SHORT COMMUNICATION

The Val66Met polymorphism in the BDNF gene is associated with epilepsy in fragile X syndrome

Verna Louhivuori, Maria Arvio, Pia Soronen, Virpi Oksanen, Tiina Paunio, Maija L. Castrén

Introduction

Brain-derived neurotrophic factor (BDNF) is a central mediator of neuronal plasticity in brain. Activity-dependent BDNF secretion is required for cellular mechanisms associated with learning and memory, including long-term potentiation (LTP) (Huang and Reichardt, 2001). BDNF can increase excitability of neurons and it is linked to diseases, such as epilepsy (Scharfman, 2005). A single-nucleotide polymorphism (SNP) in the human BDNF gene, which leads to a Methionine (Met) substitution for Valine (Val) at amino acid 66 in the prodomain of BDNF (Val66Met or Rs6265), interferes with the intracellular trafficking and the activity-dependent secretion of BDNF in cortical neurons (Egan et al., 2003; Chen et al., 2004). Frequency of the Met66 allele is around 20% in Caucasian population (Gratacós et al., 2007). The Val66Met polymorphism has been associated with alterations in brain anatomy (Pezawas et al., 2004; Szczepkowski et al., 2005) and albeit conflicting results, with various neuropsychiatric disorders (Chen et al., 2006; Gratacós et al., 2007;...
Lanktree et al., 2008). Furthermore, the BDNF Met66 allele was recently shown to modulate the epilepsy phenotype in Rett syndrome (Nectoux et al., 2008).

Fragile X syndrome (FXS) [MIM 300624] is a common cause of inherited mental retardation and affects approximately 1 in 4000 males and 1 in 8000 females (see review Garber et al., 2008). The syndrome is characterized by intellectual disabilities, mild facial dysmorphism, macro-orchidism, and a distinct neurobehavioral phenotype, including hyperactivity, hyper-arousal, attention deficit, social anxiety, and autistic features. Epileptic seizures are seen in 13–44% of FXS individuals (Kluger et al., 1996; Musumeci et al., 1999; Sabaratnam et al., 2001; Berry-Kravis, 2002). The syndrome is typically caused by a CGG triplet repeat mutation, which leads to the transcriptional silencing of the FMRI gene and a reduction of fragile X mental retardation protein (FMRP) expression (for review see Jin and Warren, 2000). Studies of the mouse model for FXS revealed a role of BDNF in the pathogenesis of FXS (Castrén et al., 2002; Lauterborn et al., 2007) and led us to investigate the impact of the polymorphisms in the BDNF gene on the clinical phenotype of FXS.

Materials and methods

A total of 27 Finnish FXS males of the client register of the Pääjärvi Centre consented to participate in the study which was approved by the local Ethics Committee. The register covers intellectually disabled people living in the Inter-Municipal Association where the Centre consented to participate in the study which was approved. In statistical analysis, independent two population Student’s t-test and Fisher’s exact test were used; the statistical significance was set at level \(p \leq 0.05 \).

The study sample of 27 FXS males, 23 (85%) were val66 allele (Val/Val), four were heterozygotes for the allele (15%) (Val/Met), and no homozygotes for the Met66 allele were found. Table 1 demonstrates clinical characteristics of the subgroups with the different haplotypes. The subgroups showed similar mental age, but individuals responded usually well to carbamazepine treatment.

Table 1 Clinical characteristics of the patients.

<table>
<thead>
<tr>
<th></th>
<th>Val66Val, N = 23</th>
<th>Val66Met, N = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range, years</td>
<td>16–71 (32)</td>
<td>26, 36, 47, and 58</td>
</tr>
<tr>
<td>Weight (mean ± SD)</td>
<td>84 ± 27.9</td>
<td>94 ± 18.7</td>
</tr>
<tr>
<td>Height (mean ± SD)</td>
<td>177 ± 6.8</td>
<td>174.5 ± 4.6</td>
</tr>
<tr>
<td>Mental age, months</td>
<td>55 ± 14.2</td>
<td>50 ± 20.0</td>
</tr>
<tr>
<td>Leiter (Roid and</td>
<td>53 ± 7.3</td>
<td>58 ± 12.0</td>
</tr>
<tr>
<td>Miller, 1997)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Merril-Palmer (Stutsman, 1948) | 98 ± 19.3 | 66 ± 15.6 |***
| Adaptive skills, months | 98 ± 19.3 | 66 ± 15.6*** |
| Vineland Adaptive | | |
| Behavioral Scale | | |
| (Sparrow et al., 1984) | | |
| Epilepsy | 0 | 4 (100%) |

*** \(p = 0.002 \).

Discussion

In the present population based study, epilepsy was found in 15% of FXS individuals in accordance with the previous estimations for the prevalence of epilepsy and seizures in FXS at 13–44% (Kluger et al., 1996; Musumeci et al., 1999; Sabaratnam et al., 2001; Berry-Kravis, 2002). As seen in the present study, epileptic seizures in FXS show an age-related appearance in the childhood or young adulthood. Seizures are frequently of the complex partial type and involve the temporal and frontal lobes. Furthermore, epilepsy of FXS individuals responds usually well to carbamazepine treatment.

A Val66 allele of the BDNF gene was found in all FXS individuals with epilepsy at one of their chromosomes suggesting that this functional human polymorphism in combination with a mutation in the FMRI gene promotes epilepsy. Given that the frequency of the Met66 allele is about 20% in Caucasian population (Gratacos et al., 2007) this polymorphism may account for a significant proportion of FXS individuals.
with epilepsy. A low frequency of the Met66 allele (8%) in the present study in comparison to the allele frequency in general Finnish population (15%) might be a simple stochastic incident due to the small number of the examined individuals of the current study \((n = 27)\). Alternatively, combination of FXS and the Met66Met genotype could be detrimental to health and affect survival. This hypothesis remains to be investigated in larger populations.

The Val66Met polymorphism is one of the most frequent polymorphisms of the BDNF gene. A Met substitution for Val at amino acid 66 in the prodomain of BDNF alters the protein function by interfering with the intracellular trafficking and the activity-dependent secretion of BDNF in cortical neurons (Egan et al., 2003; Chen et al., 2004). The second SNP (rs6484320) of the BDNF gene was also shown to be associated with epilepsy of FXS. This SNP is intrinsic and has not been shown to affect BDNF function. Its association with epilepsy may reflect strong linkage disequilibrium with functional Val66Met.

A recent study found no association between Val66Met polymorphism and serum BDNF levels in males (Zhang et al., 2008). Platelets are the primary storage place of BDNF in blood and similar mechanisms regulate vesicle trafficking in platelets and neurons (Lemons et al., 1997). However, molecular mechanisms of BDNF release from platelets are not yet well understood and it is currently unknown whether platelet BDNF is of mature or proform.

Various studies support the role of BDNF in epileptogenesis and epilepsy (Schwarfmann, 2005). Heterozygous Bdnf knockout mice display decreased seizure susceptibility whereas BDNF overexpression may predispose to seizures. In transgenic mice with a Mecp2 gene deletion, a mouse model of Rett syndrome, BDNF overexpression enhances the electrophysiological activity of mutant neurons and alleviates progression of the disease (Chang et al., 2006). The Met66 allele of the BDNF gene, was recently shown to protect against early seizures of Rett patients with a missense mutation in the MECP2 gene (Nectoux et al., 2008). BDNF can restore LTP impairment of the mouse model for FXS implicating BDNF also in the pathophysiology of plasticity changes in FXS (Castrén et al., 2002; Lauterborn et al., 2007). The present study suggests that interference with the activity-dependent intracellular trafficking of BDNF-containing vesicles to neuronal dendrites and spines by Met66 polymorphism of the BDNF gene can be of critical importance in the clinical appearance of epileptic seizures in the phenotype of FXS. The relationship between FMRP and BDNF, however, is complex and the cellular mechanisms by which the combined action of these molecules might influence susceptibility to epilepsy remains to be studied further.

Conflict of interest

None of the authors had competing interests.

Acknowledgements

We thank the patients for participation. Dr. Juha Akkila for help in statistical analysis. The study was funded by grants from the University of Helsinki, Academy of Finland, and the Arvo and Lea Ylppö Foundation.

References

