Search for New Bottomlike Quark Pair Decays QQ !'(tW')(t W±) in Same-Charge Dilepton Events

Aaltonen, T.

2010

Aaltonen, T., Mehtala, P., Orava, R., Saarikko, H., Osterberg, K. & CDF Collaboration

http://hdl.handle.net/10138/24161
https://doi.org/10.1103/PhysRevLett.104.091801

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Search for Fermion-Pair Decays $Q\bar{Q} \to (t\bar{t}^{\pm})(t\bar{t}^{\pm})$ in Same-Charge Dilepton Events

We report the most restrictive direct limits on masses of fourth-generation down-type quarks b', and quark-like composite fermions (B or $T_{5/3}$), decaying promptly to tW^\pm. We search for a significant excess of events with two same-charge leptons (e, μ), several hadronic jets, and missing transverse energy. An analysis of data from $p\bar{p}$ collisions with an integrated luminosity of 2.7 fb^{-1} collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits $m_{b'} > 338 \text{ GeV}/c^2$ and $m_{B_{5/3}} > 365 \text{ GeV}/c^2$ at 95% confidence level.

PACS numbers: 12.60.-i, 13.85.Rm, 14.65.-q, 14.80.-j

*Deceased

†With visitors from "University of Massachusetts Amherst,"
The standard model (SM) of particle physics accommodates three generations of fundamental quarks and leptons, but does not prohibit a fourth. Recent measurements of charge-parity (CP) nonconservation in B-meson decays [1] have two features in common: they are more than two standard deviations from SM expectations, and they are sensitive to contributions [2] from a fourth-generation up-type quark, \(t'\). This pattern of measurements [3-6], if genuine, warrants a search for another generation of quarks or a multiplet of quark-like objects. Another quark generation (Cf. [7]) could provide sources of particle-antiparticle asymmetries large enough to account for the baryon asymmetry of the universe [8], and accommodate a heavier Higgs boson (the source of electroweak symmetry breaking and mass generation) than a three-generation model [9].

This Letter reports a search for heavy particles \(Q\) decaying to a top quark and a W boson at a mass scale relevant to both the B-meson anomalies and the Higgs mechanism. We search for pair-production of \(QQ\) via strong interactions, where \(Q\) is either a fourth-generation down-type quark \(b'\) or a quark-like (non-hadronic) composite fermion \(B\) or \(T_{5/3}\) [10]. The \(B\) and \(T_{5/3}\) (with 5/3 electron charge) that we consider might arise from symmetries, consistent with precise electroweak measurements [11, 12]. If \(T_{5/3}\) exists, the existence of \(B\) is implied, doubling the expected event rate. Many additional models of new phenomena that provide a Higgs mechanism also predict particles with large couplings to the third-generation \(t\) quark and similar decay modes. For instance, models of warped extra dimensions, equivalent to models of strongly interacting composite particles, predict fermion excitation with the quantum numbers of quarks. A summary is given in [13].

In each case, \(Q \rightarrow tW^\mp, t \rightarrow bW^+\) [14]. We investigate the case in which two same-charge W bosons decay leptonically (including \(\tau\) decays to \(e\) or \(\mu\)). This is the first search for quark-like particles in this mode [15], achieving the most sensitive direct limits on short-lived fourth-generation particles. (We do not consider long-lived particles, since displaced vertices require different analysis methods.)

We assume that \(Q\) decays exclusively to \(tW^\mp\). This is expected for \(B\) and \(T_{5/3}\), and for \(b'\) it is expected [16] under the assumptions that (a) coupling to light quarks is insignificant, (b) \(m_{b'} > m_{top} + m_W = 255\text{GeV}/c^2\), and (c) \(|m_{b'} - m_W| < m_W\). These assumptions are justified by experimental constraints. A search for \(Q \rightarrow W+\text{jet}\) [17] found \(m_{b'} > 311\text{GeV}/c^2\), implying a similar limit on \(m_{b'}\) if the \(b'\) decay to this channel is significant. Combining this limit with results of a search for \(Q \rightarrow Z+\text{jets}\) [18] and an analysis of branching fractions for \(b'\) [16], we infer \(m_{b'} > 255\text{GeV}/c^2\). A fourth generation is most consistent with precise electroweak measurements when the mass splitting \(\Delta m\) between \(b'\) and \(t'\) is less than the W-boson mass but non-zero; ref. [9] gives \(\Delta m \approx 50\text{GeV}/c^2\), based on \(|m_{b'} - m_W| < m_W\).

We use a data sample corresponding to an integrated luminosity of 2.7 fb\(^{-1}\) collected with the CDF II detector [19] at the Tevatron p\(\overline{p}\) collider at Fermilab. The data acquisition system is triggered by \(e\) or \(\mu\) candidates with \(p_T > 18\text{GeV}/c\) [20]. We require the \(\ell^+\ell^+\ell^−\overline{\ell}\) signature, following [21]: two same-charge reconstructed leptons (\(e\) or \(\mu\)) with pseudorapidity magnitude \(|\eta| < 1.1\) and \(p_T > 20\text{GeV}/c\), where at least one lepton is isolated [22]; at least two jets with \(E_T > 15\text{GeV}\) and \(|\eta| < 2.4\); at least one of the jets with evidence of a long-lived particle (b-tag) using the tight sec\(\gamma\text{VTX}\) algorithm [23]; and missing transverse energy \(E_T > 20\text{GeV}\) [24].

The dominant background comes from events in which one of the leptons is a misidentified light-flavor jet or a lepton from the decay of a bottom or charmed hadron in a heavy flavor jet, largely from W production in association with light or heavy flavor jets or from t\(\overline{t}\) production with semi-leptonic decays. This background is described using a lepton misidentification model from inclusive jet data [25] applied to W+jet events. In same-charge dilepton control regions without a b-tag requirement, this model describes well the kinematics of observed events with large missing transverse energy. Nevertheless, the requirement of a b-tag in the final selection introduces uncertainty regarding the misidentification model, leading to a final 100% systematic uncertainty, as described in [21].

Other backgrounds include processes that produce electron-positron pairs. These may be reconstructed with the same charge due to asymmetric \(\gamma\) conversions in the
of the dilepton invariant mass spectrum and yield in tag or missing transverse energy requirement. The shape
µµ
and
b
µµ
have negligible contributions from hard bremsstrahlung,

| TABLE I: Expected background contributions to the
<table>
<thead>
<tr>
<th>Source</th>
<th>ee</th>
<th>µµ</th>
<th>eµ</th>
<th>Total ℓℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>0.01 ± 0.01</td>
<td>0</td>
<td>0.02 ± 0.02</td>
<td>0.03 ± 0.03</td>
</tr>
<tr>
<td>(b)</td>
<td>0.06 ± 0.04</td>
<td>0</td>
<td>0.09 ± 0.03</td>
<td>0.15 ± 0.05</td>
</tr>
<tr>
<td>(c)</td>
<td>0.6 ± 0.6</td>
<td>0.3 ± 0.3</td>
<td>0.6 ± 0.5</td>
<td>1.6 ± 1.4</td>
</tr>
<tr>
<td>Total</td>
<td>0.7 ± 0.6</td>
<td>0.3 ± 0.3</td>
<td>0.6 ± 0.5</td>
<td>1.6 ± 1.4</td>
</tr>
<tr>
<td>Data</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

FIG. 1: Missing transverse energy in events with same-charge leptons in 2.7 fb−1. The right outer-most bin includes over-
flow events with \(\not{E_T} > 160\) GeV.

process \(e^-_{\text{hard}} \rightarrow e^-_{\text{soft}} \gamma \rightarrow e^+_{\text{hard}} e^-_{\text{soft}}\), where hard and soft refer to large and small transverse momentum, re-
spectively. The major contributions from this mechanism are from events with a Z or virtual \(\gamma\) in association with
jets \((Z/\gamma^*+\text{jets})\) and \(t\bar{t}\) production with fully leptonic decays.

Estimates of the backgrounds from \(Z/\gamma^*+\text{jets}\) pro-
cesses are made with the ALPGEN [26] v2.10 simulation code interfaced with PYTHIA 6.325 [27] in the MLM
scheme [26] for the hadronization and fragmentation and normalized to data in opposite-charge events in the Z
mass region. The detector response for both \(Z+\text{jets}\) and \(t\bar{t}\) processes is evaluated using the CDF simulation pro-
gram CDFSIM [28], where, to avoid double-counting, the
same-charge leptons are required to originate from the
W or Z decays rather than from misidentified jets.

To validate the modeling of the rate of hard bremsstrahlung from electrons, we compare our predic-
tion for the contribution of \(Z \rightarrow e^+e^-\) to the observed sample of same-charge electrons or positrons with a b-
tag and missing transverse energy requirement. The shape
of the dilepton invariant mass spectrum and yield in the Z mass region \((M_{\ell\ell} = [M_Z - 20, M_Z + 20])\) agrees
well with the prediction. In addition, \(\mu\mu\) and \(e\mu\) events have negligible contributions from hard bremsstrahlung, as predicted. Figure 1 shows that the missing transverse

energy in inclusive same-charge leptons is well
described.

The \(t\bar{t} \rightarrow t^+b\bar{t}^−\bar{b}\) backgrounds are estimated using events generated in PYTHIA 6.216 at \(m_t = 172.5\) \text{GeV}^2, assuming a \(t\bar{t}\) production cross-section of 7.2 pb. Model-
ing of the \(t\bar{t}\) contribution is validated by comparing pre-
dicted and observed rates of events with opposite-charge
leptons, large \(E_T\), and at least one b-tagged jet, where \(t\bar{t}\)
is expected to dominate.

Backgrounds to the \(\ell^±\ell^±bj\not{E_T}\) signature with real same-charge leptons are rare in the SM; they are largely
from WZ and ZZ production and are highly suppressed by the requirement of a b-tag. Backgrounds from diboson
production WW, WZ, ZZ, Wγ, and Zγ in association with b jets are modeled with PYTHIA 6.216 and BAUR [29]
generators.

Backgrounds from charge mismeasurement are in-
significant, as the charge of a particle with \(p_T \approx
100\) \text{GeV}/c is typically determined with more than 5σ sig-
nificance [30]. Charge mismeasurement is very rare in this range, confirmed by the absence of any strong fea-

| TABLE II: Theoretical cross-sections (\(\sigma_{\text{NLO}}\) in fb [36, 37]),
<table>
<thead>
<tr>
<th>Source</th>
<th>(\sigma_{\text{NLO}})</th>
<th>(\sigma_{\text{exp}/d})</th>
<th>(\sigma_{\text{obs}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>b'orB</td>
<td>227</td>
<td>176</td>
<td>137</td>
</tr>
<tr>
<td>N</td>
<td>13.4</td>
<td>9.6</td>
<td>7.5</td>
</tr>
<tr>
<td>(\sigma_{\text{exp}/d})</td>
<td>67</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>(\sigma_{\text{obs}})</td>
<td>67</td>
<td>96</td>
<td>83</td>
</tr>
</tbody>
</table>

\(T_{5/3}\) is nearly identical.

The \(T_{5/3} + B\) signals are shown at the best-fit rate for \(m_Q = 330\) \text{GeV}/c^2. The fitted size and
shape for the \(T_{5/3} + B\) signal is nearly identical.

\(+B\) \(\sigma_{\text{exp}/d}\) \(\sigma_{\text{obs}}\)
structures in dilepton invariant mass in the Z mass region in same-charge muon events. The largest potential source comes from $t\bar{t}$ events, in which the lepton momenta are typically smaller than 100 GeV/c. The final background estimates are given in Table I.

The b' and $T_{5/3} + B$ signals are modeled with the MADGRAPH simulation program following the minimal composite Higgs model described in [10] and paired with PYTHIA for hadronization and fragmentation. The acceptance is approximately 2.2%, nearly independent of heavy quark masses in the range 300–400 GeV/c². The expected numbers of events for b' (or B), and $T_{5/3} + B$ are given in Table II.

We observe two events in the signal region, in agreement with the expected backgrounds (see Table I). To calculate the most likely signal cross section, we perform a binned maximum-likelihood fit to the number of reconstructed jets. Figure 2 shows the number of reconstructed jets in the observed events, as well as the signal distribution with the best-fit value of the signal cross section. Kinematics of the two signal events is shown in Fig. 3 and the p_T values are given in Table III.

We construct confidence intervals [31] in the theoretical cross section by generating ensembles of simulated experiments that describe expected fluctuations of statistical and systematic uncertainties, including uncertainties in the jet-energy scale [32], gluon radiation [33], signal and background normalization, and parton distribution functions [34, 35]. The median expected and observed limits along with the theoretical next-to-leading-order (NLO) cross section [36, 37] are given in Table II and shown in Fig. 4.

We convert limits on the pair-production cross sections to limits on the fermion masses and obtain $m_{b'}, m_B > 338$ GeV/c² and $m_{T_{5/3}} > 365$ GeV/c² at 95% confidence level. The two events observed are consistent with the predicted number of background events, although we note that the $e\mu$ event has a number of jets characteristic of the signal, reducing the observed lower limits from what is expected. This is the most restrictive direct lower limit on the mass of a down-type fourth-generation quark, significantly reducing the allowed SM mass range, and the first lower limits on the masses of an exotic doublet $T_{5/3} + B$, which may figure prominently in future searches.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of Canada; the National Science Council of the

FIG. 3: Event displays for the observed three-jet, $\mu\mu$ event (a,b) and the five-jet, $e\mu$ event (c,d). Shown in (a) and (c) are views of the events along the beam axis; jets shown as cones, electrons as solid lines, muons as dotted lines and missing transverse energy as an arrow; lengths are proportional to p_T (see Table III). Shown in (b) and (d) are views of the events in $\eta - \phi$; jets shown as open circles, electrons as filled circles and muons as dashed circles; radii are proportional to p_T.

TABLE III: Transverse momentum (in GeV/c) of leptons and transverse energy (in GeV) of jets in the two events with the $\ell^+\ell^- b\bar{b}\not{E}_T$ signature.

<table>
<thead>
<tr>
<th>Event</th>
<th>ℓ_1</th>
<th>ℓ_2</th>
<th>jet_1</th>
<th>b-jet</th>
<th>\not{E}_T</th>
<th>other jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+\mu^-$</td>
<td>80</td>
<td>31</td>
<td>78</td>
<td>25</td>
<td>87</td>
<td>40</td>
</tr>
<tr>
<td>$e^+\mu^-$</td>
<td>73</td>
<td>21</td>
<td>60</td>
<td>42</td>
<td>27</td>
<td>39, 33, 24</td>
</tr>
</tbody>
</table>
Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[1] Specifically, we refer to the mixing-induced CP asymmetry in the decays \(B_s \to J/\psi\phi \) [3], the difference between direct CP asymmetries in the decays \(B^0 \to K^+\pi^- \) and \(B^+ \to K^+\pi^0 \) [4, 6], and the values of mixing-induced CP asymmetry obtained from \(B^0 \to J/\psi K_s^0 \) or \(B^0 \to (\phi, \eta', K^0\bar{K}^0) \) [5, 6].

[14] Unless otherwise indicated, particle types and decay processes imply also their charge conjugates.

[20] CDF uses a cylindrical coordinate system with the \(z \) axis along the proton beam axis. Pseudorapidity is \(\eta \equiv -\ln(\tan(\theta/2)) \), where \(\theta \) is the polar angle relative to the proton beam direction, and \(\phi \) is the azimuthal angle while \(p_T = |p| \sin \theta, E_T = E \sin \theta \).

[22] A lepton is isolated if the calorimeter energy in a cone \(\Delta R < 0.4 \) surrounding the lepton is less than 10% of the energy of the lepton.

[24] Missing transverse energy, \(E_T \), is defined as the magnitude of the vector \(-\sum_i E_T^i \hat{n}_i \) where \(E_T^i \) are the magnitudes of transverse energy contained in each calorimeter tower \(i \), and \(\hat{n}_i \) is the unit vector from the interaction vertex to the tower in the transverse \((x, y) \) plane. \(E_T \) is further corrected for the energy of identified muons.

