}|\sigma_{\text{ct}}, S_{1,2})\) is a one-dimensional conditional pdf for observing this value of \(ct\) given the true \(\Lambda^0_b\) lifetime \((\tau), \sigma_{\text{ct}}, \text{ and } S_{1,2}\). For the fully reconstructed \(\Lambda^0_b\) components this pdf is a decreasing exponential convoluted with the sum of the two resolution Gaussians. \(P(\sigma_{\text{ct}})\) is the pdf for observing \(\sigma_{\text{ct}}\) and is obtained from the sideband subtracted data distribution, where the sideband is defined as \(5.8 < m(\Lambda^0_b) < 7.0 \text{ GeV}/c^2\). For each background component Eq. 1 is modified in a suitable way, apart from the partially reconstructed \(B\) mesons, which do not populate the signal region and are therefore not included in the lifetime fit.

A sample of simulated signal events is used to extract \(\epsilon(\text{ct})\). This sample consists of single \(b\) hadrons generated with a \(p_T\) spectrum extracted from the data sample and decayed with EvtGen. This MC sample is further reweighted in order to match the data in a number of relevant variables: the choice of ‘trigger tracks’
(the pair of final state particles which cause the TTT to fire), the proton production angle in Λ⁺ rest frame which is sensitive to Λ₀ polarization, and the contributions of the Λ⁺ Dalitz components [19]. The TTT efficiency function is represented by a histogram calculated as $\epsilon(ct) = h(ct) / \sum_i \exp(ct, \sigma MC) \otimes R(S_{1,2}, \sigma_{ct})$. The numerator is a smoothed histogram of the ct for all MC events that pass the trigger and analysis selection criteria. Each bin of the denominator is calculated by summing the analytical ct distribution at the ct bin center over all events (indexed by i) that pass the criteria required to fill the numerator. The analytical ct distribution is an exponential convoluted with the resolution function R. Our approach assumes that the simulation of trigger and detector is quoted from a previous study [5] (2 m). The effect of an uncertainty in the combinatorial background relative to the outer tracking volume are taken into account. The uncertainty due to the background components normalization was taken into account by varying them according to their uncertainties derived from the mass fit (1.0 μm).

For each source of systematic uncertainty, we generate sets of events for about 500 pseudo experiments from a modified pdf and fit with both the standard and modified fits. The mean of the distribution of the difference between fit results obtained with the standard and modified pdf is used as the systematic uncertainty. We consider the systematic uncertainties in two groups based on whether they affect the TTT efficiency or not.

In the first group, the systematic uncertainty due to the alignment of the silicon detector is quoted from a previous study [3] (2.0 μm) where internal silicon sensor deformations and global misalignments of the silicon detector relative to the outer tracking volume are taken into account. The uncertainty due to the background component normalization was taken into account by varying them according to their uncertainties derived from the mass fit (1.0 μm).

In the second group of uncertainties, where the TTT efficiency is directly affected, the leading source is due to the slope of $R_c(L_{xy})$ (8.6 μm). The uncertainty due to the Λ⁺ Dalitz structure is evaluated by varying the relative contributions of each Dalitz component according to the world average uncertainty [10] (3.7 μm). The effect of an uncertainty in the combina-
torial background etemplate is computed by modifying it to a smoothed version of the actual upper sideband et distribution (2.9 μm). The uncertainty due to the particle identity of the tracks which fired the trigger is evaluated by varying the relative contributions of different trigger-track combinations in the MC (2.0 μm). The uncertainty due to the L3 π polarization is obtained by varying the slope of the MC reweighting factor by one-sigma from a straight line fit for the proton production angle in the Λ⁺ rest frame (1.4 μm). The uncertainty due to the transverse position of the pp primary interaction point is computed by dividing the MC into independent subsamples representing the extreme variations of the primary interaction point (1.2 μm). The uncertainty due to the TTT efficiency used for the B⁰ background is evaluated by tightening the mass cut on the D⁺π⁻ candidate in the underlying B⁰ MC reconstruction (1.0 μm). The uncertainty due to the lifetime assumed for the B⁰ background is obtained by varying this lifetime according to the world average uncertainty [16] (1.0 μm). The uncertainty due to a correlation between the τ and the model of the uncertainty of the transverse position of the pp primary interaction point is also computed by adding all the contributions in quadrature (τ (Λ⁰) = 10⁻³ ± 0.35 (syst) ps (corresponding to the world average uncertainty [16] (1.0 μm)).

In summary, using a sample of 2905 ± 58 fully reconstructed Λ⁰ → Λ⁺π⁻ decays we measure the lifetime of the Λ⁰ baryon to be τ(Λ⁰) = 1.401 ± 0.046 (stat) ± 0.035 (syst) ps (corresponding to cτ(Λ⁰) = 420.1 ± 13.7 (stat) ± 10.6 (syst) μm where c is the speed of light). This is the single most precise measurement of the Λ⁰ lifetime.

Using the current world average for the B⁰ lifetime [16], we obtain τ(Λ⁰)/τ(B⁰) = 0.918 ± 0.038 (stat + syst). There is good agreement between our result and the current world average of τ(Λ⁰)/τ(B⁰) = 0.99 ± 0.10 [16], and between our result and the previous CDF result [8]. This measurement is also compatible with the current HQE value [8] of τ(Λ⁰)/τ(B⁰) = 0.86 ± 0.05, thus supporting the HQE picture of weak decays of heavy baryons.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

(D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005)).
