Observation of Exclusive Charmonium Production and $^{33}\Lambda_1^1$ in pp Collisions at $\sqrt{s}=1.96$ TeV

Aaltonen, T.

2009

http://hdl.handle.net/10138/24421
https://doi.org/10.1103/PhysRevLett.102.242001

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Observation of Exclusive Charmonium Production and $\gamma\gamma \rightarrow \mu^+\mu^-$
in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 University of Athens, 57 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798
6 Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254
8 University of California, Davis, Davis, California 95616
9 University of California, Los Angeles, Los Angeles, California 90024
10 University of California, San Diego, La Jolla, California 92093
11 University of California, Santa Barbara, Santa Barbara, California 93106
12 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, PA 15213
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 400 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
19 University of Florida, Gainesville, Florida 32611
20 Laboratori Nazionali di Frascati, University of Rome, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
In CDF we have observed the reactions $p + \bar{p} \rightarrow p + X + \bar{p}$, with X being a centrally produced $J/\psi, \psi(2S)$ or χ_c, and $\gamma \gamma \rightarrow \mu^+ \mu^-$, in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The event signature requires two oppositely charged central muons and either no other particles, or one additional photon, detected. Exclusive vector meson production is as expected for elastic photoproduction, $\gamma + p \rightarrow J/\psi(\psi(2S)) + p$, observed here for the first time in hadron-hadron collisions. We also observe exclusive $\chi_{c0} \rightarrow J/\psi + \gamma$. The cross sections $\frac{d\sigma}{dy}|_{y=0}$ for $J/\psi, \psi(2S)$ and χ_{c0} are...
In central exclusive production processes, \(p + \bar{p} \rightarrow p + X + \bar{p} \), the colliding hadrons emerge intact with small transverse momenta, \(p_T \), and the produced state \(X \) is in the central region, with small rapidity \(|y| \), and is fully measured. If regions of rapidity exceeding about 5 units are devoid of particles, only photon and pomeron [2], exchanges are significant, where \(\mathcal{IP} \) consists mostly of two gluons in a color singlet state with charge parity \(C = +1 \). Odderon, \(O \), exchange, with 3 gluons in a \(C = -1 \) state and \(\mathcal{P} \), is allowed in \(pp \), but not in \(ep \), collisions, and would appear as an enhancement in exclusive \(J/\psi \) and \(\psi(2S) \) production in \(pp \) compared to the expectation from pure photoproduction in \(ep \). Using the CDF II detector at the Fermilab Tevatron, we previously observed [6] \(p + \bar{p} \rightarrow p + e^+e^- + \bar{p} \) in agreement with QED, and found candidates [7] for \(p + \bar{p} \rightarrow p + \gamma + \bar{p} \) consistent with QCD expectations [8]. In this paper we report measurements of exclusive dimuon production, \(X = \mu^+\mu^- \), with \(M_{\mu\mu} \in [3.0, 4.0] \text{ GeV/c}^2 \), directly (QED, Fig.1a) or from photoproduced \(J/\psi(3097) \) or \(\psi(2S)(3686) \) (Fig.1b) decay, and \(\chi_{ca}(3415) \rightarrow J/\psi + \gamma \rightarrow \mu^+\mu^-\gamma \) (Fig.1c). Lower masses were excluded by muon range, and higher masses by trigger rate limitations. Exclusive photoproduction of vector mesons has been measured in \(ep \) collisions at HERA [9], but not previously observed in hadron-hadron collisions. The theoretical uncertainty on the QED cross section is < 0.3%; this process is distinct from Drell-Yan \((q\bar{q} \rightarrow \mu^+\mu^-) \), which is negligible in this regime.

At the Large Hadron Collider, LHC, in \(pp \) collisions with \(\sqrt{s} = 10-14 \text{ TeV} \), central exclusive production of states such as \(X = H \) and \(W^+W^- \), where \(H \) is a Higgs boson, are allowed [10]. Apart from their intrinsic interest, our measurements confirm the viability of the proposed LHC studies. The \(p + \chi_{ca} + \bar{p} \) (Fig.1c) and \(p + H + \bar{p} \) (as Fig.1c, but with a top quark loop) cross sections are related [11], and \(p + \mu^+\mu^- + p \) can be used to calibrate forward proton spectrometers.

We used \(pp \) collision data at \(\sqrt{s} = 1.96 \text{ TeV} \) with an integrated luminosity \(L = 1.48 \text{ fb}^{-1} \) delivered to the CDF II detector. This is a general purpose detector described elsewhere [12]. Surrounding the collision region is a tracking system consisting of silicon microstrip detectors and a cylindrical drift chamber (COT) in a 1.4 Tesla solenoidal field. The tracking system has \(\approx 100\% \) efficiency for reconstructing isolated tracks with \(p_T \geq 1 \text{ GeV/c} \) and \(|\eta| < 0.6 \) [1]. A barrel of 216 time-of-flight counters (ToF) outside the COT is surrounded by calorimeters with separate electromagnetic (EM) and hadronic sections covering the range \(|\eta| < 3.6 \). Drift chambers outside the calorimeters were used to measure muons with \(|\eta| < 0.6 \) [13]. The regions 3.6 < |\eta| < 5.2 are covered by lead-liquid scintillator calorimeters [14]. Gas Cherenkov counters covering 3.7 < |\eta| < 4.7 determined the luminosity with a 6\% uncertainty [15]. We did not have detectors able to measure the forward \(p \) and \(\bar{p} \), but beam shower scintillation counters (BSC1-BSC3), located along the beam pipe, detected products of \(p(\bar{p}) \) fragmentation, such as \(p + p\pi\pi \), with \(|\eta| < 7.4 \).

The level 1 trigger required at least one muon track with \(p_T > 1.4 \text{ GeV/c} \) and no signal in BSC1 (5.4 \(\leq |\eta| \leq 5.9 \), and a higher level trigger required a second track with opposite charge. The offline event selection followed closely that described in Ref. [6], where we observed exclusive \(e^+e^- \) production. We required two oppositely charged muon tracks, each with \(p_T > 1.4 \text{ GeV/c} \) and \(|\eta| < 0.6 \), accompanied by either (a) no other particles in the event, or (b) only one additional EM shower with \(E_{EM} \leq 80 \text{ MeV} \) and \(|\eta| < 2.1 \). Condition (a) defines an exclusive dimuon event. The exclusivity efficiency \(\epsilon_{\text{exc}} \) is the probability that the exclusive requirement is not spoiled by another inelastic interaction in the same bunch crossing, or by noise in a detector element. This efficiency was measured [6] as the fraction of bunch crossing triggers that pass the exclusivity requirement (a). We found \(\epsilon_{\text{exc}} = 0.093 \) with negligible uncertainty. The product \(\epsilon_{\text{exc}} \times L = L_{\text{eff}} = 139 \pm 8 \text{ pb}^{-1} \) was the effective luminosity for single interactions.

After these selections, cosmic rays were the main background. They were all rejected, with no significant loss of real events, by timing requirements in the ToF counters and by requiring the 3D opening angle between the muon tracks to be \(\Delta \theta_{3D}(\mu\mu) < 3.0 \text{ rad} \). Within a fiducial kinematic region (FKR): \(|\eta(\mu)| < 0.6 \), and \(M_{\mu\mu} \in [3.0, 4.0] \text{ GeV/c}^2 \), there are 402 events with no EM shower. The \(M_{\mu\mu} \) spectrum is shown in Fig.2. The \(J/\psi \) and \(\psi(2S) \) are prominent, together with a continuum. The spectrum is

\[3.92 \pm 0.25(\text{stat}) \pm 0.52(\text{syst}) \text{ nb}, \quad 0.53 \pm 0.09(\text{stat}) \pm 0.10(\text{syst}) \text{ nb}, \quad \text{and} \quad 76 \pm 10(\text{stat}) \pm 10(\text{syst}) \text{ nb} \]
well fitted by two Gaussians with expected masses and widths (dominated by the resolution) and a continuum whose shape is given by the product of the QED spectrum (γγ → μ⁺μ⁻), acceptance, and efficiency, as shown in Fig.2 (inset). The numbers of events from the fit are given in Table I, with statistical uncertainties. The numbers given in Table I for backgrounds, efficiencies, and non-exclusivity show systematic uncertainties estimated by varying parameters within acceptable bounds.

Backgrounds to exclusive μ⁺μ⁻ events are (see Table I) (a) proton fragmentation, if the products are not detected in the forward detectors, (b) for the J/ψ, χc0 events with a photon that did not give an EM shower above 80 MeV, and (c) events with some other particle not detected. The probability of a p or ¯p fragmenting at the p directs(p*) vertex was calculated with the LPAIR Monte Carlo (MC) simulation 17 to be 0.17±0.02(syst), and the probability that all the fragmentation products have |η| > 7.4 to be 0.14±0.02(syst). If a proton fragments, the decay products may not be detected through BSC inefficiency, estimated from data to be 0.08±0.01. The fragmentation probability at the p directs(p*) vertex was taken from the ratio of single diffractive fragmentation to elastic scattering at the Tevatron 18 to be 0.24±0.05.

We compared the kinematics of the muons, e.g. pT(μ⁺μ⁻) and ∆φ(μ⁺μ⁻), with simulations for the three classes: J/ψ, ψ(2S) 19, and QED 17 with M_{μμ} ∈ [3.2,3.6] GeV/c² to exclude the J/ψ and ψ(2S). The distributions agree well with the simulations; the few events that are outside expectations are taken to be non-exclusive background. Figure 3 shows the distributions of pT(μ⁺μ⁻). As expected, <pT> is smaller for the QED process, and the data agree well with STARLIGHT 19, apart from two events with pT > 0.8 GeV/c where no events are expected. Comparing data with LPAIR we estimate that the non-exclusive background is (9±5)% of the observed(QED) events. The ψ(2S) data are well fitted by the STARLIGHT photoproduction simulation 19. The distribution of pT(J/ψ) is well fitted by STARLIGHT, apart from five events with pT(J/ψ) > 1.4 GeV/c (Fig. 3b). These could be due to non-exclusive background, some χc0 radiative decays with an undetected photon, or an odderon component.

To measure χc0 production we required one EM shower with E^{EM}_{ν} > 80 MeV in addition to the two muons; if
two adjacent towers had enough energy they were combined. There are 65 events in the J/ψ peak and eight continuum events; these are likely to be $\gamma\gamma \rightarrow \mu^+\mu^-$ with a bremsstrahlung. We interpret the 65 events as $\chi_{c0} \rightarrow J/\psi + \gamma$ production and decay. The distribution of the mass formed from the J/ψ and the EM shower energy, while broad, has a mean value equal to the χ_{c0} mass. The E_T^{EM} spectrum is well fitted by an empirical function which extrapolates to only $3.6 \pm 1.3 (syst) \chi_{c0}$ candidates with showers below 80 MeV. The $p_T(J/\psi)$ and $\Delta\phi_{\mu\mu}$ distributions for the events with an E_T^{EM} signal are consistent with all these J/ψ being from χ_{c0} decay, as simulated by chicmc [20]. Additional photon inefficiency comes from conversion in material, $7 \pm 2\%$, and dead regions of the calorimeter, $5.0 \pm 2.5\%$, giving a total inefficiency $17 \pm 4\%$, which gives a background to exclusive J/ψ of $4.0 \pm 1.6\%$ (all errors syst.).

We calculated acceptances and efficiencies using the LPAIR [17] and STARLIGHT [19] MC generators for QED, J/ψ and $\psi(2S)$, and chicmc [20] for χ_{c0} production. Generated events were passed through a GEANT-based [21] simulation of the CDF detector. The trigger efficiency for muons rose steeply between 1.4 GeV/c and 1.5 GeV/c, where it exceeded 90%. As we triggered on one muon, the trigger efficiency for events with two muons was $>99\%$ for $M_{\mu\mu} > 3$ GeV/c.

Figure 2 (inset) shows the subset of the Fig.2 data above 3.15 GeV/c (to exclude the J/ψ), excluding the bin $3.65-3.75$ GeV/c which contains the $\psi(2S)$. The curve shows the product of the QED spectrum and acceptance \times efficiency, $A\varepsilon$, with only the normalization floating, from the 3-component fit to the full spectrum. The continuum data agrees with the QED expectation. The integral from 3 GeV/c to 4 GeV/c is $77 \pm 9 ($stat $)$ events, and after correcting for backgrounds and efficiencies (Table I), the measured cross section for QED events with $|\eta(\mu^\pm)| < 0.6$ and $M_{\mu\mu} \in [3.0, 4.0]$ GeV/c is $\sigma = 2.7 \pm 0.3 ($stat $) \pm 0.4 ($syst $)$ pb, in agreement with the QED prediction 2.18 ± 0.01 pb [17].

For the prompt J/ψ and $\psi(2S)$ cross sections we took the number of events from the Gaussian fits, subtracted backgrounds and corrected for $A\varepsilon$ to obtain $B \times \sigma_{FKR}$ for both muons in the fiducial kinematic region (see Table I). To obtain $d\sigma_{FKR}/dy$ we used the STARLIGHT MC, which gives the ratio of these two cross sections for each resonance, and divided by the branching fractions B. We found $d\sigma_{FKR}/dy(J/\psi) = 3.92 \pm 0.25 ($stat $) \pm 0.52 ($syst $)$ nb. This agrees with the predictions $2.7^{+0.9}_{-0.2}$ nb [19] and 3.4 ± 0.4 nb [22] among others [23, 24]. We found $d\sigma_{FKR}/dy(\psi(2S)) = 0.53 \pm 0.09 ($stat $) \pm 0.10 ($syst $)$ nb compared with a prediction $0.46^{+0.11}_{-0.04}$ nb. The ratio $R = \psi(2S)/\psi(2S) = 0.14 \pm 0.05$ is in agreement with the HERA value 0.166 ± 0.012 at similar $\sqrt{s(\gamma p)}$.

After correcting the 65 χ_{c0} candidates for backgrounds and efficiencies, and applying the branching fraction $B(\chi_{c0} \rightarrow J/\psi + \gamma) = 0.0128 \pm 0.0011$ [16] we found $d\sigma_{FKR}/dy|_{y=0}(\chi_{c0}) = 76 \pm 10 ($stat $) \pm 10 ($syst $)$ nb. The $\chi_{c2}(3556)$ may be present, although it is strongly suppressed by the $J_z = 0$ rule [11] and is forbidden at 0° scattering angle. Exclusive $gg \rightarrow \chi_{c1}(3511), J^{PC} = 1^{++}$ is forbidden by the Landau-Yang theorem, but may occur with off-shell gluons [25]. It is nevertheless forbidden by symmetry arguments [26] when both p and \bar{p} scatter at 0°.

Because of the limited $M(J/\psi + \gamma)$ resolution we cannot distinguish these states; we assume χ_{c1} and χ_{c2} to be negligible. If several states χ_{c0} are present, $\sum B\sigma_{FKR} = 8.0 \pm 0.9 ($stat $) \pm 0.9 ($syst $)$ pb. Theoretical predictions have large (often unstated) uncertainties, but are compatible with our measurement. Ref. [11] predicted $d\sigma_{FKR}/dy|_{y=0}(\chi_{c0}) = 130$ nb; however the P.D.G value [16] of the χ_c width has since been reduced by a factor 1.45, correcting their prediction to 90 nb. Yuan [27] predicted 160 nb (again the factor 1.45 should be applied) and Bzdak [28] 45 nb.

If the J/ψ and $\psi(2S)$ cross sections were larger than expected for photoproduction, it would be evidence for odderon exchange. Taking a theoretical value of $d\sigma_{FKR}/dy|_{y=0}(J/\psi) = 3.0 \pm 0.3$ nb for photoproduction, compatible with the predictions, we give a 95% C.L. upper limit $d\sigma_{FKR}/dy|_{y=0}(J/\psi) < 2.3$ nb for odderon exchange ($\sigma_{p\gamma} \rightarrow J/\psi$). Bzdak et al. [29] predicted the ratio of odderon:photon exchange in J/ψ production to be 0.3 - 0.6, consistent with our limit.

In conclusion we have observed, for the first time in hadron-hadron collisions, exclusive photoproduction of J/ψ and $\psi(2S)$, exclusive double pomerion production of χ_{c0}, and the QED process $\gamma\gamma \rightarrow \mu^+\mu^-$. The photoproduction process has previously been studied in ep collisions at HERA, with similar kinematics ($\sqrt{s(\gamma p)} \approx 100$ GeV) and the cross sections are in agreement. We put an upper limit on an odderon contribution to exclusive J/ψ production. Our observation of exclusive χ_{c0} production implies that exclusive Higgs boson production should occur at the LHC [10] and imposes constraints on the $p + p \rightarrow p + H + p$ cross section.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Re-
search Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministry of Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[1] A cylindrical coordinate system is used with the z-axis along the proton beam direction; θ is the polar angle and ϕ is the azimuthal angle. Transverse momentum is $p_T = |p| \sin \theta$, and transverse energy is $E_T = E \sin \theta$ where E is the energy. Pseudorapidity is $\eta = -\ln(\tan \frac{\theta}{2})$, and for the charmonium states we use longitudinal rapidity $y = -\ln \frac{E - p_z}{E + p_z}$.

