Observation of New Charmless Decays of Bottom Hadrons

Aaltonen, T.

2009

http://hdl.handle.net/10138/24481
https://doi.org/10.1103/PhysRevLett.103.031801

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Observation of New Charmless Decays of Bottom Hadrons

A. Annavi,20 J. Antos,15 G. Apollinari,18 A. Apresyan,49 T. Arisawa,58 A. Artikov,16 W. Ashmanskas,18 A. Attal,4
A. Aurisano,54 F. Azafr,43 P. Azzurri,47 W. Badgett,18 A. Barbaro-Galtieri,29 V.E. Barnes,49 B.A. Barnett,26
V. Bartsch,31 G. Bauer,33 P.H. Beauchemin,34 F. Bedeschi,47 D. Beecher,31 S. Behari,26 G. Bellettini,47
J. Bellinger,60 D. Benjamin,17 A. Beretas,41 J. Beringer,29 A. Bhatti,51 M. Binkley,18 D. Bisello,44 I. Bizjak,31
R.E. Blair,2 C. Blocker,7 B. Blumenfeld,26 A. Bocci,17 A. Bodek,50 V. Boisvert,50 G. Bolla,49 D. Bortoletto,49
J. Boudreau,48 A. Boveia,11 B. Bravn,11 A. Bridgeman,25 L. Brigliadori,44 C. Bromberg,36 E. Brubaker,14
J. Budagov,16 H.S. Budd,50 S. Budd,25 S. Burke,18 K. Burkett,18 G. Busetto,44 P. Bussey,25 A. Buzatu,34
K. L. Byrum,5 S. Cabrera,17 C. Calanca,32 M. Campanelli,36 M. Campbell,35 F. Canelli,14,18 A. Canepa,46
B. Carls,25 D. Carlsmith,60 R. Carosi,47 S. Catto,9,17 S. Carron,34 B. Casals,12 M. Casarsa,18 A. Castro,6
P. Catastini,47 D. Cauz,65 V. Cavaliere,47 M. Cavalli-Sforza,4 A. Cerri,29 L. Certon,31 S.H. Chang,28
Y.C. Chen,3 M. Chertok,8 G. Chiarelli,47 G. Chiaidez,18 F. Chlebana,18 K. Cho,28 D. Chokheli,16 J.P. Chou,23
M.A. Ciocci,47 A. Clark,21 D. Clark,7 G. Compostella,44 M.E. Convery,18 J. Conway,60 M. Cordelli,20
G. Cortiana,44 C.A. Cox,66 D.J. Cox,4 F. Crescioli,47 C. Cuenca Almanza,18 J. Cuevas,12 R. Culberston,18
J.C. Cully,35 D. Dagenhart,18 M. Datta,18 T. Davies,22 P. de Barbaro,50 S De Cecco,52 A. Deisher,29
G. De Lorenzo,1 M. Dell’Orso,47 C. Deluca,4 L. Demortier,51 J. Deng,17 M. Deninno,6 P.F. Derwent,18
G.P. di Giovanni,45 C. Dionisio,52 B. Di Ruza,52 J.R. Dittmann,5 M. D’Onofrio,8 S. Donati,47 P. Dong,9
H.C. Fang,29 S. Ferritton,43 W.T. Fedorko,14 R.G. Feild,61 M. Feindt,27 J.P. Fernandez,32 C. Ferrazza,47
R. Field,19 G. Flanagan,49 R. Forrest,8 M.J. Frank,5 M. Franklin,23 J.C. Freeman,18 I. Furic,19 M. Gallinaro,52
C. Henderson,33 M. Herndon,60 J. Heuser,27 S. Hewamanage,3 D. Hidas,17 C.S. Hill,11 D. Hirschbuehl,27
A. Hocker,18 S. Hou,3 M. Houlden,30 S.-C. Hsu,29 B.T. Huffman,43 R.E. Hughes,40 U. Husemann,61 M. Hussein,36
J. Huston,36 J. Incandela,11 G. Introzzi,37 M. Iorio,52 A. Ivanov,8 E. James,48 D. Jiang,13 B. Jayatilaka,17
T. Kanm,54 D. Kar,19 P.E. Karchin,59 Y. Kato,42 R. Kephart,18 J. Keung,46 V. Khotilovich,54 B. Kilminster,18
L. Kirisch,5 S. Klimenko,19 B. Knuteson,43 B.R. Ko,17 K. Kondo,38 D.J. Kong,28 J. Konigsberg,19 A. Korytov,19
A.V. Kotwal,17 M. Krep,27 J. Kroll,46 D. Krop,14 N. Krummack,5 M. Kruse,17 V. Krutelyov,11 T. Kubo,56
T. Kuhr,27 N.P. Kulkarni,59 M. Kurata,56 S. Kwas,14 A.T. Laasanen,49 S. Lami,47 S. Lamml,18 M. Lancaster,31
R.L. Lander,8 K. Lannon,40 A. Lath,53 G. Latino,14 I. Lazzizzera,44 T. LeCompte,2 E. Lee,54 H.S. Lee,14
S.W. Lee,54 S. Leon,47 J.D. Lewis,18 C.-S. Lin,29 J. Linacre,43 M. Lindgren,18 E. Lipiec,46 A. Lister,8
D.O. Litvintsev,18 C. Liu,48 T. Liu,18 N.S. Lockyer,46 A. Logino,61 M. Loret,44 L. Lovas,15 D. Lucchesi,44
C. Luci,52 J. Lueck,27 P. Lujan,29 P. Lukens,48 G. Luong,51 L. Lyons,43 J. Lys,29 R. Lysak,15 D. MacQueen,34
A. Manousakis-Katsikas,54 F. Margaroli,49 C. Marino,27 C.P. Marino,25 A. Martin,91 V. Martin,22 M. Martinez,4
R. Martínez-Ballarín,32 T. Maruyama,56 P. Masubuchi,52 T. Mathis,26 M.E. Mattson,59
P. Merkel,49 C. Mesropian,51 T. Miao,18 N. Miladinovic,7 R. Miller,36 C. Mills,23 M. Milnik,27 A. Mitra,1
G. Mittelsmakher,19 H. Miyake,56 N. Moggi,6 C.S. Moon,28 R. Moore,18 M.J. Morello,47 J. Morlock,27
P. Movilla Fernandez,18 J. Müllenstädt,29 A. Mukherjee,18 Th. Muller,27 R. Mumford,26 P. Murat,18 M. Mussini,6

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 University of Athens, 157 71 Athens, Greece
4 Université de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798
6 Istituto Nazionale di Fisica Nucleare, Bologna, Italy
7 University of Bologna, I-40127 Bologna, Italy
8 Brandeis University, Waltham, Massachusetts 02254
9 University of California, Davis, Davis, California 95616
10 University of California, Los Angeles, Los Angeles, California 90024
11 University of California, San Diego, La Jolla, California 92039
12 University of Cambridge, Cambridge, Massachusetts 02138
13 Carnegie Mellon University, Pittsburgh, PA 15213
14 E. Fermi Institute, University of Chicago, Chicago, Illinois 60637
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
19 University of Florida, Gainesville, Florida 32611
20 Laboratory of Nuclear Studies, University of Florida, Gainesville, Florida 32611
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 University of Glasgow, Glasgow G12 9QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138
24 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
25 University of Illinois, Urbana, Illinois 61801
(CDF Collaboration)
With visitors from a University of Massachusetts Amherst,

We search for new charmless decays of neutral b–hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb$^{-1}$ of integrated luminosity, we report the first observation of the $B^0_s \rightarrow K^- \pi^+$ decay, with a significance of 8.2σ, and measure $B(B^0_s \rightarrow K^- \pi^+) = (5.0 \pm 0.7 \text{ (stat)} \pm 0.8 \text{ (syst)}) \times 10^{-6}$. We also report the first observation of charmless b–baryon decays in the channels $\Lambda_b^0 \rightarrow p\pi^-$ and $\Lambda_b^0 \rightarrow pK^-$ with significances of 6.0σ and 11.5σ respectively, and we measure $B(\Lambda_b^0 \rightarrow p\pi^-) = (3.5 \pm 0.6 \text{ (stat)} \pm 0.9 \text{ (syst)}) \times 10^{-6}$ and $B(\Lambda_b^0 \rightarrow pK^-) = (5.6 \pm 0.8 \text{ (stat)} \pm 1.5 \text{ (syst)}) \times 10^{-6}$. No evidence is found for the decays $B^0 \rightarrow K^+K^-, B^0 \rightarrow \pi^+\pi^-, B^0 \rightarrow \pi^+\pi^-$, and we set an improved upper limit $B(B^0 \rightarrow \pi^+\pi^-) < 1.2 \times 10^{-6}$ at the 90% confidence level. All quoted branching fractions are measured using $B(B^0 \rightarrow K^- \pi^+)$ as a reference.

PACS numbers: 13.25.Hw 14.40.Nd

*Deceased

1With visitors from a University of Massachusetts Amherst,
Two-body non-leptonic charmless decays of b-hadrons are among the most widely studied processes in flavor physics. The variety of open channels involving similar final states provides crucial experimental information to improve the accuracy of effective models of strong interaction dynamics. The quark-level transition $b \to u$ makes decay amplitudes sensitive to γ, the least known angle of the quark-mixing (Cabibbo-Kobayashi-Maskawa, CKM) matrix. Significant contributions from higher-order (‘penguin’) transitions provide sensitivity to the possible presence of new physics in internal loops, if the observed decay rates are inconsistent with expectations.

Rich experimental data are currently available for B^+ and B^0 mesons, produced in large quantities in $\Upsilon(4S)$ decays \cite{1}, while much less is experimentally known about the charmless decay modes of the B^K_0, which are expected to exhibit an equally rich phenomenology. Information from B^K_0 decays is needed to better constrain the phenomenological models of hadronic amplitudes in heavy flavor decays. This would lead to increased precision in comparing data to predictions, allowing extraction of CKM parameters from non-tree-level amplitudes \cite{2} and greater sensitivity to new physics contributions.

Of the possible B^K_0 decay modes into pairs of charmless pseudoscalar mesons, only the $B^K_0 \to K^+K^-$ has been observed to date \cite{3}. The $B^K_0 \to K^-\pi^+$ is of particular interest, because its branching fraction is sensitive to the CKM angle γ \cite{4} and the current experimental bound \cite{5} is lower than most predictions \cite{5, 6, 7}. A measurement of the branching fraction of the $B^K_0 \to \pi^+\pi^-$ mode, along with the $B^K_0 \to K^+K^-$ mode, would allow a determination of the strength of penguin annihilation amplitudes \cite{8}, which is currently poorly known and a source of significant uncertainty in many calculations \cite{8}. The present search is sensitive to both modes. Two–body charmless decays are also expected from bottom baryons. The modes $\Lambda^K_0 \to pK^-$ and $\Lambda^K_0 \to p\pi^-$ are predicted to have measurable branching fractions, of order 10^{-6} \cite{9}, and, in addition to the interest in their observation, must be considered as a possible background to the rare B^K_0 and B^0 modes being investigated.

In this Letter we report the results of a search for rare decays of neutral bottom hadrons into a pair of charged charmless hadrons (p, K or π), performed in 1 fb$^{-1}$ of $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV, collected by the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. We report the first observation of modes $B^K_0 \to K^-\pi^+$, $B^K_0 \to pK^-$, and $B^K_0 \to p\pi^-$, and measure their relative branching fractions \cite{10}.

CDF II is a multipurpose magnetic spectrometer surrounded by calorimeters and muon detectors. The detector components relevant for this analysis are briefly outlined below: a more detailed description can be found in Ref. \cite{11}. A silicon microstrip vertex detector (SVX) and a cylindrical drift chamber (COT) immersed in a 1.4 T axial magnetic field allow reconstruction of charged–particle trajectories (tracks) in the pseudorapidity range $|\eta| < 1.0$ \cite{12}. The SVX consists of six concentric layers of double-sided silicon sensors with radii between 2.5 and 22 cm, each providing a measurement with up to 15 (70) μm resolution in the ϕ (z) direction. The COT has 96 measurement layers, between 40 and 137 cm in radius, organized into alternating axial and $\pm 2^\circ$ stereo superlayers. The transverse momentum resolution is $\sigma_{p_T}/p_T \sim 0.15\%/(\text{GeV}/c)$, corresponding to a typical mass resolution of 22 MeV/c^2 for our signals. The specific ionization energy loss (dE/dx) of charged particles in the COT can be measured from the collected charge, which is logarithmically encoded in the output pulse width of each wire, and provides a 1.5σ separation between kaons and pions with momenta greater than 2 GeV/c.

The data were collected by a three-level trigger system, using a set of requirements specifically aimed at selecting two-pronged B decays. At level 1, COT tracks are reconstructed in the transverse plane by a hardware processor (XFT) \cite{13}. Two opposite-charge particles are required, with reconstructed transverse momenta $p_{T1}, p_{T2} > 2$ GeV/c, the scalar sum $p_{T1} + p_{T2} > 5.5$ GeV/c, and an azimuthal opening-angle $\Delta \phi < 135^\circ$. At level 2, the silicon vertex trigger (SVT) \cite{14} combines XFT tracks with SVX hits to measure the impact parameter d (distance of closest approach to the beam line) of each track with 45 μm resolution. The requirement of two tracks with $0.1 < d < 1.0$ mm reduces the light quark background by two orders of magnitude while preserving about half of the signal. A tighter opening-angle requirement, $20^\circ < \Delta \phi < 135^\circ$, preferentially selects two–body B decays over multi–body decays with 97% efficiency and further reduces background. Each track pair is then used to form a B candidate, which is required to have an impact parameter $d_{B} < 140 \mu$m and to have travelled a dis-
tance $L_T > 200 \, \mu m$ in the transverse plane. At level 3, an array of computers confirms the selection with a full event reconstruction. The overall acceptance of the trigger selection is $\approx 2\%$ for b-hadrons with $p_T > 4 \, \text{GeV}/c$ and $|\eta| < 1$.

The offline selection is based on a more accurate determination of the same quantities used in the trigger, with the addition of two further observables: the isolation (I_B) of the B candidate [15], and the quality of the three-dimensional fit (χ^2 with 1 d.o.f.) of the decay vertex of the B candidate. Requiring a large value of I_B reduces the background from light-quark jets, and a low χ^2 reduces the background from decays of different long-lived particles within the event, owing to the good resolution of the SVX detector in the z direction. The selection is optimized for detection of the $B^0 \to K^-\pi^+$ mode. Maximal sensitivity for both discovery and limit setting is achieved with a single choice of selection requirements [16] by minimizing the variance of the estimate of the branching fraction in the absence of signal [17]. The variance is evaluated by performing the full measurement procedure on simulated samples containing background and all signals from the known modes, but no $B^0 \to K^-\pi^+$ signal. The background fraction for each selection is determined from data by extrapolating the mass sidebands of the signal, and the signal yield is predicted by a detailed detector simulation. This procedure yields the final selection: $I_B > 0.525$, $\chi^2 < 5$, $d > 120 \, \mu m$, $d_B < 60 \, \mu m$, and $L_T > 350 \, \mu m$.

No more than one B candidate per event is found after this selection, and a mass $(m_{\pi\pi})$ is assigned to each, using a charged pion mass assignment for both decay products. The resulting mass distribution is shown in Fig. 4. A large peak is visible, dominated by the overlapping contributions of the $B^0 \to K^-\pi^-$, $B^0 \to \pi^+\pi^-$, and $B^0 \to K^+K^-$ modes. A $B^0 \to K^+K^-$ signal would appear as an enhancement around 5.18 GeV/c^2, while signals for the other modes of this search are expected at masses higher than the main peak (5.33–5.55 GeV/c^2). Backgrounds include mis-reconstructed multi-body b-hadron decays (physics background) and random pairs of charged particles (combinatorial background).

We used an unbinned likelihood fit, incorporating kinematic (kin) and particle identification (PID) information, to determine the fraction of each individual mode in our sample. The likelihood for the ith event is

$$L_i = (1 - b) \sum_j f_j L_j^{\text{kin}} L_j^{\text{PID}} + b (f_p L_p^{\text{kin}} L_p^{\text{PID}} + (1 - f_p) L_c^{\text{kin}} L_c^{\text{PID}}),$$

where the index j runs over all signal modes, and the index ‘p’ (‘c’) labels the physics (combinatorial) background terms. The f_j are the signal fractions to be determined by the fit, together with the background fraction parameters b and f_p.

The kinematic information is summarized by three loosely correlated observables: (a) the mass $m_{\pi\pi}$; (b) the signed momentum imbalance $\alpha = (1 - p_1/p_2)q_1$, where p_1 (p_2) is the lower (higher) of the particle momenta, and q_1 is the sign of the charge of the particle of momentum p_1; (c) the scalar sum of particle momenta $p_{\text{tot}} = p_1 + p_2$. The above variables allow evaluation of the invariant mass m_{12} of a candidate for any mass assignment of the decay products (m_1,m_2), using the equation

$$m_{12}^2 = m_{\pi\pi}^2 - 2m_\pi^2 + m_1^2 + m_2^2 + -2\sqrt{p_1^2 + m_2^2} \sqrt{p_2^2 + m_1^2} + 2\sqrt{p_1^2 + m_1^2}\sqrt{p_2^2 + m_2^2},$$

where $p_1 = \frac{1 - |\alpha|}{2 - |\alpha|} p_{\text{tot}}$, $p_2 = \frac{1 - |\alpha|}{2 - |\alpha|} p_{\text{tot}}$.

We used the mass sidebands in data $(m_{\pi\pi} \in [5.00,5.12]) \cup [5.6,6.2]$ GeV/c^2 to obtain the kinematic distributions of backgrounds [17]. The mass distribution of the combinatorial background is parameterized by an exponential function, while the physics background is modeled by an ARGUS function [18] convoluted with a Gaussian resolution function. In order to ensure the reliability of the search for small signals in the vicinity of larger peaks, the shapes of the mass distributions assigned to each signal have been modeled in detail. We have included the momentum dependence and non–Gaussian tails of resolution from a full simulation of the detector, and the effects of soft photon radiation in the final state, based on recent QED calculations [19].

This resolution model was checked against the observed shape of the $D^0 \to K^-\pi^+$ signal in a sample of $1.5 \times 10^6 D^{*+} \to D^0\pi^+$ decays, collected with a similar trigger selection. The observed discrepancies are below the 10^{-3}

FIG. 1: Mass distribution of reconstructed candidates. The charged pion mass is assigned to both tracks. The total projection and projections of each signal and background component of the likelihood fit are overlaid on the data distribution. Signals and multi-body B background components are shown stacked on the combinatorial background component.
level, and their effect on the present measurement is negligible in comparison with other systematic uncertainties. The $D^{+} \rightarrow D^{0} \pi^{+}$ sample was also used to calibrate the dE/dx response of the drift chamber to kaons and pions, using the charge of the D^{+} pion to identify the D^{0} decay products. The dE/dx response of protons was determined from a sample of about 124,000 $\Lambda^{0} \rightarrow p\pi^{-}$ decays. The model of the background allows for pion, kaon, proton, and electron components, whose fractions are determined by the fit. Muons are indistinguishable from pions with the available 10% fractional dE/dx resolution and are therefore incorporated into the pion component.

From the signal fractions returned by the likelihood fit we calculate the signal yields shown in Table 1. The significance of each signal is evaluated as the ratio of the yield observed in data, and its total uncertainty (statistical and systematic) as determined from a simulation where the size of that signal is set to zero. This evaluation assumes a Gaussian distribution of yield estimates, supported by the results obtained from repeated fits to simulated samples. This procedure yields a more accurate measure of significance with respect to the purely statistical estimate obtained from $\sqrt{-2\Delta\ln(L)}$. We obtain significant signals for the $B^{0}_{s} \rightarrow K^{-} \pi^{+}$ mode (8.2σ), and for the $\Lambda^{0}_{b} \rightarrow p\pi^{-}$ (6.0σ) and $\Lambda^{0}_{b} \rightarrow pK^{-}$ (11.5σ) modes. Figure 2 shows relative likelihood distributions for these modes. No evidence is found for the modes $B^{0}_{s} \rightarrow \pi^{+}\pi^{-}$ or $B^{0} \rightarrow K^{+}K^{-}$, in agreement with expectations of significantly smaller branching fractions.

To avoid large uncertainties associated with production cross sections and absolute reconstruction efficiency, we measure all branching fractions relative to the $B^{0} \rightarrow K^{+}\pi^{-}$ mode. Frequentist upper limits at the 90% C.L. are quoted for the unseen modes. For the measurement of Λ^{0}_{b} branching fractions, the additional requirement $p_T(\Lambda^{0}_{b}) > 6 \text{ GeV}/c$ was applied to allow easy comparison with other Λ^{0}_{b} measurements at the Tevatron, which are only available above this threshold [20, 23]. This additional requirement lowers the Λ^{0}_{b} yields by about 20%. The raw fractions returned by the fit were corrected for the differences in selection efficiencies between different modes, which range from 8% to 40% for the measurements of b-mesons and Λ^{0}_{b} branching fractions, respectively. These corrections were determined from detailed detector simulation, with the following exceptions that were measured from data: the momentum-averaged relative isolation efficiency between B^{0} and B^{0}, 1.00 ± 0.03, has been determined from fully-reconstructed samples of $B^{0} \rightarrow J/\psi\phi$, and $B^{0} \rightarrow J/\psi K^{*0}$ decays [17]; the difference in efficiency for triggering on kaons and pions due to the different specific ionization in the COT (a ≈ 5% effect) was measured from a sample of $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$ decays triggered on two tracks, using the unbiased third track [24]. Possible differences in efficiency of the isolation requirement between B^{0} and Λ^{0}_{b}, and in the trigger efficiency between kaons and protons, were taken into account in the systematic uncertainties.

The dominant contributions to the systematic uncertainty are the uncertainty on the combinatorial background model and the uncertainty on the dE/dx cali-
TABLE II: Measured relative branching fractions of rare modes. The ratio f_Λ/f_d is p_T-dependent, and is defined here as: $f_\Lambda/f_d = \sigma(pp \to \Lambda^0_sX; p_T > 6 \text{ GeV}/c, |\eta| < 1)/\sigma(pp \to B^0X; p_T > 6 \text{ GeV}/c, |\eta| < 1)$. Absolute branching fractions were derived by normalizing to the current world-average value $B(B^0 \to K^+\pi^-) = (19.4 \pm 0.6) \times 10^{-6}$, and assuming the average values at high energy for the production fractions: $f_\Lambda/f_d = 0.276 \pm 0.034$, and $f_\Lambda/f_d = 0.230 \pm 0.052$ [21]. The first quoted uncertainty is statistical, the second is systematic.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Relative B</th>
<th>Absolute $B(10^{-6})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0_s \to K^-\pi^+$</td>
<td>0.071 ± 0.010 ± 0.007</td>
<td>5.0 ± 0.7 ± 0.8</td>
</tr>
<tr>
<td>$B^0_s \to \pi^+\pi^-$</td>
<td>0.007 ± 0.004 ± 0.005</td>
<td>0.49 ± 0.28 ± 0.36 (<1.2 at 90% C.L.)</td>
</tr>
<tr>
<td>$B^0 \to K^+K^-$</td>
<td>0.020 ± 0.008 ± 0.006</td>
<td>0.39 ± 0.16 ± 0.12 (<0.7 at 90% C.L.)</td>
</tr>
<tr>
<td>$B^0 \to pK^-$</td>
<td>0.066 ± 0.009 ± 0.008</td>
<td>5.6 ± 0.8 ± 1.5</td>
</tr>
<tr>
<td>$B^0_s \to p\pi^-$</td>
<td>0.042 ± 0.007 ± 0.006</td>
<td>3.5 ± 0.6 ± 0.9</td>
</tr>
</tbody>
</table>

In summary, we have searched for rare charmless decays of neutral b-hadrons into pairs of charged hadrons in CDF data. We report the first observation of the modes $B^0 \to K^-\pi^+$, $\Lambda^0_s \to p\pi^-$, and $\Lambda^0_s \to pK^-$, and measure their relative branching fractions. We set upper limits on the unobserved modes $B^0 \to K^+K^-$ and $B^0_s \to \pi^+\pi^-$. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

[10] Throughout this paper, C-conjugate modes are implied and branching fractions indicate CP-averages.

[12] CDF II uses a cylindrical coordinate system in which ϕ is the azimuthal angle, r is the radius from the nominal beam line, and z points in the proton beam direction, with the origin at the center of the detector. The transverse plane is the plane perpendicular to the z axis.

[15] Isolation is defined as $I_B = p_T(B)/(p_T(B) + \sum_i p_T(i))$, where $p_T(B)$ is the transverse momentum of the B candidate, and the sum runs over all other tracks within a cone of radius 1, in $\eta-\phi$ space around the B flight-direction.

