Observation of the $Z \rightarrow \psi \ell^+ \ell^-$ Decay in pp Collisions at $\sqrt{s} = 13$ TeV

A. M. Sirunyan et al. (CMS Collaboration)

(Received 11 June 2018; published 4 October 2018)

This Letter presents the observation of the rare Z boson decay $Z \rightarrow \psi \ell^+ \ell^-$. Here, ψ represents contributions from direct J/ψ and $\psi(2S) \rightarrow J/\psi X$, $\ell^+ \ell^-$ is a pair of electrons or muons, and the J/ψ meson is detected via its decay to $\mu^+ \mu^-$. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb^{-1}. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the $\psi(2S) \rightarrow J/\psi X$ contribution, the ratio of the branching fraction of the exclusive decay $Z \rightarrow J/\psi \ell^+ \ell^-$ to the decay $Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ within a fiducial phase space is measured to be $B(Z \rightarrow J/\psi \ell^+ \ell^-)/B(Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-) = 0.67 \pm 0.18(\text{stat}) \pm 0.05(\text{syst})$.

DOI: 10.1103/PhysRevLett.121.141801

Although the Z boson was discovered more than 30 years ago [1], only one exclusive decay channel with leptons, $Z \rightarrow 4\ell$ [2–6], has been observed apart from the dilepton final states. For radiative dilepton decays, $Z \rightarrow \ell^+ \ell^- \gamma$, where $\ell = e, \mu$, experiments have reported yields consistent with the standard model, as well as upper limits on the branching fraction for anomalous production [7]. No resonant structure in the four-lepton decay has yet been observed. The high rate of Z boson production at the CERN LHC facilitates the study of rare decay channels such as $Z \rightarrow V\gamma$, $Z \rightarrow V\ell^+ \ell^-$, and $Z \rightarrow VV$, where V is a vector meson with $J^{PC} = 1^{--}$ [8,9]. In this paper, we present the observation of the decay of the Z boson to a final state with a J/ψ meson and two oppositely charged same-flavor leptons.

The $Z \rightarrow V\ell^+ \ell^-$ process has been described and studied in various theoretical papers [10–16]. For the case where $V = J/\psi$, the branching fraction $B(Z \rightarrow J/\psi \ell^+ \ell^-)$ is calculable within the standard model. The dominant diagram is the quantum electrodynamics radiative process illustrated in Fig. 1, with the $\gamma^* - V$ transition strength derived from the measured $V \rightarrow \ell^+ \ell^-$ electromagnetic decays [17]. The theoretical estimates of the branching fraction cover the range $(6.7–7.7) \times 10^{-3}$ [10,11]. Although this branching fraction is small, the dileptons and vector meson in the final state offer a clean signature. The measurement of this branching fraction is valuable for the calculation of the fragmentation function for a virtual photon to split into a J/ψ meson. Rare Higgs boson decays, such as those to quarkonia [18,19], will become accessible in the future, making it possible to search for nonstandard model signatures in these decays, including, e.g., anomalous couplings or new exotic light states [20]. Accurate knowledge of potential backgrounds from Z decays to quarkonia will be essential for these measurements.

This analysis uses proton-proton (pp) collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb^{-1}. We report the observation of the $Z \rightarrow \psi \ell^+ \ell^-$ decay channel, where ψ represents the contributions from direct J/ψ and J/ψ mesons from $\psi(2S)$ decays, and the J/ψ is detected via its $\mu^+ \mu^-$ decay channel. We measure the ratio of the branching fraction of this decay to that of the $Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decay, to take advantage of a partial cancellation of systematic uncertainties.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal...
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid, in the pseudorapidity range $|\eta|<2.4$ [21]. Electrons are reconstructed using information from the ECAL and the tracker, in the $|\eta|<2.5$ range [22]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

Events of the $Z \rightarrow \mu^+\mu^-\mu^+\mu^-$ process are simulated with the next-to-leading-order Monte Carlo (MC) generator POWHEG [24], interfaced with PYTHIA 8.175 [25,26] with parameters set by the CUETP8M1 tune [27] for parton showering, hadronization, and the underlying event. The parton distribution functions are taken from the NNPDF 3.0 [28] set. For the $Z \rightarrow J/\psi e^+e^-$ signal we use PYTHIA 8.175 (same tune as for $Z \rightarrow \mu^+\mu^-\mu^+\mu^-$) to simulate the production of Z bosons, with an unpolared phase-space model for the $Z \rightarrow J/\psi e^+e^-$ decay. Matrix-element effects are evaluated by comparison with data and treated as systematic uncertainties. The detector response is simulated with a model of the CMS detector implemented in the GEANT4 package [29]. We measure the fiducial branching fraction restricted to a region of phase space covered by the acceptance of the measurement, as described below.

The trigger and offline selection criteria closely follow the previous CMS analysis of $Z \rightarrow 4\ell$ decays [2–4]. Triggers requiring one, two, or three charged leptons, with varying p_T requirements, are used. The combined efficiency of the triggers, within the acceptance of this analysis defined below, is greater than 99%.

Among the multiple pp collisions within the time resolution of the data acquisition, the primary vertex is taken to be the reconstructed vertex with the largest sum of p_T^2 over the physics objects in the event. These objects include jets, clustered using the anti-k_T jet finding algorithm [30,31] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the p_T of those jets. The primary vertex is required to lie within 24 cm of the center of the detector along the beam axis and 2 cm perpendicular to that axis. Charged particle tracks associated with vertices other than the primary vertex are ignored.

We require all lepton candidate trajectories to pass within 1 (0.5) cm of the primary vertex in the direction along (perpendicular to) the beam axis. The lepton candidates from Z boson decay are required to be isolated from the hadronic activity in the event. To satisfy this requirement, the scalar sum of transverse energy deposits in the calorimeters and the p_T of tracks is computed in a cone of radius $\Delta R \equiv \sqrt{\Delta\eta^2 + (\Delta\phi)^2} = 0.3$ in η-ϕ around the lepton trajectory, where ϕ is the azimuthal angle in radians. The sum is corrected for other leptons from Z boson decay that fall within the isolation cone and for the average hadronic activity in an event. The ratio of this corrected sum to the lepton p_T is required to be smaller than 0.35. Leptons are required to be separated by $\Delta R > 0.02(0.05)$ for same- (different)-flavor pairs.

We select events with two oppositely charged reconstructed muons consistent with the dimuon decay of a J/ψ meson that, in combination with two additional oppositely charged electrons or muons (which we refer to as prompt leptons, ℓ^*), are consistent with the decay $Z \rightarrow \psi\ell^+\ell^-$. Specifically, the invariant mass of the $\mu\mu$ pair must satisfy $2.6 < m_{\mu\mu} < 3.6$ GeV and that of the four leptons must satisfy $|m_{\mu^+\mu^-} - m_Z| < 25$ GeV, where $m_Z = 91.2$ GeV [17]. Each of the muons from J/ψ decay are required to have $p_T > 3.5$ GeV and $|\eta| < 2.4$, and the p_T of the J/ψ candidate must exceed 8.5 GeV. We require the highest- and second-highest- p_T prompt leptons to have $p_T > 30$ and 15 GeV, respectively, satisfy $|\eta| < 2.5(2.4)$ for $\ell^* = e(\mu)$, and have a dilepton invariant mass $m_{\ell^+\ell^-} < 80$ GeV. The lepton p_T thresholds ensure high trigger efficiency, and the invariant mass requirement suppresses the background from events in which a dilepton from Z boson decay is combined with a dimuon from an uncorrelated J/ψ decay or a nonresonant muon pair.

The four leptons, and separately the two muons from the J/ψ decay, are fitted to common vertices, with each vertex fit required to have a χ^2 probability greater than 5%. The significance of the three-dimensional impact parameter relative to the primary vertex is required to satisfy $|d_{IP}/\sigma_{IP}| < 4$ for each lepton, where d_{IP} is the signed distance of closest approach of the lepton track to the primary vertex and σ_{IP} is the associated uncertainty.

Following the application of the selection criteria described above, 29 (18) events remain in the $\psi\mu^+\mu^- (\psi\ell^+\ell^-)$ sample. Figure 2 shows a two-dimensional plot of the $\mu^+\mu^-$ versus $\mu^+\mu^-\ell^+\ell^-$ invariant masses for the candidate events. The signal appears as a concentration of events in the overlap region of the J/ψ meson and Z boson masses. The events outside the central cluster along Z boson mass band indicate contributions from the $Z \rightarrow (\text{continuum } \mu^+\mu^-)\ell^+\ell^-$ decay, and along the J/ψ meson mass band, nonresonant $J/\psi\ell^+\ell^-$ production.

We measure the branching fraction of the $Z \rightarrow \psi\ell^+\ell^-$ decay mode relative to that of $Z \rightarrow \mu^+\mu^-\mu^+\mu^-$. The selection criteria for the $Z \rightarrow \mu^+\mu^-\mu^+\mu^-$ events follow Ref. [4]; here the required mass ranges of the two oppositely charged muon pairs are $4(40) < m(\mu^+\mu^-) < 80$ GeV, where the 40 GeV threshold applies to the pair with the larger invariant mass.

The signal yield is obtained from unbinned extended maximum-likelihood fits [32] of the distributions in the two invariant mass variables $m_{\mu^+\mu^-}$ and $m_{\mu^+\mu^-\ell^+\ell^-}$ separately for the dimuon and dielectron channels. The probability density function (pdf) is a sum of four terms, each of which is a yield parameter multiplying a component pdf of the form $f(m_{\mu^+\mu^-})g(m_{\mu^+\mu^-\ell^+\ell^-})$. The four terms account for the
Z → ψℓ⁺ℓ⁻ signal and the backgrounds from Z → ℓ⁺ℓ⁻ accompanied by nonresonant μ⁺μ⁻, nonresonant J/ψℓ⁺ℓ⁻, and nonresonant μ⁺μ⁻ℓ⁺ℓ⁻. The pdf for the J/ψ → μ⁺μ⁻ invariant mass distribution is a Gaussian function of m_{μ⁺μ⁻} with the mean fixed to the J/ψ meson mass [17] and the width as a free parameter of the fit. The Z → μ⁺μ⁻ℓ⁺ℓ⁻ pdf is a Breit-Wigner function of m_{μ⁺μ⁻} with its central value and width fixed to the mass and width of the Z boson [17], convolved with a Gaussian function whose width is a free parameter. The pdfs for the continuum background in each dimension of the fit, representing backgrounds that are both peaking and nonpeaking in the orthogonal dimension, are exponential functions with free decay parameters. The projections in each variable are shown in Fig. 3, along with the pdf components resulting from the fits.

The yields resulting from the fit are 13.0 ± 3.9 events for the Z → ψe⁺e⁻ mode and 11.2 ± 3.4 events for Z → ψe⁺e⁻, where the uncertainties are statistical only. The yields of the two decay modes agree within uncertainties, as expected, since the reconstruction efficiencies of the prompt electrons and muons in this p_T range are similar. The Z → μ⁺μ⁻μ⁺μ⁻ reference signal is extracted with a separate extended unbinned maximum-likelihood fit to the m_{μ⁺μ⁻μ⁺μ⁻} distribution, using the same parametrization as for Z → ψe⁺e⁻. The fit yields 250 ± 20 events.

We evaluate the signal significance for both ψμ⁺μ⁻ and ψe⁺e⁻ by generating random pseudoexperiments with dimuon and four-lepton invariant mass distributions drawn from the background-only pdf and then fitted with the background-only and signal-plus-background hypotheses. From the pseudoexperiments the likelihood ratio of the two hypotheses is calculated and compared with the likelihood ratio of the data. Taking into account the systematic uncertainties (discussed below), the background-only hypothesis is excluded at 4.0 and 4.3 standard deviations for ψμ⁺μ⁻ and ψe⁺e⁻, respectively. The combination of the two significances based on the Fisher formalism [33] results in the observation of the Z → ψℓ⁺ℓ⁻ decay mode with a significance of 5.7 standard deviations.

From the observed signal yield we compute a ratio of branching fractions defined over the fiducial phase space of the measurement defined in Table I. The entries consist

<table>
<thead>
<tr>
<th>Fiducial requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 < m_{p_T, ℓ} < 80 GeV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Signal: p_T^{J/ψ} > 8.5 GeV</td>
</tr>
<tr>
<td>Reference channel: 4 < m(μ⁺μ⁻) < 80 GeV</td>
</tr>
</tbody>
</table>
of the kinematical requirements of the event selection given above, plus the additional requirement $m_{\ell^{+}\ell^{-}} > 40$ GeV for the $Z \to \psi e^{+}e^{-}$ candidates, which is added to match the selection of the $Z \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ candidates and to avoid regions of the decay phase space in which the acceptance is steeply falling. This requirement removes 2 (0) events from the $\psi(2S) \to Z/\psi X$ sample, and 0.95 events from the fitted $Z \rightarrow \psi e^{+}e^{-}$ yield. The ratio of the fiducial branching fractions for lepton flavor ℓ^{\pm} is

$$R_{J/Ψ(2S)→J/Ψ} = \frac{B(Z \to J/Ψ e^{+}e^{-})}{B(Z \to J/Ψ \mu^{+}\mu^{-})} = \frac{1}{2} \sum_{l_{1},l_{2}:\mu,\ell} \frac{N_{Z→J/Ψ l_{1} l_{2}}}{N_{Z→J/Ψ l_{1} l_{2}}} \epsilon_{Z→J/Ψ l_{1} l_{2}} \epsilon_{Z→J/Ψ l_{1} l_{2}} B(J/Ψ \to \mu^{+}\mu^{-}),$$

(1)

where the branching fraction $B(J/Ψ \to \mu^{+}\mu^{-}) = (5.961 \pm 0.033\%)$ [17], $N_{Z→J/Ψ e^{+}e^{-}}$ is the signal yield excluding the $\psi(2S) \to J/Ψ X$ contribution, and $N_{Z→J/Ψ \mu^{+}\mu^{-}}$ is the reference-channel yield. The experimental efficiencies to reconstruct events within the fiducial phase space are determined from simulation; combined with the trigger efficiencies given above they are $\epsilon_{Z→J/Ψ e^{+}e^{-}} = 81\%$, $\epsilon_{Z→J/Ψ \mu^{+}\mu^{-}} = 80\%$, and $\epsilon_{Z→J/Ψ \mu^{+}\mu^{-}} = 81\%$.

Calculated contributions from $\psi(2S) \to J/Ψ$ decays, the dominant feed-down source of $J/Ψ$ mesons, are subtracted from the signal yields, since the natural width of the Z boson does not allow the separation of the process $\psi(2S) \to J/Ψ X$ from direct $J/Ψ$ production. The predicted production ratio of $Z \to J/Ψ e^{+}e^{-}$ to $Z \to \psi(2S)e^{+}e^{-}$ is 3.5 [11]. Taking into account the branching fraction of $\psi(2S) \to J/Ψ X$ [17], the ratio of $N(Z \to J/Ψ e^{+}e^{-})$ to $N(Z \to \psi(2S)\to J/Ψ X)e^{+}e^{-}$ is 5.7 \pm 0.1. Using this scale factor, we subtract 1.9 (1.7) events from the $N_{Z→J/Ψ e^{+}e^{-}}(N_{Z→\psi e^{+}e^{-}})$ yield, considering them as $J/Ψ$ events from $\psi(2S)$ meson decays.

Since the signal and reference-channel events are recorded with the same triggers, and the topologies of the selected events are similar, many systematic uncertainties cancel in the ratio. The uncertainties in $R_{J/Ψ e^{+}e^{-}}$ are shown for the two signal decay modes in columns 2 and 3 of Table II and are combined in quadrature as uncorrelated, unless stated otherwise, in column 4.

Systematic uncertainties arising from the choice of fit model are calculated by varying the pdfs used for the signal (Z and $J/Ψ$) and combinatorial background. Substitution of a double-Gaussian function for the Z boson signal leads to differences in the signal yields of 0.02, 0.05, and 1.88 events in $Z \to \psi e^{+}e^{-}$, $Z \to \psi e^{+}e^{-}$, and $Z \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}$, respectively. The corresponding changes from using a first-order polynomial instead of an exponential function for the Z boson combinatorial background are 0.9, 0.1, and 0.4 events.

A similar approach was followed for the $J/Ψ$ meson signal and background pdfs. The maximum difference observed in the signal yields resulting from the substitution of the sum of a double-Gaussian and a Crystal Ball [34] function for the signal pdf is 0.6 events for the $\psi e^{+}e^{-}$ and 0.2 events for the $\psi e^{+}e^{-}$ final state. The background pdf was replaced by a first-order polynomial to estimate the background model uncertainty, where a difference of 0.2 events is found in both decay modes.

To measure the uncertainty from the fitting procedure, 1000 random pseudosamples were generated with the number of events of each drawn from a Poisson distribution having a mean equal to the number of events observed in the data. The absolute value of the average deviation of the fit yields from the nominal yield is taken as the systematic uncertainty.

The reconstruction efficiencies of the muons from $J/Ψ$ decay and prompt leptons (electrons and muons) are checked with $Z \to \mu^{+}\mu^{-}$, $Z \to e^{+}e^{-}$, and $J/Ψ \to \mu^{+}\mu^{-}$ decay data using the “tag-and-probe” method [21,35], as functions of the lepton η and p_{T}. To calculate the systematic uncertainty in $R_{J/Ψ e^{+}e^{-}}$, these efficiencies are varied within their uncertainty, with the uncertainties from the lepton efficiencies treated as correlated in the ratio. In addition, we assign an uncertainty associated with the finite number of MC signal and reference-channel events used to obtain the reconstruction efficiencies.

We test the three-body Z boson decay model implemented in the MC simulation by comparing distributions from the simulation with those from signal-weighted data, obtained from the fit model by the αPlot method [36]. The most sensitive observables were found to be the azimuthal separation between the $J/Ψ$ candidate and the highest- and second-highest-p_{T} prompt leptons. We apply the observed shape differences to the simulation and reevaluate the

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$R_{J/Ψ e^{+}e^{-}}$</th>
<th>$R_{J/Ψ e^{+}e^{-}}$</th>
<th>$R_{J/Ψ e^{+}e^{-}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z boson signal shape</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Z boson background shape</td>
<td>6.9</td>
<td>0.5</td>
<td>3.7</td>
</tr>
<tr>
<td>$J/Ψ$ meson signal shape</td>
<td>4.8</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>$J/Ψ$ meson background shape</td>
<td>1.5</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Fit procedure</td>
<td>3.0</td>
<td>8.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Reconstruction efficiency</td>
<td>0.9</td>
<td>5.9</td>
<td>4.0</td>
</tr>
<tr>
<td>MC sample size</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Z boson decay model</td>
<td>0.7</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>$ψ(2S)$ feed-down</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>9.2</td>
<td>10.8</td>
<td>7.6</td>
</tr>
</tbody>
</table>
The uncertainty in the fraction of $J/ψ$ events that potentially originate from $ψ(2S)$ is propagated from the uncertainty of the $N(Z → J/ψ e^+e^-) / N(Z → ψ(2S) [→ J/ψ X] e^+e^-)$ ratio.

The total systematic uncertainty of 7.6% for $R_{J/ψe^+e^-}$ is calculated by adding the sources of uncertainty given in the last column of Table II in quadrature.

After subtracting the $ψ(2S)$ feed-down we extract from Eq. (1) the branching fraction ratio $R_{J/ψe^+e^-}$, for the phase-space region defined in Table I:

$$R_{J/ψe^+e^-} = 0.67 \pm 0.18\text{(stat)} \pm 0.05\text{(syst)}.$$ (2)

Assuming that the factors applied to extrapolate the signal and reference-channel branching fractions from the phase space defined in Table I to the full phase space approximately cancel in the ratio, we use the measured value of $B(Z → μ^+μ^-μ^+μ^-) = (1.20 \pm 0.08) \times 10^{-6}$ [4] for $m(μ^+μ^-) > 4$ GeV to obtain an estimate for $B(Z → J/ψ e^+e^-)$ of 8×10^{-7}. This estimate is consistent with standard model predictions of $(6.7 \pm 0.7) \times 10^{-7}$ [10] and 7.7×10^{-7} [11].

The factors that extrapolate the fiducial measurements to the full phase space depend on the Z boson decay matrix element, which determines the angular distributions of the muons coming from the $ψ$ meson and the prompt leptons. Computing those factors assuming that the $ψ$ is transversely or longitudinally polarized in the helicity frame ($λ_0 = ±1$) [37] leads to a full phase space branching fraction ratio that differs by less than 25% from the unpolarized result.

In summary, a new decay mode of the Z boson into a $ψ$ meson, where $ψ$ represents the contributions from direct $J/ψ$ and $ψ(2S) → J/ψ X$, and an additional pair of leptons (muons or electrons), is observed with a statistical significance greater than 5 standard deviations. Using data from proton-proton collisions collected with the CMS detector at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, 13.0 ± 3.9 events of the $Z → ψμ^+μ^-$ and 11.2 ± 3.4 events of the $Z → ψe^+e^-$ decay are obtained. This is the first observed Z boson decay to a vector meson and two oppositely charged same-flavor leptons. The ratio of the branching fraction for this decay to the one for the reference channel $Z → μ^+μ^-μ^+μ^-$ in the fiducial phase space of the measurement, as defined in Table I, after subtracting the $ψ(2S)$ feed-down, is $R_{J/ψe^+e^-} = 0.67 \pm 0.18\text{(stat)} \pm 0.05\text{(syst)}$. Using the known branching fraction for $Z → μ^+μ^-μ^+μ^-$ results in a branching fraction for $Z → J/ψ e^+e^-$ consistent with standard model predictions.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, CPTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

104 National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
105 P.N. Lebedev Physical Institute, Moscow, Russia
106 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
107 Novosibirsk State University (NSU), Novosibirsk, Russia
108 State Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute", Protvino, Russia
109 National Research Tomsk Polytechnic University, Tomsk, Russia
110 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
111 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
112 Universidad Autónoma de Madrid, Madrid, Spain
113 Universidad de Oviedo, Oviedo, Spain
114 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
115 CERN, European Organization for Nuclear Research, Geneva, Switzerland
116 Paul Scherrer Institut, Villigen, Switzerland
117 ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
118 Universität Zürich, Zurich, Switzerland
119 National Central University, Chung-Li, Taiwan
120 National Taiwan University (NTU), Taipei, Taiwan
121 Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
122 Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
123 Middle East Technical University, Physics Department, Ankara, Turkey
124 Bogazici University, Istanbul, Turkey
125 Istanbul Technical University, Istanbul, Turkey
126 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
127 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
128 University of Bristol, Bristol, United Kingdom
129 Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Imperial College, London, United Kingdom
131 Brunel University, Uxbridge, United Kingdom
132 Baylor University, Waco, USA
133 Catholic University of America, Washington DC, USA
134 The University of Alabama, Tuscaloosa, USA
135 Boston University, Boston, USA
136 Brown University, Providence, USA
137 University of California, Davis, Davis, USA
138 University of California, Los Angeles, USA
139 University of California, Riverside, Riverside, USA
140 University of California, San Diego, La Jolla, USA
141 University of California, Santa Barbara—Department of Physics, Santa Barbara, USA
142 California Institute of Technology, Pasadena, USA
143 Carnegie Mellon University, Pittsburgh, USA
144 University of Colorado Boulder, Boulder, USA
145 Cornell University, Ithaca, USA
146 Fermi National Accelerator Laboratory, Batavia, USA
147 University of Florida, Gainesville, USA
148 Florida International University, Miami, USA
149 Florida State University, Tallahassee, USA
150 Florida Institute of Technology, Melbourne, USA
151 University of Illinois at Chicago (UIC), Chicago, USA
152 The University of Iowa, Iowa City, USA
153 Johns Hopkins University, Baltimore, USA
154 The University of Kansas, Lawrence, USA
155 Kansas State University, Manhattan, USA
156 Lawrence Livermore National Laboratory, Livermore, USA
157 University of Maryland, College Park, USA
158 Massachusetts Institute of Technology, Cambridge, USA
159 University of Minnesota, Minneapolis, USA
160 University of Mississippi, Oxford, USA
161 University of Nebraska-Lincoln, Lincoln, USA
162 State University of New York at Buffalo, Buffalo, USA
163 Northeastern University, Boston, USA
Northwestern University, Evanston, USA
University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA
Purdue University, West Lafayette, USA
Purdue University Northwest, Hammond, USA
Rice University, Houston, USA
University of Rochester, Rochester, USA
Texas A&M University, College Station, USA
Texas Tech University, Lubbock, USA
Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA

Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
Texas A&M University, College Station, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

*Deceased.
Also at Vienna University of Technology, Vienna, Austria.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at British University in Egypt, Cairo, Egypt.
Also at Suez University, Suez, Egypt.
Also at Helwan University, Cairo, Egypt.
Also at Fayoum University, El-Fayoum, Egypt.
Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at Shoolini University, Solan, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at University of Florida, Gainesville, USA.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at California Institute of Technology, Pasadena, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.