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Abstract

This dissertation examines causal effects in macroeconomics by identifying
structural shocks using higher and time-varying moments of data. In particu-
lar, the use of non-normality provides more conditions from data to draw
inference on the macroeconomic shocks and their propagation. In this way,
I complement the conventional structural vector autoregressive analysis with
techniques that facilitate the recovery of exogenous variation based on addi-
tional features of data.

In the �rst essay, I empirically analyse monetary policy transmission. The
surprise announcements by the central bank allow to identify the causal ef-
fects of monetary policy. However, this identi�cation strategy becomes proble-
matic when a combination of shocks moves the market surprises. I introduce a
�exible structural vector autoregression to identify several types of monetary
policy actions triggering the market surprises, based on a novel combination
of high-frequency proxies and higher moments of data. I estimate three dis-
tinct shocks from the surprise component of monetary policy, a conventional,
a long-run monetary policy and an information shock. By a policy measured
in the long-run shock, the central bank is able to in�uence the economy si-
milarly to conventional monetary policy but with instruments other than the
short-run interest rate.

The second essay studies the effects of government spending under an-
ticipation of �scal policy. When economic agents foresee future �scal policies,
measuring the causal effects of government spending is confronted by econo-
metric challenges. The essay explores the propagation of government spen-
ding shocks using a noncausal model that allows for anticipation of exoge-
nous �scal policy changes. Overcoming the issue of insuf�cient information,
the shock is extracted from an anticipated error term by using institutional
information about the conduct of �scal policy. In the U.S. economy, the shock
increases investment, employment, and wages one and a half years prior to
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its arrival, and consumption eventually rises. The estimated �scal multiplier
is above but close to unity. Importantly, neglecting the anticipation leads to
underestimation of the multiplier.

In the last essay, I provide evidence on the effects of news shocks under in-
suf�cient information. News shocks about future productivity can be correctly
inferred from a conventional vector autoregressive model only if information
contained in the observables is rich enough. The methodology of the essay is
able to measure the anticipation of permanent changes in total factor produc-
tivity independent of available information. By means of a noncausal model,
economic shocks are recovered from both past and future variation, which sol-
ves the problem of insuf�cient information per se. Consequently, the model
produces impulse responses to the anticipated structural shocks. In the U.S.
economy, news about improving total factor productivity moves investment
and stock prices, but the measured impact effects are modest. The estimated
news shock gradually diffuses to productivity and generates smooth reactions
of forward-looking variables.
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1 Introduction

1.1 Background

Knowledge of causal relations in macroeconomics is essential for the under-
standing of economic mechanisms and business cycle �uctuations. However,
the recovery of causal effects in the interconnected world requires versatile
methods, rigorous analysis and ambitious scienti�c enterprise. In particular, a
macroeconometric method needs to isolate the movements important for the
question of interest from the continuously evolving dynamic system which
constantly reacts to new information about economic fundamentals. To this
endogeneity problem, the line of attack in empirical macroeconomics is to
use econometric and theoretical models that impose certain structure to the
underlying economy.

Modern macroeconometric thinking traces back to Lucas (1976) who heav-
ily criticised the way how simultaneous equations models were used at that
time for policy analysis. According to the critique, coef�cients estimated from
correlations of the observed variables cannot directly be used to evaluate the
impact of macroeconomic policies. In an economy with constantly optimis-
ing economic agents, a change in the coef�cients regarding the policy directly
implies a shift in the interaction within the economic system such that those
correlations are no more valid. To correctly measure the effects, a change in a
policy or fundamentals must come outside the economic system.

Since the Lucas' critique, macroeconomic research has moved towards the
study of macroeconomic shocks. These shocks induce unexpected �uctua-
tions of the economy, as the economic agents adjust to new fundamentals in a
system where the premises such as policy and behavioural rules remain time-
invariant. Apart from explaining the economic �uctuations, the shocks allow
to examine the dynamic effects of the economy to unexpected events. Hence,
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Introduction

as such, the shocks provide a framework to compare, evaluate and measure
the impact of different macroeconomic mechanism and policies.

In the early 1980s, macroeconomics evolved in a way to take the Lucas' cri-
tique into consideration. Starting from Kydland and Prescott (1982), theoret-
ical macroeconomics introduced the use dynamic stochastic general equilib-
rium (DSGE) models which inferred macroeconomic �uctuation to stem from
responses of economic agents to unexpected shocks on fundamentals. Simul-
taneously, Sims (1980) proposed the use of structural vector autoregressive
(SVAR) models for policy evaluation in a reduced-form framework, where
no particular theoretical structure is imposed on dynamic relationships of
variables. In particular, the introduced SVAR methodology infers the causal
effects not from the coef�cients of the model but, rather, from exogenous
changes extracted from an unpredictable component through structural as-
sumptions. Importantly, the new macroeconomic techniques survived the Lu-
cas' critique by studying the dynamic path of stochastic shocks.

This dissertation introduces and uses new techniques for the study of
macroeconomic effects in the SVAR framework. In the three essays, I will
show that time-varying and higher moments of data can be exploited through
non-Gaussianity to recover the dynamic effects of monetary policy, govern-
ment spending and productivity on the economy. Speci�cally, the techniques
re�ne the SVAR methodology when theoretical structure or observables are
unable to provide suf�ciently information to identify the economic shocks of
interest.

1.2 Identi�cation of dynamic causal effects in macroe-
conomics

The focus of dynamic macroeconomics is on the effects of macroeconomic
shocks. The shocks are mutually uncorrelated and represent unexpected vari-
ation that moves the economic variables as they induce economic agents to
reoptimise their behaviour. By estimating the effects of the shocks in a re-
duced form, i.e. imposing as few assumptions as possible to the underlying
economy, it is possible to test implications of economic models and discrimi-
nate between competing paradigms. Fundamentally, the dynamic paths due
to the shocks give information about the causal relationships in the economy.

The estimation of the responses to the macroeconomic shocks of interest
is, however, subject to the issue that economic agents are forward-looking and
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1.2 Identification of dynamic causal effects in macroeconomics

constantly reoptimise their behaviour. As a result, endogeneity is inherently
present in any empirical question, which poses a dif�culty for the isolation
of exogenous shocks. Hence, an identi�cation technique needs to take into
account, �rst, how the economic agents form expectations about the future
and, second, how to extract exogenous and unanticipated variation in the
environment with general equilibrium effects.

To formalise the above requirement, let an n-dimensional column vector
yt include the economic variables of interest, and let E[yt jI t � 1] be the condi-
tional expectation of the economic agents about yt on the information set of
economic agents,I t � 1, at t � 1. Generally, to �nd the effects of macroeconomic
shocks on the economy, the model needs to de�ne expectations E[yt jI t � 1],
identify macroeconomic shocks from the forecast error yt � E[yt jI t � 1] and,
under these premises, derive the reactions of the variables included in yt .

1.2.1 The VARMA class of models

A general framework for the analysis of macroeconomic dynamics is a vector
autoregressive moving average (VARMA) representation of the n variables in
yt :

yt =
p

å
i= 1

A iyt � i +
q

å
i= 0

Bi#t � i , (1.1)

where (n � n) matrices f A ig
p
i= 1 contain the autoregressive coef�cients of the

lags of yt and (n � n) matrices f Big
q
i= 0 are the moving average terms related

to the n mutually uncorrelated structural shocks in vector #t .1 In general, the
VARMA representation (1.1) infers that the dynamics of economic variables
are caught by their p lags and by the current and past q structural shocks.
In addition to this reduced-form interpretation, the VARMA representation
encompasses any solution of a linearised dynamic stochastic general equi-
librium model (DSGE) model up to a truncation of the lags of yt (see, e.g.
Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson, 2007. The lat-
ter aspect implies that �nding an adequate VARMA model is equivalent to
correctly capturing dynamics generated by the underlying economy, where
forward-looking agents form rational expectations about the future states and
optimally choose their actions.

1For the sake of illustration, constant terms are ignored from the representation.
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Introduction

The VARMA representation (1.1) is more compactly written as

A(L)yt = B(L)#t (1.2)

with an (n � n) matrix polynomial A(L) = In � A1L � . . . � ApLp, B(L) =
B0 + B1L + . . . + BqLq and L the usual lag operator. When the autoregressive
polynomial A(L) is stable, i.e. its roots are outside the unit circle, the model
(1.2) has a moving average (MA) representation

yt = A(L) � 1B(L) =
¥

å
j= 0

Q j#t � j = Q(L)#t , (1.3)

with coef�cients of f Q jg¥
j= 0 obtained recursively from identity A(z)Q(z) =

B(z). The movements of variables in yt are thus explained by the history of
the structural shocks. Accordingly, the economic �uctuations stem from the
responses of the economy to exogenous and unanticipated disturbances #t –
the interpretation tracing back to Slutzky (1937). In particular, the reactions
of variables yt to an unexpected macroeconomic shock #i ,t , the ith element of
vector #t , can be deduced from the impulse response function

¶yt+ j

¶#i ,t
= [ Q j ]i , j = 0, 1, . . . , (1.4)

where [Q j ]i is the ith column of matrix Q j . The MA coef�cients thus reveal
the dynamic path of the economy in response to a shock #i ,t .2

The MA representation (1.3) is the building block of causal inference in
macroeconomics. First, the produced impulse responses show how the econ-
omy moves as a result of a shock hitting the system. When the character of
these shocks is known, tracking the dynamic effects helps to understand the
importance of different economic mechanisms. Second, through the lens of
the MA representation, business cycle �uctuations originate from variation in
the macroeconomic shocks. Moreover, the representation is able to measure
the relative importance of these shocks for different time horizons and unveil
the sources of business cycle �uctuations. Third, provided the existence of a
shock that re�ects exogenous variation in the variable of interest, the respec-

2Even if the polynomial A(L) does not satisfy the stability condition and the MA represen-
tation (1.3) does not exist, the impulse responses coincide with those obtained from the same
recursion as above.
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1.2 Identification of dynamic causal effects in macroeconomics

tive impulse responses depict the causal effects of this speci�c variable on the
economy. For instance, it is possible to measure the implications of productiv-
ity increases or examine the effectiveness of monetary or �scal policy, if there
is a shock – or, equivalently, an instrument – that induces a direct change in
the variable of interest.

1.2.2 Structural vector autoregression

Given that a large body of macroeconomic models, such as all linearised ratio-
nal expectations models, is covered by the VARMA and MA representations
(1.2) and (1.3), macroeconomic effects can be estimated in a reduced form and
by imposing as few assumption on the economic structure as possible. Promi-
nently, structural vector autoregressions (SVAR) are able to measure – under
certain assumptions – the dynamic effects of macroeconomic shocks generated
by the underlying VARMA model. If the matrix polynomial B(L), or equiva-
lently Q(L), is invertible in the past, i.e. it has no roots inside the unit circle,
the VARMA model (1.2) has a vector autoregressive (VAR) representation

B0B(L) � 1A(L)yt = B0#t , (1.5)

where B0B(L) � 1A(L) is an (n � n) square summable matrix polynomial with
possibly in�nite powers of L.

Truncating the lags of yt , the empirical counterpart of the representation
(1.5) is a causal VAR model

C(L)yt = ut , C(L) = In � C1L � . . . � CpLp, (1.6)

where f Cig
p
i= 1 are (n � n) matrices and the residual ut = B0#t is the reduced-

form error term. As a result, the structural shocks #t are contained in the
forecast error of the model as ut = yt � E[yt jyt � 1, yt � 2, . . .] = B0#t and can be
recovered after imposing identifying restrictions on matrix B0 . Moreover, the
model has an MA representation

yt = C(L) � 1ut =
¥

å
j= 0

D j B0#t � j , (1.7)

which coincides with the true representation (1.3) provided the validity of the
invertibility condition and the identifying restrictions. Hence, as long as the
underlying economy is assumed to be of the linear VARMA form (1.1), the
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Introduction

impulse responses of the structural VAR (SVAR) model (1.6) track the true
propagation of the macroeconomic shocks.

The SVAR methodology faces, however, two identi�cation problems (Hansen
and Sargent, 1980, 1991; Lütkepohl, 2014). First, if the invertibility of the MA
polynomial B(L) fails to hold, no mapping between the underlying VARMA
model (1.2) and the VAR representation (1.5) exists. The second identi�cation
problem concerns �nding a correct static rotation to map the reduced-form
error term ut to the true structural shocks, depending on the validity of the
identifying restrictions imposed on the impact matrix B0. Under a failure of
these conditions, the SVAR model is unable to extract from the data the true
structural shocks and impulse responses.3

1.2.3 Dynamic identi�cation problem

The �rst of the aforementioned identi�cation problems is dynamic: invert-
ibility of the VARMA model (1.2) is needed for �ltering out an error term ut
consisting of the structural shocks #t through the current and lagged values of
yt . However, invertibility is far from what equilibrium conditions of macroe-
conomic models usually imply for a small set of observables included in yt .
In particular, noninvertibility may arise from the slow diffusion of technol-
ogy shocks (Lippi and Reichlin, 1994a), from the ability of economic agents to
predict future �scal policies (Ramey, 2011; Leeper, Walker, and Yang, 2013) or
from the news on productivity (Forni, Gambetti, and Sala, 2014; Beaudry and
Portier, 2014). Above all, when economic agents are able to foresee certain
shocks of the economy before they strongly in�uence the variables in yt , the
underlying economy is likely to imply noninvertibility of the MA polynomial
B(L) (Leeper et al., 2013; Beaudry and Portier, 2014). Fundamentally, the prob-
lem reduces to the fact that forward-looking agents have a larger information
set than the econometrician possesses. That is, the conditional expectation
E[yt jyt � 1, . . .] derived from the VAR model no more represents the forecast
made by the economic agents.

Under this nonfundamentalness problem, induced by the above noninvert-
ibility, the history of observables yt does not contain enough information to re-
cover the linear combination of the structural shocks B0#t . In that case, �tting
a VAR model produces an error term that is a linear combination of the cur-
rent and lagged values of #t (Lippi and Reichlin, 1994b; Fernández-Villaverde

3An alternative approach to recover the structural shocks of interest is the use of local pro-
jections (Jordà, 2005). On the identi�cation of causal relationships in macroeconomics, see also
Nakamura and Steinsson (2018b).
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1.2 Identification of dynamic causal effects in macroeconomics

et al., 2007). This implies that no static impact matrix B0 exists to retrieve the
structural shocks. Furthermore, the implicitly invertible MA representation
(1.7) does not correspond to the underlying noninvertible MA representation
(1.3). The impulse responses produced from the structural VAR model may
then be severely distorted.

Ultimately, the dynamic identi�cation concerns information: the variables
need to be reactive enough with respect to the current shocks. Hence, a
straightforward approach to tackle nonfundamentalness is to augment the
model with variables that are forward-looking enough to capture the expec-
tations of the public (Leeper et al., 2013). In the �scal policy, this strategy has
been proceeded by Ramey (2011), Fisher and Peters (2010) and Leeper et al.
(2012) by variables based on news paper sources or stock price that re�ect
expectations of economic agents. Information can also be added by extracting
factors from large datasets, as proceeded by Forni et al. (2014) in studying
news shocks on productivity or by Bernanke et al. (2005) to estimate the ef-
fects of monetary policy. Alternatively, the structural shocks can be obtained
by imposing dynamic theoretical restrictions on the nonfundamental error
term (Lippi and Reichlin, 1994b; Mertens and Ravn, 2010; Forni, Gambetti,
Lippi, and Sala, 2017), or by directly estimating a theoretical model (Schmitt-
Grohé and Uribe, 2012). Imposing such dynamic structure departs from the
reduced-form analysis by shrinking the set of economic processes.

Compared to the above approaches, in Chapters 3 and 4, I propose an
approach to recover the structural shocks under insuf�cient information while
still imposing few assumptions on the dynamic structure. In particular, I
solve the nonfundamentalness problem with a noncausal model that remains
valid both under invertibility and noninvertibility. The model includes, in
addition to the lagged values of yt , future terms of observables, by which it
is possible to �lter out an error term that consists of anticipated structural
shocks. Speci�cally, under noninvertibility of the VARMA model (1.2) to the
past, the MA polynomial B(L) can be inverted to the past and future such that

¥

å
j= � ¥

Fjyt � j = ut � l , (1.8)

where l is the number of roots of the MA polynomial located within the unit
circle. The above noncausal representation is, however, generic and infeasi-
ble to estimate. To make the representation operational, I use the noncausal
VAR model of Lanne and Saikkonen (2013) to recover a potentially anticipated
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reduced-form error term ūt :

P (L)F (L� 1)yt = ūt , (1.9)

where P (L) = In � P 1L � . . . � P Lr and F (L) = In � F 1L� 1 � . . . � F sL� s

are the lag and lead polynomials. The use of future values circumvents the
need for adding information to the model, as the model (1.9) remains valid
both under nonfundamentalness and fundamentalness. In other words, the
model allows for the misalignment between the information sets of economic
agents and econometrician. In particular, the expectation E [ūt jyt � 1, . . . ,] is
nonzero and can be forecast by the past values of yt (Lanne and Saikkonen,
2013; Lanne and Luoto, 2016).

Now, the anticipated error term, ūt is a linear combination of the under-
lying but potentially lagged structural shocks contained in an n-dimensional
vector #̄t . The latter can then be obtained as ūt = B̄#̄t after imposing iden-
tifying restrictions on the static rotation matrix B̄. The propagation of these
anticipated shocks are determined by the two-sided MA representation of the
model, obtained by inverting the stable polynomials P (L) and F (L� 1):

yt =
¥

å
j= � ¥

Y j B̄#̄t � j , (1.10)

where å ¥
j= � ¥ Y j = F (L� 1) � 1P (L) � 1. This implies that the shocks obtained

from the error term affect the variables before t such that they are of an-
ticipated nature. Instead, under fundamentalness, the lead terms f F jgs

j= 1
become redundant and the representation (1.10) reduces to the conventional
one-sided MA representation (1.7). Hence, noncausality facilitates the recov-
ery of the structural shocks as anticipated when the underlying model implies
nonfundamentalness. Then, the true MA representation (1.3) is derived as the
two-sided representation (1.10), where the original structural shocks are con-
tained in #̄t as time-shifted.

However, to distinguish between noninvertible and invertible – correspond-
ingly between noncausal and causal – representations, more conditions are
needed from data for identi�cation. Speci�cally, the causal VAR (1.6) and the
noncausal VAR (1.9) are observationally equivalent when the structural shocks
are Gaussian.4 This non-identi�ablity stems from the Gaussian distribution,

4Identi�ability issues also pose a problem for estimating a noninvertible VARMA model.
Plagborg-Møller (2018) and Barnichon and Matthes (2018) propose the estimation of MA rep-
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1.2 Identification of dynamic causal effects in macroeconomics

where the �rst and second moments determine the shape of the distribution.
Thus a nonfundamental error term produced by a causal VAR (1.6) may well
be uncorrelated over time, as Gaussianity does not distinguish between cor-
relation and statistical independence. Under non-Gaussianity, in turn, the
causal and noncausal models can be distinguished as higher moments of data
are needed to produce an error term ūt that is not only uncorrelated but also
independent over time.

Following Lanne and Saikkonen (2013) and Lanne and Luoto (2016), I iden-
tify and estimate the noncausal VAR by using a simple deviation from non-
normality. The normally distributed structural shocks are augmented with a
stochastic volatility factor as follows:

#̄t = w � 1/2
t #t , (1.11)

where #t � N (0, In) are the mutually uncorrelated structural shocks and
w � 1/2

t is a volatility term such that lw t is c2
l distributed. As a whole, #̄t is

multivariate t-distributed. When l ! ¥ , the distribution resembles Gaussian
distribution. On the other hand, low values of l imply that the distribution of
the structural shocks has fatter tails than normality would imply. In particu-
lar, such non-normality is usually present in the economic time series (Fagiolo,
Napoletano, and Roventini, 2008). As l can be estimated from data, it is even-
tually an empirical question whether the noncausal model can be identi�ed
and used to tackle the nonfundamentalness problem.

1.2.4 Static identi�cation problem

Although the SVAR model survives the dynamic identi�cation problem pre-
sented above, a static identi�cation problem remains to be solved, i.e. �nding
a mapping between the structural shocks and the reduced-form error term:

ut = B0#t . (1.12)

In the conventional SVAR literature, the correct static rotation B is inferred
through covariance restrictions

S = E[utu0
t ] = E[B0#t#0

t B
0
0] = B0B0

0, (1.13)

resentation (1.3) directly. Their inference may be feasible only with strong prior information
about the underlying economic mechanism, which enables to distinguish between invertible and
noninvertible representations.
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where S is a positive de�nite n-dimensional covariance matrix of the reduced-
form errors ut and can be estimated from data. The relation (1.13) is, however,
able to provide only n(n + 1)/2 conditions for the n unknown parameters in
B0. Hence, the data moments have to be complemented by prior restrictions
based on external information to derive the impact matrix B0 and produce the
impulse responses from the MA representation (1.7).

The SVAR literature has developed various techniques to �nd B0, as re-
cently reviewed by Ramey (2016), Stock and Watson (2016) and Kilian and
Lütkepohl (2017). I concentrate here on identi�cation strategies that have been
used to recover the class of structural shocks considered in the three subse-
quent chapters. First, the monetary policy shocks are deviations of the central
bank from the systematic policy rule. Although these shocks, per se, deter-
mine only a small fraction of the movements of interest rates and economic
activity, they can be used to derive the causal effects of monetary policy on
the economy. Second, government spending shocks are exogenous changes
in �scal policy and are orthogonal to the state of the economy. Due to this
exogeneity, the implied impulse responses show the propagation of an exoge-
nous increase in the �scal policy, which allows to measure the effectiveness
of government spending on the economy. Third, news shocks on technology
(Beaudry and Portier, 2006) have emerged as a factor that can explain how
changes in productivity generate business cycle �uctuations. As these shocks
induce immediate reactions in the forward-looking variables but diffuse to to-
tal factor productivity with a delay, the news shocks have been proposed to
be an important source of short-run �uctuations.

The most common identi�cation strategy imposes restrictions on the con-
temporaneous relations of the variables in the SVAR model. These restrictions
assume that certain variables respond to the structural shocks or policy vari-
ables only with a lag. In other words, the restrictions exclude feedback from
a current change in the economy to a set of variables. In the monetary SVAR
literature, Christiano, Eichenbaum, and Evans (1999) use a recursive identi�-
cation scheme according to which monetary policy adjusts within a period to
real economic activity and prices whereas the latter react to monetary policy
only with a lag. In the �scal policy literature, Blanchard and Perotti (2002) use
a timing restriction that government spending does not respond to the cur-
rent circumstances in the economy. Hence, a government spending shock is a
deviation from the endogenous path of spending. Correspondingly, Beaudry
and Portier (2006) identify a news shock as a shock that affects total factor
productivity only with a lag.

The above short-run restrictions are, however, not always justi�able from
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the view point of economic theory. Notably, the recursiveness assumption of
Christiano et al. (1999) is at odds with the modern macroeconomic models
that imply an immediate reaction of prices and output to monetary policy as
well as with the fact that monetary policy often reacts to the current changes
in the �nancial market. The short-run restrictions are also vague to model
misspeci�cation. In particular, when the underlying model implies nonfunda-
mentalness and the reduced-form error is a linear combination of the current
and past shocks, the identifying assumptions are starkly violated and even
more incorrectly rotate the nonfundamental errors.

Apart from the above misspeci�cation issues, it is often dif�cult to �nd
suitable short-run restrictions as the economy continuously responds to the
most recent shocks. One prominent technique, introduced by Uhlig (2005),
uses sign restrictions on the variables of the model to discriminate between
different shocks of the economy. In the context of monetary policy, the shock
is then identi�ed according to the signs of the responses of output, in�ation
and interest rate to an unexpected shock. Similarly, �scal shocks can be identi-
�ed through information about their effects on spending, taxes and consump-
tion (Mountford and Uhlig, 2009). However, the approach provides only set
identi�cation, giving a spectrum of potential impact matrices that satisfy the
restrictions. Moreover, the sign restrictions are often infeasible to use when
the objective is to study implications of different paradigms which usually
concern the sign of the impulse responses.

The identi�cation can also be based on the medium- and long-run effects
of the shocks. To identify a news shock on productivity, Beaudry and Portier
(2006) apply the technique of Blanchard and Quah (1989) to �nd a shock that
has a permanent effect on technology. Such long-run restrictions with in�nite
horizon have, however, weak small sample properties. These problems may be
avoided when the horizon of interest is �nite. The news shock literature has
recently combined a medium-run identi�cation scheme introduced by Uhlig
(2004) and extended by Francis, Owyang, Roush, and DiCecio (2014) with the
short-run restrictions. Proposed by Barsky and Sims (2011), the news shock
explains the most of the forecast error variance in total factor productivity
among the shocks that have a delayed effect on the variable.

The external information needed for the static identi�cation can also be
based on the use of variables informative about the structural shocks of inter-
est. These types of variables are collected from external sources such as news
papers, �nancial market data or administrative records and measure directly
the shocks of interest. Hence, the identi�cation is based on the timing and
relevance of the variables with respect to the latent shocks. In the proxy SVAR
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methodology (Stock and Watson, 2012; Mertens and Ravn, 2013), these vari-
ables are externally used for the identi�cation of the structural shocks from
the forecast error (1.12).

The empirical measures of structural shocks have widely used both in the
empirical monetary and �scal policy literature. 5 Barakchian and Crowe (2013),
Gertler and Karadi (2015) and Nakamura and Steinsson (2018a), amongst
other, extract a monetary policy shock from movements in the futures and
interest rates within a narrow window around the announcements by the cen-
tral bank. In other words, the nonsystematic component of monetary policy
is extracted from the surprise actions and language in the statements. Re-
solving both dynamic and static identi�cation problems, Ramey (2011) uses a
narrative series constructed from news paper sources to measure the expected
government expenditures to identify a spending shock.

The techniques discussed in this subsection can – to some extent – be used
in the noncausal framework (1.9) to identify anticipated structural shocks. The
use of these restrictions are, however, constrained by the fact that the timing
of anticipated shocks can less precisely be de�ned a priori. In Chapters 3
and 4, after resolving the dynamic identi�cation problem with the noncausal
VAR (1.9), I complete the static identi�cation with the use of short-run and
medium-run restrictions. In particular, I identify the government spending
shocks with the same exclusion restrictions as Blanchard and Perotti (2002) but
allow now the shock to be anticipated by the economic agents. Similarly, the
news shocks under potential noninvertibility are isolated from the anticipated
error term with an assumption that the shock explains the most variation of
total factor productivity in the medium run.

The above approaches complement the covariance restrictions (1.13) with
assumptions on the timing, shape, magnitude of the structural shocks. The
need for this external information originates from considering only the �rst
and second moments in the identi�cation. Nonetheless, it is possible to learn
more from data as soon as higher or time-varying moments are used in
the estimation. Starting from Rigobon (2003), growing literature uses non-
normal features of data to identify structural shocks. The use of such fea-
tures increases the conditions obtained from data such that the shocks can
be identi�ed without imposing theoretical restrictions on the impact matrix
B. More conditions can be obtained by unconditional (Rigobon, 2003) or con-
ditional (Sentana and Fiorentini, 2001) heteroskedasticity, Markov-switching

5The impulse responses can then be derived either in the SVAR framework or directly using
local projections of Jordà (2005).
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heteroskedasticity (Lanne, Lütkepohl, and Maciejowska, 2010) or by any non-
normal distribution (Lanne, Meitz, and Saikkonen, 2017). Then, the structural
shocks are discriminated by using information about their statistical indepen-
dence or orthogonality conditional on time-varying moments.

In particular, I use the statistical identi�cation approach in Chapter 2 to
extract a set of monetary policy shocks from proxy variables. I proceed by
assuming that the ith element of the shock vector #t is distributed as

#i ,t = h� 1/2
i,t #�

i ,t , i = 1, . . . ,n, (1.14)

where l i hi ,t � c2
l i

and #�
i ,t � N (0, 1). Conditionally, the structural shocks are

accompanied by a stochastic volatility factor h� 1/2
i,t , which implies that condi-

tions relating to moments E [(#i ,t )k(#j,t ) l ] for k + l � 3, i 6= j and i, j = 1, . . . ,n
are no more determined by the �rst and second moments only. Uncondi-
tionally, the structural shocks are Student's t-distributed. The assumption
is similar to the multivariate t-distribution in (1.11) but, now, the structural
shocks are required to be cross-sectionally independent in addition to the
time independence. Consequently, it is possible to distinguish multiple struc-
tural shocks by the statistical properties of proxy variables. Hence, in place of
discriminating between a number of structural shocks using zero restrictions
that are dif�cult to justify, I combine the proxy-based identi�cation with the
knowledge about the statistical properties of data, facilitated by the assump-
tion of non-normality (1.14). By the distributional assumption, the model can
ef�ciently be estimated by Bayesian methods.

1.2.5 Non-normality in macroeconomic variables

Naturally, non-Gaussianity is a useful property to exploit only if the higher
moments of data exhibit patterns that cannot be justi�ed by normally dis-
tributed shocks. In effect, distributions of growth rates of output have been
documented to be heavy-tailed (Fagiolo et al., 2008; Ascari et al., 2015), i.e.
they have excess kurtosis that translates to large deviations from the mean.
Moreover, the estimated VAR models often produce residuals that do not sur-
vive tests for normality (See Kilian and Lütkepohl 2017, Ch. 14, and the refer-
ences therein). In a similar vein, Cúrdia, del Negro, and Greenwald (2014) and
Chib and Ramamurthy (2014) show that augmenting a typical DSGE model
with t-distributed innovations improves its performance in the low-frequency
data, suggesting the importance of the excess kurtosis and the existence of
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rare large shocks.
For motivation, Figure 1.1 plots �rst-hand evidence on non-normality in

data from the post-war U.S. economy. In particular, I plot distributions of
several macroeconomic indicators used in the analyses of the subsequent
chapters. The solid lines depict the kernel density estimates of the variables,
whereas the dashed-dotted lines show the corresponding �tted Gaussian dis-
tribution. Panel (a) plots a set of variables at monthly frequency and Panel (b)
at quarterly frequency. All nonstationary variables are expressed in growth
rates. Panel (a) reveals that none of the monthly variables aligns with the
corresponding normal distribution. Rather, probability mass is excessively
concentrated on the middle and on the tails of the distributions. A similar
observation concerns the lower-frequency quarterly data: non-normality does
not vanish due to the time aggregation.

Strikingly, the evidence suggests that non-normality is not a concern in
the high-frequency �nancial data only but prevails in more time aggregated
monthly and quarterly macroeconomic data. In principle, this phenomenom
could be a result of the non-linear economic structure with heavy-tailed dis-
tributions emerging from the underlying endogenous decision rules. In that
case, a VARMA model necessarily captures dynamics only partially, leading
to the observed non-normal innovation terms. However, according to Ascari
et al. (2015), the non-linearity of DSGE models is insuf�cient to generate the
observed heavy-tailed distributions. Instead, the distributions of economic
variables may well be generated by a linear combination of non-normal struc-
tural shocks. In this perspective, non-Gaussianity need not be considered
a symptom of misspeci�cation but an inherent feature of data, which addi-
tionally provides a useful source of information for the static and dynamic
identi�cation of causal effects.

1.3 Summary of the essays

In this section, I brie�y summarise the content of the three self-contained es-
says of this thesis. The ultimate aim of the essays is to recover macroeconomic
shocks to study their propagation in the economy. For this purpose, non-
normality is used to overcome the lack of identi�cation. Chapter 2 concen-
trates on the static identi�cation problem by exploiting both high-frequency
proxy variables and non-normality to measure the causal effects of mone-
tary policy. In Chapters 3 and 4, the interest is on the dynamic identi�cation
problem to �nd a fundamental error term by additionally exploiting the fu-
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Figure 1.1: Distributions of selected monthly and quarterly U.S. macroeco-
nomic variables
Kernel density estimates (solid lines) and estimates of the corresponding normal distribution (dot-dashed lines))
reported. Growth rates ( D%) of industrial production, consumer price index (CPI) and the quarterly variables
have been annualised. GDP is the real per-capita gross domestic product and TFP the capacity-utilisation
adjusted total factor productivity. For details on the quarterly variables, see Subsections 3.3.1 and 4.4.1. Data
span the time period 1948–2016 for all except the 2 and 10-year yields (1961:6–2016). Data sources: National
accounts variables (National Income and Product Accounts, Bureau of Economic Analysis); the utilisation-
adjusted TFP (Fernald, 2012); Industrial production, Unemployment rate and CPI (FRED, Federal Reserve Bank
of St. Louis); the interest rates (Gürkaynak et al., 2007); S&P index (Yahoo! Finance). All variables except the
interest rates and the S&P index are seasonally adjusted.
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ture variation of macroeconomic indicators. Recovering the macroeconomic
shocks as anticipated, these two essays analyse anticipated �scal policy and
news on productivity.

1.3.1 Chapter 2: Identi�cation of monetary policy shocks through
proxies and non-normality

To identify the causal effects of monetary policy, it is necessary to �nd varia-
tion from the non-systematic component of monetary policy. However, as the
actions of the central bank mainly originate from its endogenous response to
the economy, empirical strategies using different identi�cation schemes do not
produce analogous results about the propagation of monetary policy shocks.

In the recent literature, surprise announcements by the central bank are
observed in movements of �nancial variables within a narrow time window
around the release of monetary policy statements. These high-frequency prox-
ies re�ect deviations from the endogenous policy rule and allow to measure
the effects of monetary policy. However, the latter identi�cation strategy be-
comes problematic when the market surprises are triggered by more than one
shock. In that case, the identi�ed shock is a mixture of underlying shocks
and may induce reactions that are far from the true impulse responses. As
monetary policy is to a large part communication in multiple dimensions,
statements of the central bank highly likely induce surprises that cannot be
condensed into one factor only.

I introduce a �exible structural vector autoregression with a novel identi-
�cation scheme to �nd several types of unexpected monetary policy actions.
Speci�cally, I exploit comovement of high-frequency proxies and macroeco-
nomic variables in combination with higher moments of data. I proceed by
introducing time-varying volatility to the proxy variables, by which I am able
to distinguish various channels of monetary policy transmission without im-
posing prior restrictions. The approach combines two appealing identi�ca-
tion strategies. First, the proxy variables accurately measure monetary policy
surprises induced by the statements. Second, non-normality is used to distin-
guish between the relevant shocks.

I estimate three types of policy surprises that drive the reactions to the
monetary policy statements in the U.S. economy. First, a conventional mon-
etary policy shock relates to surprise changes in the short-run rate. Second,
the statements induce, to a smaller extent, the arrival of a shock that reveals
new information to the public about the state of the economy through the
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endogenous response of monetary policy. The third shock affects the risk
and expectations of economic agents – orthogonal to the present short-run
rate change – originating from communication of the central bank regarding
its future actions. Importantly, by this policy akin to forward guidance, the
central bank is able to in�uence the economy similarly to the conventional
interest rate change.

1.3.2 Chapter 3: The effects of government spending under
anticipation: the noncausal VAR approach

Fiscal policy usually includes an implementation lag during which the econ-
omy may adjust to the new conditions. As a result, new policies are observed
by economic agents before the shock arrives in an empirical model. This im-
plies that the shocks identi�ed from the VAR model may in fact be anticipated
by the public. The conventional VAR models are thus at high risk to mismea-
sure the effects of government spending.

I explore the propagation of government spending shocks using a non-
causal model that allows for anticipation of exogenous �scal policy changes.
In particular, I identify a government spending shock with the exclusion re-
strictions of Blanchard and Perotti (2002) according to which the economic
policy does not respond to the current state of the economy. However, unlike
the previous literature, I allow the identi�ed government spending shock to
be anticipated such that the issue of insuf�cient information becomes innocu-
ous. The shock is extracted from an anticipated error term, and the impulse
responses can be derived from the two-sided MA representation of the model.
Importantly, the proposed method remains valid regardless of the nonfunda-
mentalness issue.

In the U.S. economy, the shock increases investment, employment, and
wages one and a half years prior to its arrival, and consumption eventually
rises. Ex-post, the shock captures movements in defence spending, in line
with the previous literature. The estimated �scal multiplier is above but close
to unity. Disregarding the anticipation and using a conventional VAR model
lead to underestimation of the multiplier. I also show that variables gauging
the expectations of the public can in part anticipate the future policy shock
identi�ed in the noncausal VAR framework. The �ndings suggest that govern-
ment spending is mildly expansionary, supporting the existence of Keynesian
mechanisms.
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1.3.3 Chapter 4: Evidence on news shocks under information
de�ciency

News shocks about future productivity generate �uctuation of the economy
before radical changes can be observed in total factor productivity. However,
the news shocks can correctly be inferred from a conventional VAR model
only if information contained in observables is rich enough. In particular, an
underlying theoretical model with news shocks is likely to imply a nonfunda-
mentalness problem for the observables, where the shock cannot be retrieved
from the past only.

The essay provides evidence on the anticipation of permanent changes in
total factor productivity independent of the available information. By means
of the noncausal VAR model, economic shocks are recovered from both the
past and future variation, which solves the problem of insuf�cient informa-
tion per se. Consequently, the model is able to show the impulse responses to
the anticipated structural shocks. Methodologically, the essay contributes by
introducing an identi�cation technique which facilitates the conduct of struc-
tural analysis with the noncausal VAR model. I show both with a stylised
example as well as with simulations from a DSGE model that the approach
and the proposed identi�cation strategy perform well in the recovery of of
news shocks.

In the U.S. economy, news about improving total factor productivity moves
investment and stock prices, but the measured impact effects are modest.
The estimated news shock gradually diffuses to productivity and generates
smooth reactions of forward-looking variables. Hence, the news shocks are
unlikely to generate signi�cant short-run �uctuations of the economy. The
measured strong reactions of the previous literature may be a consequence of
information de�ciency and the ignored contemporaneous effects of the shock
on total factor productivity.
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2 Identi�cation of monetary
policy shocks through proxies
and non-normality

.

2.1 Introduction

A fundamental issue in macroeconomics is how monetary policy propagates
to the real economic activity and prices. For the estimation of the dynamic
causal effects of monetary policy, an identi�cation strategy requires exoge-
nous variation stemming from surprise actions of the central bank. That is, by
�nding non-systematic movements in monetary policy – deviations from its
systematic, endogenous decision rule – it is possible to measure the direct ef-
fects of money and interest rates on the macroeconomy. Despite vast research,
the literature has reached no consensus about the transmission of monetary
policy or about how the non-systematic variation is measured.

This essay contributes to the monetary policy literature by estimating the
effects of multiple shocks driving the reactions of the public to monetary pol-
icy announcements. The approach combines identi�cation based on variables
that re�ect the surprise movements of the central bank with the use of statis-
tical properties of data. As a result, multiple monetary policy shocks revealed
in the statements of the central bank can �exibly be recovered. I �nd that
the statements of the Federal Reserve are connected with three distinct shocks
that have asymmetric effects on the interest rates, on credit spreads and on the
economy. The existence of multiple shocks is able to give insight into various
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dimensions of monetary policy communication.
Since Sims (1980), vector autoregressive (VAR) models have been used to

isolate monetary policy shocks, identi�ed by structural assumptions based on
prior information. In the structural VAR (SVAR) literature, identi�cation is
traditionally achieved by short-run recursive (Christiano, Eichenbaum, and
Evans, 1999) or sign (Uhlig, 2005) restrictions.1 These restriction are, how-
ever, not always justi�able from the view point of economic theory or exter-
nal information. In particular, they may unrealistically exclude simultaneous
feedback of the economy from monetary policy or limit the reactions of the
central bank to current �nancial conditions. Moreover, extracting the nonsys-
tematic part from the policy rate – as usually proceeded – may be problematic
as soon as the central bank communicates its actions in advance. In particular,
under forward-looking monetary policy, the actions of the central bank tend
to be anticipated such that changes in the target rate are unlikely to contain
monetary policy shocks (Barakchian and Crowe, 2013).

To address these problems, exogenous variation in monetary policy has
been identi�ed through construction of a variable informative about surprise
actions of the central bank. Romer and Romer (2004) identify monetary policy
shocks as deviations of the target rate change from the one implied by the in-
ternal forecasts of the Federal Reserve. On the other hand, the high-frequency
identi�cation approach interprets that the market reactions within a narrow
window around the announcements by the central bank re�ect the surprise
component of monetary policy. To this line of research belong, amongst oth-
ers, Kuttner (2001), Faust, Swanson, and Wright (2004), Gürkaynak, Sack, and
Swanson (2005), Cochrane and Piazzesi (2002) Barakchian and Crowe (2013),
and Gertler and Karadi (2015). As an immediate advantage, the strategy ex-
tends the analysis of monetary policy communication beyond a conventional
interest rate change.

Using these proxies of the underlying structural shocks, the impulse re-
sponses to a monetary policy shock can be derived using local projections
(Jordà, 2005) or a proxy SVAR model (Stock and Watson, 2012; Mertens and
Ravn, 2013). While the former approach provides inference that is �exible
with respect to model misspeci�cation, a SVAR model controls ef�ciently for
remaining endogeneity and produces precise estimates even if the proxy is
a noisy measure of the latent shock.2 Applying the proxy SVAR, Gertler and
Karadi (2015) recover a monetary policy shock from the high-frequency move-

1See Ramey (2016) for a recent survey of identi�cation strategies and empirical literature.
2See also Stock and Watson (2018).
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ments of Federal funds futures around the meetings of the Federal Open Mar-
ket Committee (FOMC).

However, identifying one monetary policy shock from the reactions of �-
nancial variables may constitute a problem as soon as the central bank com-
munication relates to more than one instrument. Speci�cally, apart from the
interest rate target, the language of monetary policy statements may signal
its future actions (Gürkaynak, Sack, and Swanson, 2005; Campbell, Evans,
Fisher, and Justiniano, 2012), contain information about the state of the econ-
omy (Nakamura and Steinsson, 2018) or affect the term structure of interest
rates in a way inconsistent with standard macroeconomic models (Hanson
and Stein, 2015). In other words, a proxy variable used to identify one shock
may in reality be moved by a number of policy shocks. Violating the exclusion
restriction, the proxy is no more uncorrelated with the remaining structural
shocks of the economy but, rather, the identi�ed shock is a compound of sev-
eral types of policies and announcements.

In this essay, I estimate the effects of monetary policy using a wide range
of high-frequency variables to identify multiple sources how monetary policy
announcements and actions in�uence the economy. In particular, I exploit
both information contained in the variables informative about the underlying
shocks and statistical properties of the data to recover a set of shocks that drive
the monetary policy announcements. Consequently, the dynamic effects of
different types of monetary policies can simultaneously be derived regardless
of the strength and number of the proxy variables or of prior knowledge about
the propagation of the shocks.

Conventionally, parameters of the SVAR model are obtained from least
squares estimation or by assuming normality of the structural shocks. In spite
of being computationally convenient and tractable, the identi�cation of struc-
tural shocks then requires further restrictions based on external information.
In the proxy SVAR, this information is incorporated through a proxy variable.
However, if the proxies are correlated with more than one shock, the latter
need to be distinguished by prior knowledge (Mertens and Ravn, 2013; Arias,
Rubio-Ramírez, and Waggoner, 2018), but these restrictions may be dif�cult to
justify. In this essay, instead, learning from data is extended to higher than sec-
ond moments in order to obtain additional information for the identi�cation.
Speci�cally, I proceed by assuming idiosyncratic time-varying volatility in the
structural shocks, which allows me to statistically identify a set of shocks that
both move the proxy variables on impact and produce economically mean-
ingful impulse responses. Compared to the proxy SVAR, the approach is now
able to identify multiple structural shocks based on a number of proxies with-
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out prior assumptions about their short-run effects.
Exploiting the non-normality and proxy variables, I estimate the SVAR

model involving idiosyncratic volatility with Bayesian methods. To draw pos-
terior parameters, I develop a computationally ef�cient algorithm that is par-
ticularly suitable for large-scale models. The Gibbs sampler is similar to Lanne
and Luoto (2016) but uses the technique of Waggoner and Zha (2003) to draw
the coef�cients of contemporaneous relations. The latter step circumvents
numerical problems involved with a large number of parameters, and the es-
timation routine can ef�ciently be applied to any overidenti�ed SVAR model
both under Gaussianity and non-Gaussianity. 3

This essay is also linked to a growing body of literature on statistical iden-
ti�cation of structural shocks. 4. By assuming a non-normal distribution, data
can bring additional conditions for the identi�cation of the structural shocks
through unconditional (Rigobon, 2003) and conditional (Sentana and Fioren-
tini, 2001) heteroskedasticity, a mixture of normal distributions (Lanne and
Lütkepohl, 2010) or through any non-Gaussian distribution (Lanne, Meitz,
and Saikkonen, 2017; Gouriéroux, Monfort, and Renne, 2017). Alternatively,
non-normality can be exploited through higher-moment conditions directly
(Guay and Normandin, 2018; Lanne and Luoto, 2018). To establish full iden-
ti�ablity of the SVAR model, this essay applies the former strategy. Accord-
ingly, structural shocks are required to be not only mutually uncorrelated but
also independent, and the higher-moment conditions are implicitly taken into
account. The statistically identi�ed shocks do not, however, contain economic
interpretation per se, as they are extracted from statistical properties of data
only. The labelling of the shocks can thus be facilitated by the use of multiple
proxy variables informative about the structural shocks of interest.

Similar to this essay, Caldara and Herbst (2018) and Arias et al. (2018),
amongst others, rely on the Bayesian inference to estimate the proxy SVAR
model.5 Whereas Caldara and Herbst (2018) use reduced-form parameterisa-
tion and restrict attention to one shock using a single proxy, the non-normality
allows to draw structural parameters of the model directly. Moreover, the lack
of identi�cation in a multiple-shock-setting, as raised by Arias et al. (2018), is
absent under non-Gaussianity. Thanks to the overidenti�ability, the inference
under non-normality is not conditional on exogeneity assumptions or quality

3The model used in this chapter is also similar to Brunnermeier, Palia, Sastry, and Sims (2017)
who apply statistical identi�cation with the use of t-distributed shocks and heteroskedasticity.

4For recent review, see Kilian and Lütkepohl (2017), Ch. 13.
5In addition, Antolín-Díaz and Rubio-Ramírez (2018) combine sign restrictions and proxy-

based identi�cation.
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of the proxy.
In the empirical part of the chapter, I identify various monetary policy

shocks driving the reactions to the release of Federal Reserve's monetary pol-
icy statements, observed by changes in the future rates around the FOMC
meetings. I am able to identify three shocks associated with the monetary
policy statements. First, a conventional monetary policy shock affects the
short-run rate. The second shock I identify is related to the part of the state-
ment that re�ects the endogenous component of monetary policy but is unex-
pected to the economic agents. In other words, the shock induces information
effects similar to Campbell et al. (2012) and Nakamura and Steinsson (2018).
The information shock plays, however, a less central role for the overall sur-
prise movements. The third identi�ed shock has no effects on the short-run
rate but affects the risk premium. In particular, the shock mirrors language
in the monetary policy statements regarding the future policy actions, being
closely related to the path shock of Gürkaynak et al. (2005). Such a forward-
guidance-type policy re�ected in the shock has macroeconomic effects similar
to the conventional interest rate change. Finally, the existence of these three
distinct shocks potentially explains why the proxy variable used by Gertler
and Karadi (2015) is sensitive to the model speci�cation, the issue raised by
Ramey (2016).

The remainder of the essay is organised as follows. The next section out-
lines the empirical strategy. Empirical results are shown in Section 2.3. The
last section concludes.

2.2 Empirical strategy

This section presents the structural vector autoregression that uses proxies
combined with statistical properties of data to identify monetary policy shocks.
First, I review the monetary SVAR framework. Second, I present the identi-
�cation based on the proxy variables and non-normality of data. Last, the
estimation of the model is outlined.

2.2.1 Monetary SVAR model

Here, I present the standard structural VAR framework to study the causal
effects of monetary policy. Assume, ignoring deterministic terms, that n ob-
servables in vector yt have a VAR(p) representation with respect to n mutually
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uncorrelated structural shocks in vector #t with a unit variance,

yt =
p

å
i= 1

A iyt � i + By#t (2.1)

where By and A i , i = 1, . . . ,p are (n � n) matrices. The dynamic effects of
variables can then be analysed through impulse responses to the macroeco-
nomic shocks, derived from the moving average representation of the model.
However, without further assumptions, the SVAR model (2.1) is not identi�ed
since the covariance restrictions of the reduced-form residuals ut = By#t ,

E[By#t#0
t By] = E[utu0

t ] = S, (2.2)

do not provide enough conditions to obtain a unique set of n2 elements of
matrix By.

To achieve identi�ability and recover a monetary policy shock, the stan-
dard monetary SVAR literature proceeds by theoretical restrictions on the el-
ements of By. Prominently, under the recursiveness assumption of Christiano
et al. (1999), the policy rate is allowed to adjust to contemporaneous macroeco-
nomic conditions, whereas the real variables and prices react to current mon-
etary policy with a lag. Following Uhlig (2005), the monetary policy shock
can be set-identi�ed through sign restrictions on the elements of matrix By.
Alternatively, yt may include a measure of the monetary policy shock, which
is ordered either as the �rst variable in yt with lower triangular By or after the
real variables and prices when imposing the recursiveness assumption.6

Provided those identifying assumptions are valid, the above strategies can
measure the causal effects of monetary policy. However, the recursive, zero
and sign restrictions are subject to theoretical assumptions that may be ques-
tioned. The recursive identi�cation presupposes lagged adjustment of output
and in�ation to monetary policy and no contemporaneous reaction of the cen-
tral bank to �nancial variables. On the other hand, it may be dif�cult to come
up with suitable sign restrictions such that the identi�ed monetary policy sur-
prises can credibly be distinguished from the other shocks of the economy.
Moreover, the latter approach produces identi�cation only up to a set of im-
pact matrices By that satisfy the imposed sign restrictions.

6For instance, this measure can be related to deviations of the intended target rate change
from the one implied by the internal forecasts of the central bank (Romer and Romer, 2004) or
to changes in private sector's beliefs about the policy stance based on Federal funds rate future
contracts (Barakchian and Crowe, 2013).
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In contrast, the restrictions based on the simultaneous relations or the signs
of responses can be relaxed as soon as there exists a direct measure of the la-
tent shock of interest. That is, instead of relying on these restrictions, the
identi�cation is established through knowledge of the informativeness of a
variable with respect to a subset of the underlying structural shocks. The
variable can then either be included to yt to derive the shock as an orthogo-
nalised innovation or, alternatively, be treated as a proxy variable, as discussed
in detail in the following subsection.

2.2.2 Identi�cation of monetary policy shocks through proxy
variables

Starting from Kuttner (2001) and followed by Faust et al. (2004), Gürkaynak
et al. (2005), Gertler and Karadi (2015) and Nakamura and Steinsson (2018),
amongst others, the high-frequency identi�cation approach estimates the ef-
fects of monetary policy based on price changes in future contracts on Federal
Funds and Eurodollar bonds within a narrow time window around the an-
nouncements by the central bank. In other words, the immediate reactions to
the unexpected part of Federal Reserve's statement re�ect exogenous variation
stemming from the non-systematic part of monetary policy.

Let f t+ i
t be the rate implied by an i-month-ahead interest rate future con-

tract, expiring in month t + i and settled around a meeting held in month t.
Accordingly, a surprise due the monetary policy reads as

vt+ i
t = f t+ i

t � f t+ i
t � t = g(Wt ) � Et � t [g(Wt )], (2.3)

where t � t is the time point shortly before the monetary policy announce-
ment in month t has taken place, g(�) is the monetary policy rule, E t [�] the
conditional expectation of the public at t and Wt denotes the information set
of the central bank. The revision vt+ i

t in the market expectations then mea-
sures the monetary policy shock, the unanticipated deviation of the central
bank from its known decision rule g(�), provided that no other shocks sys-
tematically occur around those statements.

The proxy vt+ i
t can be used to derive the causal effects of monetary policy

either by the local projection framework (Jordà, 2005) or by the structural VAR
methodology. Prominently, the proxy SVAR (Stock and Watson, 2012; Mertens
and Ravn, 2013) usesvt+ i

t as an external instrument to �nd the matrix By in
(2.1). The covariance restrictions of the VAR residuals (2.2) are therein comple-
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mented by moment conditions which require the proxy to be correlated with
the structural shock of interest but uncorrelated with the remaining shocks of
the economy. As an advantage, the approach is robust to measurement and
missing values problems.

Applying the proxy SVAR, Gertler and Karadi (2015) identify a monetary
policy shock from changes in the Federal funds rate and Eurodollar futures
around the FOMC announcements. As most of the literature, they concentrate
on one shock based on a single external instrument, selected among the set
of futures by an F-test at the �rst stage of the identi�cation. The use of a
single proxy may be, however, particularly restrictive if the announcements of
the central bank are mixtures of different types of shocks, and �nancial vari-
ables react to a variety of surprises concerning monetary policy. The shocks
may relate not only to the conventional, unanticipated change of the current
policy rate, but also to communication regarding the future path of interest
rates, to unconventional measures and to information revealed by the central
bank about economic prospects (See, e.g. Gürkaynak et al. 2005, Wright 2012,
Nakamura and Steinsson 2018 and Campbell et al. 2012).

To extend the analysis, let the change (2.3) in the future for horizon i be a
compound of multiple shocks,

vt+ i
t = f t+ i

t � f t+ i
t � t = f i ,1#1,t + . . .+ f i ,l #l ,t + s0

i xt , i = 0, . . . ,k � 1 (2.4)

where si is a column vector of dimension k and xt contains k noise terms.
The market reactions in k futures f t+ i

t , i = 0, . . . ,k � 1, are then driven by l
structural shocks #1

t = ( #1,t , . . . ,#l ,t )0and k noise terms. Consequently, using a
single proxy would catch variation that consists of all policy disturbances oc-
curring at the time of the announcement, violating the identifying assumption
of the scheme.7

The existence of multiple shocks driving the proxy variables requires thus
re�nement of the methodology. In principle, the proxy SVAR identi�cation
of Mertens and Ravn (2013) is able to extract the l = k shocks in #1

t based
on the same number of proxy variables. However, identifying #1

t , i.e. the l
�rst columns of By, requires l ( l � 1)/2 additional restrictions to be imposed
on these columns. These restrictions would assume that the shocks differ in
their timing how they propagate to the variables of the model, which may
be dif�cult to justify. As the high-frequency proxies are strongly mutually

7The proxy SVAR literature uses an F-test to evaluate the relevance of the instrument with
respect to the reduced-form error. However, it does not test whether a given proxy is unrelated
to the remaining structural shocks of the system.
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correlated, they cannot be used in the identi�cation one at a time for the
recovery of multiple shocks, either.

In a linear proxy SVAR model, Arias et al. (2018) show that additional zero
and sign restrictions are needed to distinguish the k structural shocks of inter-
est. Alternatively, Angelini and Fanelli (2018) propose a model that includes
yt and mt and derive conditions under which a set of shocks can be identi-
�ed. However, these conditions are sensitive as they depend on the number of
variables, shocks and proxies,n, l and k, as well as on the covariance structure
between the proxies and the underlying shocks. On the other hand, assuming
a lower-triangular impact matrix in the augmented SVAR would set on param-
eters f f i ,1, . . . ,f i ,l g

k� 1
i= 0 and f sig

k� 1
i= 0 , in (2.4) undesirable zero restrictions that

would ignore measurement errors and contemporaneous relations between
the proxies.

In general, the need for prior assumptions regarding the short-run effects
originates from the fact that the residual covariance restrictions (2.2) and the
additional moment conditions obtained from the proxy SVAR exploit only the
time-invariant second moments of data. This information, however, does not
provide full identi�cation of the matrix By. Therefore, the issue of partial iden-
ti�ability is present as long as the SVAR model is estimated by least squares
or under Gaussian errors.

In turn, once higher moments become relevant to capture features of data,
the SVAR model (2.5) can be identi�ed with no prior restrictions on the impact
matrix By. Speci�cally, having structural shocks with at most one component
Gaussian ensures that all elements of the impact matrix can uniquely be iden-
ti�ed up to a sign and a permutation of the columns. 8 The result follows
from statistical independence. Under Gaussianity, orthogonality of structural
shocks directly implies independence, and learning from data is limited to
the covariance restrictions (2.2). Under non-Gaussianity instead, data are able
to provide further conditions by taking non-normality such as time-varying
volatility, leptokurtosis and skewness into account.

What follows, the non-normality-based identi�cation is complemented with
proxy variables to facilitate the empirical relevance and the labelling of the es-
timated shocks. To implement the strategy, consider the joint dynamics of yt

8This result is established, amongst others, in Lanne et al. (2017) and Gouriéroux et al. (2017).
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and k proxies in mt = ( vt
t , . . . ,vt+ k� 1

t )0,

�
Ik 0k,n

0n,k A(L)

� �
mt
yt

�
= B̄

2

4
#1

t
#2

t
xt

3

5 , (2.5)

or
Ā(L) ȳt = B̄#̄t , (2.6)

where A(L) = In � A1L � . . . � ApLp, L the usual lag operator, Ā(L) =
diag( Ik, A(L)) , ȳt = ( m0

t , y0
t )

0 and #̄t = ( #1
t
0
, #2

t
0
, x0

t )
0 � (0, In̄) is a vector of

dimension n̄ = n + k containing the l structural shocks of interest, the remain-
ing n � l shocks in #2

t and k measurement errors in xt .
In the augmented SVAR model (2.5), the shocks and errors are linearly re-

lated to the proxy and economic variables through a (n̄ � n̄) impact matrix B̄.
Given #̄t , the model (2.5) nests the original model (2.1) in its last n equations,
the last n rows of matrix B̄ being [By 0k]. Under linearity, the model (2.5)
also coincides with the proxy SVAR identi�cation. In particular, let l = k and
the �rst k rows of B̄ be [F 0k,n� k S], where [F ]i ,j = f i ,j , i, j = 1, . . . ,k, and S
stacks the row vectors s0

i , i = 1, . . . ,k. mt is an external instrument, as both the

instrument relevance condition, E [mt#1
t
0] = F , and the instrument exogeneity

condition, E [mt#2
t
0] = 0, are satis�ed.9

Under non-normality, restrictions on B̄ are no more necessary to identify
the structural shocks of interest #1

t . Allowing for non-normality gives thus �ex-
ibility needed when the economic theory or the proxies do not bring enough
information to discriminate between the structural shocks. To this end, I as-
sume that the ith element of the vector #̄t is distributed as

#̄i ,t = h� 1/2
i,t hi ,t , hi ,t � N (0, 1), ( l i � 2)hi ,t � c2

l i
, i = 1, . . . ,n̄. (2.7)

Hence, the structural shocks are, unconditionally, independently Student's
t-distributed with unit variance and degrees of freedom parameter l i > 2,
i = 1, . . . ,n̄. Conditional on the stochastic volatility factor h� 1/2

i,t , the shocks
are Gaussian. The independent and identically distributed stochastic factors

9Compared to the model (2.5), the proxy SVAR allows the measurement errors to enter into
equation (2.4) in a nonlinear manner. This situation is present, in particular, when dummy vari-
ables or discontinuous series are used as proxies, whereas here the movements of �nancial vari-
ables during the announcement days are continuous. Linearity is also usually assumed in the
existing literature.
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thus account for non-Gaussian features of data, and their existence provides
further conditions to identify the structural shocks. 10 That is, the higher mo-
ments E[#̄q

i,t #̄
r
j,t ] for i, j = 1, . . . ,n̄ and q + r � 3 are no more determined by

the �rst and second moments of data. It is also worth noting that large values
of degrees of freedom l i implies Gaussianity. Therefore, plausibility of the
distributional assumption and the implied identi�ability are empirical ques-
tions.11

To gain intuition on the identi�cation, combine the distributional assump-
tion (2.7) with (2.4) and rewrite the high-frequency change vt+ i

t due to a mon-
etary policy surprise as

vt+ i
t =

l

å
j= 1

f i ,jh
� 1/2
j,t hj,t + s0

i xt , i = 0, . . . ,k � 1, (2.8)

where s0
i xt = å k� 1

j= 0 si ,jh
1/2
n+ j,thn+ j,t . Under normality, hj,t = 1 for all j and t, and

prior restrictions are needed either on the effects of vt+ i
t or yt . Under non-

normality instead, the magnitude of impulse responses to different shocks,
h� 1/2

i,t , i = 1, . . . ,n̄, varies independently over time. Hence, the public reacts
to different unanticipated monetary policy actions under idiosyncratic volatil-
ity, by which additional information is available for identi�cation. 12 Suppose
now #1,t and #2,t are two structural shocks revealed at the FOMC meeting.
When departing from normality, the following two higher-moment condi-
tions, inter alia, become implicitly non-redundant. First, volatilities of the
structural shocks are uncorrelated, Cov (#2

1,t , #2
2,t ) = E[h� 1

1,t h2
1,th

2
2,th

� 1
2,t ] � 1 = 0,

10Compared to using principle components from a larger set such as in Barakchian and Crowe
(2013) to �nd the most relevant proxy, the non-normality facilitates the recovery of the shocks
uniquely from the joint dynamics of macroeconomic variables and proxies.

11The distribution used here is one distinct approach to ensure identi�ability of By. As an
advantage, the assumption provides convenient and computationally feasible estimation routines
and parsimoniously models time-varying volatility. Statistical identi�cation of structural shocks
can also be achieved by unconditional (Rigobon, 2003) and conditional (Sentana and Fiorentini,
2001) heteroskedasticity, mixture-normal distribution (Lanne and Lütkepohl, 2010) or by a com-
bination of heteroskedasticity and Student's t distribution (Brunnermeier et al., 2017). In the
Bayesian estimation, all these approaches would involve signi�cantly more computational bur-
den.

12In addition, there is no persistence in those volatilities across time, i.e. between different
meetings of the FOMC. This assumption is justi�able by the fact that the proxy series vt+ i

t , i =
0, . . . ,k � 1 are discontinuous as they only measure the high-frequency reactions at particular
point of time.
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which holds only if h1,t and h2,t are independent. Second, the shocks differ in
terms of their kurtosis, as their fourth moments, E [#i ,t ] = ( l i � 2) � 1( l i � 4) � 1,
i = 1, . . . ,n̄, depend on the shape of the distribution.

Conveniently, non-Gaussianity provides unique identi�cation for all n̄2 el-
ements of B̄ such that restrictions in (2.5) become unnecessary. Accordingly,
the number of shocks affecting the proxies is unrestricted and can be inferred
ex post at the labelling of the shocks. It should, however, be noted that the
identi�cation is only up to a sign and permutation of the columns. Following
Lanne et al. (2017), I concentrate on a permutation that satis�es

ci j = [ B̃]i j , jcii j > jci j j 8 i < j, (2.9)

and
bii = [ B̄]ii > 0,8i = 1, . . . ,n̄ (2.10)

where B̃ = DB̄ and D is a diagonal matrix by which the columns of B̃ have a
unit Euclidean norm. In general, the permutation rule (2.9)–(2.10) imposes no
prior restrictions on the impact of structural shocks but restricts the analysis
on one of the n̄! permutations of B̄.

As the matrix B̄ is uniquely identi�ed regardless of the number of restric-
tions, it is the labelling of the shocks that determines their economic impor-
tance. Here, the latter is achieved by the proxies mt that contain information
about surprise actions of the central bank. Therefore, the monetary policy
shocks can be identi�ed as structural shocks that both explain the most of the
variation in the included proxies and move policy rates on impact.

2.2.3 Estimation

The augmented SVAR model (2.5) is overidenti�ed under non-normality in
terms of its likelihood up to a permutation and sign of the impact matrix.
Including a large number of proxies and variables of interest implies, how-
ever, a large parameter space, which can ef�ciently be handled by Bayesian
methods. Moreover, the Bayesian approach allows to incorporate prior infor-
mation on the contemporaneous relations of the variables. Next, I outline a
Metropolis-within-Gibbs sampler to draw from the posterior distribution of
the model parameters. Details of the algorithm are found in Appendix 2.A.
The sampler, which builds upon Lanne and Luoto (2016) and Waggoner and
Zha (2003), has two distinct features. First, drawing the parameters of the
model exploits conditional normality arising from the distributional assump-
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tion (2.7). As a special case, when the volatility terms f hi ,tgT
t= 1 are �xed and

enough identifying restrictions are set, the algorithm estimates an overidenti-
�ed Gaussian SVAR model as Waggoner and Zha (2003). Second, the rows of
B̄� 1 have a marginal posterior distribution from which it is possible to sample
without a computationally demanding Metropolis-Hastings step.

I use standard prior distributions for the parameters of the model. First,
free parameters related to the autoregressive terms in Ā(L) and to the con-
temporaneous relations in B̄� 1 are assumed Gaussian a priori. Additionally,
I restrict B̄ to satisfy the permutation rule (2.9)–(2.10), as the same likeli-
hood would be attained by any permutation of the rows of B̄� 1. Last, for
the degrees-of-freedom parameter l i , i = 1, . . . ,n̄, I assume an exponential
prior distribution.

Using the prior distribution and conditional likelihood, sampling from the
posterior proceeds as follows. First, the posterior of the free parameters in
Ā(L), given present draws of B̄� 1 and f hi ,tgT

t= 1, i = 1, . . . ,n̄, is multivari-
ate normal. Second, drawing unrestricted parameters of B̄� 1 from the poste-
rior distribution involves a nonstandard distribution. Instead of a Metropolis-
Hastings step, as in Canova and Pérez (2015), Brunnermeier et al. (2017) and
Lanne and Luoto (2016), I follow the strategy of Waggoner and Zha (2003)
who draw each row of B̄� 1 separately given current draws of its remaining
rows and other parameters of the model. The approach ef�ciently tackles
multimodality, nonlinearity and tightness of the conditional posterior of B̄� 1,
which often leads to an excessive amount of rejections in Metropolis-Hastings
algoritms. 13 Now, drawing a row of B̄� 1 is equivalent to drawing from a
number of univariate normal distributions and one special distribution with
the use of an orthonormal rotation. Third, the volatility factors f hi ,tgT

t= 1 are
sampled from c2-distributions for i = 1, . . . ,n̄, and a Metropolis-Hastings step
is used to obtain the posterior draws of the degrees-of-freedom parameters.

2.3 Results

This section studies the effects of monetary policy when the shocks are iden-
ti�ed through proxies and non-normality. Compared to the proxy SVAR, the

13The nonstandard algorithm is due to the likelihood of the SVAR model which does not belong
to any known distribution family. For alternative techniques, for instance, Canova and Pérez
(2015) and Lanne and Luoto (2016). The method of Waggoner and Zha (2003) remains valid as
long as the prior distribution of the rows of B̄� 1 are, apart from the permutation rule, Gaussian
and independent a priori.
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approach requires neither a �rst-stage test to select the strongest instrument
for a structural shock nor additional exclusion restrictions to distinguish be-
tween the shocks of interest. Instead, all variables informative about poten-
tially multiple shocks may simultaneously be used in the analysis. Eventually,
the impulse responses determine, �rst, how the proxies react to the shocks
and, second, the economic plausibility of the identi�ed shocks. As a result,
all surprise monetary actions occurring at the announcements of the Federal
Reserve can be jointly identi�ed from the high-frequency proxies and macroe-
conomic variables.

2.3.1 Data and estimation

I estimate the model using the following U.S. monthly data. My measures
of real economic activity and prices are the logs of industrial production and
consumer price index (CPI), respectively. I obtain the daily nominal 1-year and
10-year government bond yields from the Gürkaynak, Sack, and Wright (2007)
database. The monthly average 1-year rate is used as the policy indicator, and
I additionally construct a spread between the two interest rates, aggregated
from daily frequency. The latter variable accounts for changes in the term
structure. Following Gertler and Karadi (2015), I use the excess bond premium
(EBP) of Gilchrist and Zakrajšek (2012) to measure credit conditions. This
indicator captures variation in the aggregate credit risk related to the U.S.
corporate bonds. To control for signalling effects of monetary policy, I include
the log of the S&P 500 index.14

The analysis uses �ve proxies obtained from the dataset of Gertler and
Karadi (2015) to extract the monetary policy shocks. They include the changes
in the following futures in a 30-minute window around the FOMC meetings:
the current and 3-month Federal Funds futures and the 6, 9 and 12-month
futures on 3-month Eurodollar deposits. The data span the months 1990:1–
2012:6.

The model with 12 lags is estimated using the Minnesota prior with over-
all and relative tightness parameters of 2 and 1, respectively, and a decay
parameter set to 1. I assume that the mean of matrix B̄� 1 is a diagonal ma-
trix and each element has an independent normal distribution with standard
deviation 103, implying an uninformative prior distribution. The prior mean

14The industrial production and CPI series are downloaded from the FRED data base. The
excess bond premium is taken from the website of the Board of Governors of the Federal Reserve
System. The stock price index is downloaded from Yahoo! Finance and aggregated to the monthly
frequency.
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Figure 2.1: Kernel density estimates of the proxy variables

of the degrees of freedom parameters are set to 10, close to Gaussianity. The
results presented are insensitive to less informative priors. Finally, I impose
the matrix Ā(L) be as in (2.5).

Due to non-normality, B̄� 1 could be left without any restrictions. However,
the global identi�cation of all structural shocks is beyond the scope of the
essay. To shrink the number of parameters and identify only the shocks related
to the proxies, I impose the matrix B̄, or equivalently B̄� 1, to be lower-block
triangular,

B̄ =
�

B11 0k,n
B21 B22

�
, (2.11)

where B11 and B21 are (k � k) and (n � k) matrices with k2 and kn free param-
eters, respectively, and B22 is lower triangular. This restricts that only k = 5 of
the total n + k = 11 shocks affect the proxies on impact with no prior assump-
tions imposed. On the other hand, the lower-triangular matrix B22 concerns
the block containing remaining shocks of the economy, and they are recovered
only as reduced-form-type errors. The restriction facilitates the computational
burden by reducing the number of possible permutations, while allowing for
a suf�cient number of shocks and noise terms to affect the proxies. The results
do not change if the restrictions on B̄� 1 are relaxed.

As no zero restrictions are imposed on the �rst k columns of the B̄ matrix,
their identi�cation hinges upon the non-Gaussian assumption to distinguish
between the shocks driving the proxies. To motivate the non-normal assump-
tion, Figure 2.1 plots the kernel density estimates of the standardised proxy
variables of the analysis. The density estimates suggest that large probability
mass is concentrated on the neighbourhood of the means. In addition, the
distributions of the proxies have fatter tails than implied by Gaussianity. As-
suming that the proxies are linear combinations of Student's t-distributed ele-
ments, the non-normality observed in Figure 2.1 is parsimoniously accounted
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for.15

2.3.2 Proxies and monetary policy shocks

I start with the evaluation of how the proxies are affected by the identi�ed
shocks. This analysis sheds light on the relevance of the proxies and the char-
acter of the shocks.16 In Panel (a) of Table 2.1, I report the fractions by which
the shocks contribute to the variance of each proxy, i.e. the forecast error vari-
ance decompositions. The contributions suggest that three shocks,#1,t , #2,t and
#3,t , emerge as driving the proxies the most. Among them, #1,t accounts for
the most variation in the current, 3-month and 6-month futures, whereas #3,t
mostly in�uences the movements in the longer-horizon Eurodollar futures. In
contrast, the shock #2,t explains approximately 10 percent of the movements
at shorter and longer horizons.

To gain more interpretation, it is instructive to examine the impact effects
of the shocks on the future rates, reported in Panel (b) of Table 2.1. The prox-
ies react to the shocks#1,t and #3,t with uniform signs, as all coef�cients apart
from the current futures with respect to #3,t are statistically signi�cantly posi-
tive. In contrast, the responses to #2,t have ambiguous signs. While the change
of the current month future is signi�cantly negative, the future rates at longer
horizons increase. Hence, the expectations on the current policy rate are re-
vised downwards in response to the shock, simultaneously with increasing
slope of the term structure. Overall, the impulse responses to all three shocks
are monotone in horizon: the reactions of #1,t decrease in maturity, whereas
the opposite is true for the shocks #2,t and #3,t .

The weighting of the shocks reported in Table 2.1, produced from the sta-
tistical identi�cation of the SVAR model, is similar to the factorisation em-
ployed by Gürkaynak et al. (2005), Campbell et al. (2012) and Barakchian and
Crowe (2013). Notably, this literature has extracted “target” and “path” fac-
tors from the surprise movements, where the latter factor is orthogonal to the
changes in the current Federal Funds futures. Instead of these two factors, the
statistical identi�cation recovers three structural shocks based on movements
in both proxies and macroeconomic variables. Despite this methodological

15In an extreme case, the non-normal densities in Figure 2.1 could have been generate by a
single non-normal shock. Hence, the plots give only �rst-hand information on the distributional
assumption. In turn, the low degrees-of-freedom parameters imply that also the underlying
shocks are non-normal.

16An examination based on the F-test of the proxy SVAR is proceeded in Gertler and Karadi
(2015).
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Panel (a) Forecast error variance decomposition (%)

Proxy #1,t #2,t #3,t #4,t #5,t

FF1 79.5 19.7 0.5 0.2 0.1
[64.6 ; 90.6] [8.9 ; 34.5] [0 ; 1.5] [0 ; 0.7] [0 ; 0.5]

FF3 87.9 8.4 3.3 0.2 0.2
[77.8 ; 94.2] [3.2 ; 17.1] [0.9 ; 7.4] [0 ; 0.6] [0 ; 0.8]

ED6 50.6 5.9 42.1 0.2 1.2
[32.3 ; 67.6] [1.7 ; 13.5] [25 ; 61.7] [0 ; 0.7] [0 ; 3.7]

ED9 39 11.1 46.7 1.5 1.7
[23.1 ; 55.7] [4.2 ; 21.9] [28.8 ; 65.2] [0.2 ; 4.1] [0.1 ; 5.2]

ED12 28.9 12.5 51.5 0.5 6.6
[15.8 ; 45] [4.7 ; 24] [33.4 ; 69.5] [0 ; 1.8] [1.7 ; 14.8]

Panel (b) Impact effects

Proxy #1,t #2,t #3,t #4,t #5,t

FF1 0.047 -0.023 0.0029 0.0013 0.0005
[0.036 ; 0.06] [-0.032 ; -0.016] [-0.0002 ; 0.0064] [-0.0013 ; 0.0041] [-0.002 ; 0.0034]

FF3 0.042 0.012 0.0077 -0.0014 -0.0016
[0.032 ; 0.053] [0.0083 ; 0.018] [0.0044 ; 0.011] [-0.0034 ; 0.0006] [-0.0039 ; 0.0006]

ED6 0.039 0.013 0.035 0.0004 -0.005
[0.029 ; 0.049] [0.0069 ; 0.02] [0.026 ; 0.048] [-0.0026 ; 0.004] [-0.0099 ; 0.0004]

ED9 0.037 0.02 0.041 0.0066 0.0068
[0.028 ; 0.048] [0.012 ; 0.029] [0.031 ; 0.055] [0.0028 ; 0.012] [0.0014 ; 0.014]

ED12 0.033 0.022 0.045 -0.0033 0.015
[0.024 ; 0.043] [0.014 ; 0.032] [0.034 ; 0.061] [-0.008 ; 0.0015] [0.0084 ; 0.024]

l i 2.13 2.22 2.54 2.5 2.53
[2.08 ; 2.22] [2.1 ; 2.44] [2.2 ; 3.03] [2.17 ; 2.93] [2.2 ; 3.04]

Table 2.1: Forecast error variance decompositions and impact effect of the
identi�ed shocks on the proxies.
The table reports the forecast error variance decomposition and the impact effects of the �ve proxies to the
identi�ed shocks. Posterior medians reported and 90 % credible sets shown in parentheses. Proxies: the
current (FF1) and 3-month (FF3) Federal funds futures, 6-month (ED6), 9-month (ED9) and 12-month (ED12)
futures on Eurodollar deposit contracts. The last row reports the posterior median and credible sets of the
degrees-of-freedom parameters
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difference, #1,t resembles the target factor by the short-run future changes at-
taining the highest loadings. Likewise, #3,t is potentially connected with the
path factor.

In addition, Table 2.1 reports statistics on the two remaining shocks that
affect the proxies, #4,t and #5,t , and on the shock distribution. First, by the
forecast error variance decomposition and the impact effects, #4,t and #5,t can
be regarded as negligible noise terms: they contribute less to the variance
of the proxies and their coef�cients are to a large part close to zero. As the
relevant variation in the future rates are therefore driven by three out of �ve
shocks, the zeros assumed in the upper-right block of B̄� 1 are likely non-
restrictive. Second, according to Table 2.1, the estimates of the degrees-of-
freedom parameters are low, which indicates non-normality of the shocks and
supports the validity of the identi�cation scheme. 17

2.3.3 The effects of monetary policy shocks

Figure 2.2 plots the periodwise posterior medians of the impulse responses to
the three relevant shocks, #1,t , #2,t and #3,t , and the 90 and 68 percent credible
sets. These one standard deviation shocks induce different responses of the
interest rates. First, in response to the shock #1,t in Panel (a), the 1-year rate
increases and the term spread decreases with the same magnitude, implying
that the 10-year rate does not move on impact. Second, the shock#2,t in Panel
(b) prompts a drop in the 1-year rate and a jump of a greater magnitude in the
term spread, which together imply an increase of the 10-year rate. Last, the
shock #3,t in Panel (c) affects, positively but statistically insigni�cantly, only
the term spread.18

All the three shocks have adverse effects on the �nancial market and the
macroeconomy. Credit costs rise due to a positive shift in the excess bond
premium, and the stock price index decreases. The shocks also imply a grad-
ual decline of industrial production. This effect is strongest for the shock #2,t ,
whereas the index remains positive for the �rst months after a shock #1,t and
falls afterwards only temporarily. In turn, the shocks have asymmetric effects
on prices. After a shock #1,t , the price level remains persistently low for the

17It is noteworthy to mention that the degrees-of-freedom parameters need not be distinct for
the identi�cation be valid, as opposed to the heteroskedasticity-based strategies, where the shock
variances are required to vary. It is the permutation rule (2.9)–(2.10) that eventually discriminates
between the non-normal shocks.

18With the shadow rate of Wu and Xia (2016) in the model, the results remain the same. The
movements in the 1-year rate and the shadow rate are broadly similar.
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Figure 2.2: Impulse responses to the three candidate monetary policy shocks
Each panel plots in solid lines the periodwise posterior median impulse responses to a one standard deviation
shock. The light and dark grey areas border the 90 and 68 percent periodwise credible sets, respectively.

subsequent periods. The shock #3,t has a similar de�ationary effect, whereas
prices remain constant in response to #2,t .

By the impulse responses of Figure 2.2, it is possible to label the three
shocks that drive reactions to the monetary policy announcements. First, the
shock #1,t , associated predominantly with movements in the short-run Federal
funds futures, increases the short-run rate on impact while stock prices react
negatively. Given its adverse effects on the macroeconomy, it can be labelled
as a conventional contractionary monetary policy shock.

Second, the remaining variation in the short-run futures are explained by
the shock #2,t . The shock decreases the 1-year yield and is associated with
negatively moving industrial production and non-moving prices, inconsistent
with general conclusions about a monetary expansion. Concluding from Table
2.1, the shock also induces positive reactions of the longest-maturity futures
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Figure 2.3: The shocks driving the proxies over time
Posterior medians of the shocks #1,t , #2,t , #3,t over time.

despite decreasing the short-run rate on impact. Importantly, the private sec-
tor reacts negatively to a reduction in the short-run rate, as the stock price
index falls on impact. The decreasing interest rate is thus likely to re�ect an
unexpected response of the central bank to the unfavourable economic out-
look.

Finally, the shock #3,t is primarily related to the risk in the economy, ob-
served as rising excess bond premium and declining stock prices under no
signi�cant interest rate responses. Nonetheless, given its large contribution
to the variation of the futures on the longer horizon and its negative impact
on the economic activity and prices, the shock is likely linked to central bank
communication.

Figure 2.3 plots the evolution of the three shocks over time. The conven-
tional monetary policy shock #1,t as well as the shock #2,t gain much of its
variation before the zero-lower-bound period. Especially, positive values of
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#2,t take place, i.e. the shock induces reductions in the short-run rates, at the
surge of the �nancial crisis. Simultaneously, #1,t induces large surprise falls
of the interest rate. None of the two shocks enters the economy, however,
after the Federal funds rate reached the zero lower bound in December 2008.
Compared to the two latter shocks, #3,t occurs constantly over time. That is,
policy surprises both before and during the zero-lower-bound period contain
the component related to the long-run future rates.

2.3.4 Discussion

Due to the existence of multiple shocks, statements of the central bank contain
information beyond a conventional short-run interest rate change. Speci�cally,
the monetary policy surprises can be decomposed to three factors: to a con-
tractionary short-run interest rate shock, #1,t , to changes in the short-run rate
due to the present and future economic conditions, #2,t , and to the long-run
shock #3,t that affects mainly the risk premium.

As mentioned above, a concept related to the changes in the longer-run
future rates, captured by the shocks #2,t and #3,t , is the path factor, identi�ed
from the range of future rate changes around the central bank announcements.
Gürkaynak et al. (2005) interpret it to re�ect the future interest rate path an-
nounced in the statements. Campbell et al. (2012) de�ne two distinct types
of communication contained in the factor. First, Odyssean forward guidance
commits the FOMC to future actions. Second, language regarding Delphic
forward guidance forecasts macroeconomic outcomes, and interest rate hikes
may then change expectations of the public about the state of the economy.
According to their results, private forecasts about future economic activity are
revised upwards after this path shock. In a similar fashion, Nakamura and
Steinsson (2018) argue that the FOMC statements affect the beliefs of economic
agents about economic fundamentals due to the superior information set of
the Federal Reserve.

Monetary policy may also affect corporate credit spreads and long-run
rates by more than the expectations hypothesis would imply. Hanson and
Stein (2015), Gertler and Karadi (2015) and Caldara and Herbst (2018) high-
light that a surprise monetary policy shock is followed by tightening of the
credit market – seen as rising credit spreads and increasing long-term rates.
Accordingly, monetary policy transmits to the �nancial market through risk
and term premia (Gertler and Karadi, 2015; Hanson and Stein, 2015), poten-
tially due to �nancial frictions and incomplete credit markets. Furthermore,
Caldara and Herbst (2018) emphasise the endogenous response of the cen-
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tral bank to credit conditions: ignoring the credit spreads in the model dis-
torts conclusions about the effects of monetary policy. However, these studies
employ identi�cation strategies based on a single variable, which may be a
compound of the identi�ed shocks #1,t , #2,t and #3,t .

Instead, the present non-normal identi�cation exracts shocks from a broader
range of proxies, combinded with variation in macroeconomic aggregates.
The weighting of these proxies produces a conventional monetary policy shock
#1,t that induces effects usually observed in the monetary SVAR literature, re-
viewed by Ramey (2016). In particular, an interest rate hike identi�ed through
the high-frequency future rate changes produces now a signi�cant reduc-
tion in prices following a conventional monetary policy shock, as opposed
to Gertler and Karadi (2015), Ramey (2016) and Caldara and Herbst (2018)
who �nd only modest price responses. This �nding may be due to the fact
that the identi�cation is able to purge out of the conventional monetary policy
shock factors related to other types of central bank communication, i.e. to the
shocks #2,t and #3,t .

In effect, the changes in the short-run futures are not due to the #1,t only.
Instead, they are affected by the shock #2,t that triggers a fall of the 1-year
yield and an increase of the longer-run future rates. Despite lowering the in-
terest rate, the shock has adverse effects on the economy, seen as declining
stock prices, increasing excess bond premium and falling industrial produc-
tion. Therefore, its impuse responses unlikely measure the causal effects of
conventional monetary policy. Rather, the shock is Delphic, re�ecting an en-
dogenous but unanticipated response of monetary policy to adverse economic
circumstances. The public thus learns about the state of the economy through
statements by the Federal Reserve, similar to the information effect of Naka-
mura and Steinsson (2018).

Additionally, the third surprise component due to the monetary policy
announcements, the long-run shock #3,t , explains a large fraction of the 6-,
9- and 12-month futures. Its impact on the future rates is similar to the path
factor of Gürkaynak et al. (2005). However, no signi�cant response of the long-
run interest rate can be seen, as the term spread reacts only mildly positively.
Given that the excess bond premium signals investors' risk appetite and is
informative about likelihood of recessions in the medium term (Gilchrist and
Zakrajšek, 2012), the shock can be interpreted to in�uence the expectations of
the private sector about risk, economic prospects and future actions similar
to forward guidance. Importantly, since its existence is not restricted to the
conventional monetary policy period, the shock transmits through a channel
other than a policy rate change.
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Correlation with the series

Series #1,t #2,t #3,t

R&R shock 0.26 -0.04 0.02
[0.25 ; 0.27] [-0.07 ; -0.02] [-0.01 ; 0.04]

N&S FFR shock 0.57 -0.29 0.14
[0.56 ; 0.58] [-0.34 ; -0.24] [0.09 ; 0.19]

N&S policy news shock 0.52 -0.03 0.34
[0.51 ; 0.53] [-0.08 ; 0.03] [0.28 ; 0.39]

Table 2.2: Correlation of the identi�ed shocks with different shock measures
Correlation of the shocks in posterior medians with the monetary policy shock of Romer and Romer (2004)
(R&R) as well as with the Federal funds rate (FFR) and the policy news shock of Nakamura and Steinsson
(2018) (N&S). Posterior medians reported and 90 % credible sets shown in parentheses. The R&R shock is the
series based on the updates of Wieland and Yang (2016) and covers the months 1990:1–2007:12, the both N&S
series span the months 1995:2–2012:6.

Next, I examine the relation of the identi�ed shocks to three prominent
series that have been used to identify the effects of monetary policy. In Table
2.2, I report their correlations with the three identi�ed shock. The shock se-
ries of Romer and Romer (2004), which measures non-systematic interest rate
changes based on the records and internal forecasts of the Federal Reserve, is
positively correlated with the conventional monetary policy shock #1,t . More-
over, the correlation between the other two shocks, #2,t and #3,t is virtually
zero. Hence, the estimated conventional monetary policy shock is consistent
with the measure that captures non-systematic variation in the policy rule
based on external sources.

Furthermore, the three shocks are related to the high frequency measures
of Nakamura and Steinsson (2018), the Federal funds rate (FFR) and the policy
news shocks. The former series consists of changes in the current futures,
whereas the latter shock is closely related to the path factor of Gürkaynak
et al. (2005). Speci�cally, Nakamura and Steinsson (2018) show that the policy
news shock induces strong information effects, leading to the public to update
its belief about the state of the economy. According to Table 2.2, the both series
are strongly correlated with the monetary policy shock #1,t , due to the fact that
they weight the short-run futures similarly to #2,t . For the same reason, the
correlation of the FFR shock with #2,t is negative, consistent with the negative
impulse response of the current month future rate shown in Table 2.1. In turn,
the long-run shock #3,t correlates with the policy news shock – in contrast to
#2,t . In light of this evidence, #3,t is a particular combination of information
and risk premium effects, operating in a dimension orthogonal to the current
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short-run interest rate.
To investigate the nature of the shocks #2,t and #3,t more concretely, Table

2.3 lists their �ve largest occurrences since July 1995 when the FOMC started
to regularly announce statements.19 The table reports the size of the shock,
the relevant FOMC meeting, the decided target rate and its change as well as
the change of the S&P 500 index on the meeting day.20 Furthermore, in the
last column, I compile from the statements relevant language that potentially
characterises the shock and its sign. As this compilation does not rely on
any quantitative methodology, the examination of relevant language is rather
illustrative.

Broadly, the labelling of #2,t is in line with the statistics in Panel (a) of
Table 2.3. The shock is followed by a stock price response of opposite sign
in all except one meeting.21 In line with the impulse responses, the positive
shocks are associated with interest rate cuts. The contrary is, however, not
the case for the shock due to the meeting of 18 April 2001, potentially caused
by a simultaneous surprise interest rate cut and positive manufacturing data
announced on the same day. In terms of relevant language, all �ve statements
emphasise the state of the economy in the medium run, for which the change
of the Federal funds rate target is justi�ed.

Similar to #2,t , the largest values of the long-term shock #3,t are associated
with stock price reactions of opposite signs on the relevant FOMC meeting
day. The shocks are, however, not necessarily linked to changes in the Fed-
eral funds rate. The statements rather contain language that concerns the
policy horizon or the use of multiple instruments to sustain price stability
and maintain economic growth. Moreover, the relevant meeting days coincide
with the largest observations of the path factor of Gürkaynak et al. (2005).
In this respect, the shock potentially in�uences the behaviour of economic
agents through information about medium-run policy actions and economic
outcomes, leading to changes in prices, production and �nancial risk similarly
to the conventional monetary policy shock.

Overall, the approach based on non-normality and proxies gives insight
into the identi�cation of monetary policy shocks, where the measured mon-

19For the shock #1,t , the corresponding �ve months are May 2001, February 2008, January 2001,
April 2001 and November 2001.

20The aggregation of the proxy series due to the use of the average monthly interest rate implies
that the relevant meeting may be the one of the previous month. See footnote 11 of Gertler and
Karadi (2015) for details.

21In January 2001, Fed announced a surprise interest rate cut, also observed as large value of
#1,t . As a result, stock prices responded on the FOMC day strongly positively.
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etary tightening often implies counterfactually expansionary effects (Ramey,
2016). Here, the monetary policy announcements are decomposed into three
shocks that have different effects on the interest rates and the economy. The
results show that the short-run futures are driven not only by non-systematic
monetary policy component #1,t but also, to a smaller extent, by the shock
#2,t which reveals information about the state of the economy. Neglecting #2,t
and using a single short-run future as a proxy imply that the surprise inter-
est rate changes have not fully been cleaned from the information effect. It
should, however, be noted that the size of the information shock is consider-
ably smaller than suggested by Nakamura and Steinsson (2018).

Moreover, a large portion of variation around the FOMC meeting is con-
tributed by the long-term shock #3,t . The emergence of the shock is inde-
pendent of the zero lower bound, i.e. it occurs both under conventional and
unconventional monetary policy periods. The shock shows effects in the risk
premium but leaves the short-run interest rate intact and is closely related to
the path factor of Gürkaynak et al. (2005). The existence of the shock may be
due to the ability of the central bank to affect the expectations of the public
(Cochrane and Piazzesi, 2002; Gürkaynak et al., 2005) or due to �nancial fric-
tions (Gertler and Karadi, 2015; Hanson and Stein, 2015). By implementing
this type of forward guidance re�ected in the shock, the central bank is able
to affect production and prices similarly to the interest rate change.

2.4 Conclusions

This chapter investigated the identi�cation of monetary policy shocks in a
framework that exploited both variation around the announcements of the
central bank and statistical properties of data. The proxies were used to iden-
tify movements relevant for the monetary surprises; assuming non-normality
of data facilitated the discrimination between multiple shocks driving the an-
nouncements. Unlike in the previous studies, the macroeconomic effects of
various monetary policy announcements could simultaneously be estimated
without a priori knowledge about the propagation of the shocks.

I used a general estimation routine to measure the impact of the monetary
shocks identi�ed from various high-frequency reactions to the statements of
the Federal Reserve. The results showed that the announcements are driven
by three distinct shocks: a conventional interest rate shock, an information
shock that reveals central bank's endogenous but unanticipated reactions to
the current state of the economy and a long-term shock. Importantly, the long-
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term shock affects the risk and the expectations in the economy by instruments
different from the short-run interest rate. Nonetheless, the macroeconomic
effects of such a policy surprise and a conventional interest rate change are
analogous.

The existence of a monetary policy shock that affects the risk premium
before and after the �nancial crisis of 2008 is beyond the implications usually
inferred from theoretical macroeconomic models. Nonetheless, the shock may
relate to the ability of the central bank to affect the medium-term expectations
by informing the public about the future policy actions, similar to forward
guidance. The central bank may also in�uence the risk premium under in-
complete information or �nancial frictions.

Finally, it is worth emphasising that the SVAR model and framework of
this essay are readily available for the identi�cation of other than monetary
policy shocks. In particular, as soon as there exist proxy variables that may
be noisy measures of the latent shocks and data suggest non-normality, the
model is able to recover all relevant shocks and their impulse responses.
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Appendix

2.A Derivation of the Gibbs sampler

Here, I present details on the Gibbs sampler outlined in subsection 2.2.3. As a
starting point for the the derivation of the posterior distribution, multiply the
SVAR model (2.5) by the inverse of B̄ to represent it equivalently as a system
of simultaneous equations, including a (n̄ � 1) constant a

B̄� 1 �
ȳt � Ā1ȳt � 1 � . . . � Āpȳt � p � a

�
= H � 1/2

t ht , t = 1, . . . ,T (2.12)

with a conditional likelihood function

p(yj Ā, B̄� 1, H ) =( 2p ) � Tn̄/2 j det
�

B̄� 1
�

jT
T

Õ
t= 1

jHt j1/2

exp

 

�
1
2

T

Õ
t= 1

ū0
t B̄

� 10
Ht B̄� 1ūt

!

, (2.13)

where y = ( y0
1, . . . ,y0

T)0, Ā0 = [ a Ā1 � � � Āp], Ht = diag(h1,t , . . . ,hn̄,t ), H =
diag(h1,t , . . . ,hn̄,1, . . .h1,T, . . . ,hn̄,T) and ūt = Ā(L) ȳt � a.

Subsequently, de�ne column vectors a = vec( Ā) and bi , i = 1, . . . ,n̄, where
the latter corresponds to the ith row of matrix B̄� 1, i.e. B̄� 10

= [ b1 � � � bn̄]. Let
these vectors be linearly related to vectors ar (( n̄2p + n̄ � ra) � 1) and br,i
(( n̄ � rb,i ) � 1) through matrices Ra (( n̄2p + n̄) � (n̄2p + n̄ � R�

a)) and Rb,i
(n̄ � qi ), qi = n̄ � rb,i :

a = Raar (2.14)

bi = Rb,ibr,i , i = 1, . . . ,n̄, (2.15)

where ra and rb,i are the number of restricted parameters in Ā and in the
ith row of B̄� 1, respectively. Accordingly, the vectors ar and br,i contain the
free parameters of the model and are mapped by matrices Ra and Rb,i , whose
elements are either 1 or 0, to Ā and B̄� 1.22

I set the prior distribution for the parameters as follows. First, as stan-
dard in the Bayesian VAR literature, the autoregressive parameters in ar are,

22The restrictions are set to the inverse of B̄. However, imposing restrictions of a block-
triangular form such as in (2.5) is straightforward.
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a priori, normally distributed as ar � N (ar , Var
). Following Sims and Zha

(1998) and Waggoner and Zha (2003), the free parameters in the rows ofB̄� 1

have a prior normal distribution br,i � N (br,i , Vbr ,i ) I ( B̄� 1), where I ( B̄� 1) is
an indicator function equal to one if B̄ satis�es the permutation rule (2.9)–
(2.10). The degrees-of-freedom parameterl i has exponential prior distribu-
tion l i � Exp( l i ), i = 1, . . . ,n̄ and truncated to be greater than 2.

Given y, B̄� 1 and H and combining the likelihood (2.13) and the prior, the
conditional posterior of ar reads as

p(ar jy, B̄� 1, H ) µ exp
�

�
1
2

(ar � ār )0V̄ � 1
ar

(ar � ār )
�

(2.16)

where

V̄ � 1
ar

= X0
rW

� 1Xr + V � 1
ar

(2.17)

ār = V̄ar

�
X0

rW
� 1y + V � 1

ar
ar

�
(2.18)

and

W� 1 =( IT 
 B̄� 10
)H ( IT 
 B̄� 1) (2.19)

Xr = XRa (2.20)

X =( X0
1, . . .X0

T)0 (2.21)

X t = In 
 (1,y0
t � 1, . . . ,y0

t � p). (2.22)

Hence, ar is conditionally drawn from a multivariate normal distribution with
mean ār and variance V̄ar .

On the other hand, the ith row of B̄� 1 can be drawn from a distribution
conditional on the remaining rows of B̄� 1, Ā and H. The strategy follows
Waggoner and Zha (2003) but with a difference that no further restrictions are
needed to identify B̄� 1. The likelihood (2.13) can be written, conditional on
Ā, B̄� 1

� i = ( b1, . . . ,bi � 1, 0, bi+ 1, . . . ,bn̄)0 and H, as

p(yj Ā, B̄� 1
� i , H ) µ j det( B̄� 1)jT exp

�
�

1
2

b0
r,i R

0
b,iYu,i Rb,ibr,i

�
, (2.23)
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where Yu,i = å T
t= 1 ūthi ,t ū0

t . Combining with the prior distribution yields

p(br,i jy, Ā, B̄� 1
� i , H ) = j det( B̄� 1)jT exp

�
�

T
2

(br,i � b̄r,i )
0V̄b,i (br,i � b̄r,i )

�
I ( B̄� 1),

(2.24)
where V̄ � 1

b,i = 1
T (V � 1

br ,i
+ R0

b,iYu,i Rb,i ).
As shown by Waggoner and Zha (2003), drawing from (2.24) is equivalent

to drawing from a number of univariate normal distributions and one special
distribution. In particular, let w be an (n � 1) vector orthogonal to matrix
B̄� 10

� i and de�ne a (qi � 1) vector v1 = C0
i R

0
b,iw/ jjC0

i R
0
b,iwjj , where CiC0

i = V̄ � 1
br,i

.

Furthermore, by forming an orthonormal basis (v1, . . . ,vqi ), br,i is equal to

br,i = Ci

qi

å
j= 1

b j . (2.25)

As br,i is a linear function of b j , j = 1, . . . ,qi , drawing br,i is equivalent to
drawing from conditional distribution (See, Waggoner and Zha, 2003; Villani,
2009)

p(b1, . . . ,bqi jy, Ā, B̄� 1
� i , H ) µ jb1jT exp

�
�

T
2

(b1 � b̄1)2
�

exp

 

�
T
2

qi

å
j= 2

(b j � b̄ j )
2

!

I ( B̄� 1) (2.26)

with b̄ j = v0
jC

� 1
i b̄r,i . According to (2.26), b2, . . . ,bqi are conditionally normally

distributed with mean b̄ j . On the other hand, the kernel for b1 is non-standard
due to the term jb1jT. Nonetheless, following Villani (2009), the distribution
of b1 can be approximated by a mixture normal distribution

f (b1jy, Ā, B̄� 1
� i , H ) � p1N (m1, s2

1) + ( 1 � p1)N (m2, s2
2) (2.27)

with m1 = b̄1
2 � 1

2

q
b̄2

1 + 4, m2 = b̄1
2 + 1

2

q
b̄2

1 + 4, s2
i = 1

T
m2

i
1+ m2

i
and p1 =

1
1+ e2b̄1/ T . The algorithm is run for i = 1, . . . ,n̄ such that for each i, br,i is

backed out from b1, . . . ,bqi using (2.25). Additionally, at each iteration, only
draws that belong to a permutation (2.9)–(2.10) are accepted.

To draw H, the hierarchical prior for l i hi ,t is c2
l i

is combined by the likeli-
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hood (2.13) to obtain

p
�

hi ,t jy, Ā, B̄� 1, l i

�
µ h

l i + 1
2 � 1

i,t exp

 

�
hi ,t (#2

i,t + l i � 2)

2

!

, (2.28)

i.e. hi ,t can be drawn using hi ,t (#2
i,t + l i � 2) � c2

l i + 1 for i = 1, . . . ,n̄ and
t = 1, . . . ,T. Last, by the hierarchical structure, l i is updated by data only
through H. Combining (2.28) with the prior distribution yields

p
�

l i jy, f hi ,tg
T
t= 1

�
µ2� T

l i
2 G( l i /2 ) � T ( l i � 2)

l i T
2

 
T

Õ
t= 1

h
l i � 2

2
i ,t

!

exp

 

�

 
l i � 2

2l i

T

å
t= 1

hi ,t + l i

!

l i

!

(2.29)

from which, following Lanne and Luoto (2016), I draw using independence-
chain Metropolis-Hasting algorithm. As a candidate density, I use the uni-
variate normal distribution with mean and the precision parameter set to the
mode and the negative hessian of the log conditional distribution, respectively.
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3 The effects of government
spending under anticipation:
the noncausal VAR approach 1

3.1 Introduction

What is the impact of government spending on the economy? Despite a large
body of literature, disagreement prevails on how an increase in government
spending moves consumption, investment and output. To a great extent, the
lack of consensus is due to uncertainty about valid methods to identify exoge-
nous �scal policy changes and to measure the reactions of economic agents. In
particular, an identi�cation strategy has to take into consideration that policy
measures are usually implemented with a delay by the nature of the politi-
cal process. The economic agents thus foresee and internalise �scal policies
before they materialise. If agents' expectations are not accounted for, such
�scal foresight causes an econometric obstacle to measure the causal effects of
government spending.

As the most prominent tool, the vector autoregressive (VAR) model de-
rives the macroeconomic effects of �scal policy by identifying a government
spending shock through exclusion, sign or medium-run restrictions, normally
based on �scal rules of the government (Blanchard and Perotti, 2002; Galí,
López-Salido, and Vallés, 2007; Mountford and Uhlig, 2009; Ben Zeev and
Pappa, 2017). However, as shown by Ramey (2011b), a large part of exoge-
nous changes in the U.S. government spending is related to defence expen-
ditures and is predictable by information held by the public. Consequently,

1This chapter is based on HECER Discussion Paper No. 418.
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the VAR model is at risk to identify government spending shocks that are in
fact anticipated, and the underlying propagation of a policy change cannot be
revealed. Under this nonfundamentalness problem, the VAR model is unable
to retrieve the structural shocks from the past observables as the expectations
of the public are not properly included in the information set of an econome-
trician (Hansen and Sargent, 1980, 1991; Lippi and Reichlin, 1994). As shown
by Leeper, Walker, and Yang (2013), the �scal foresight in a rational expec-
tations model inherently leads to the nonfundamentalness problem through
a noninvertible moving average (MA) representation for typical observables
included to a VAR model.

The literature has tackled the problem of �scal foresight by exploiting
proxies and narrative measures for expectations of economic agents. The
government spending shock is then derived as an innovation to the proxy
or by local projections following Jordà (2005). 2 Following the narrative ap-
proach, Ramey (2011b) constructed a proxy variable from administrative and
news sources about the expected exogenous changes in military spending over
time, also used in various subsequent studies to control for information. Us-
ing stock market data, Fisher and Peters (2010) recovered the spending shock
from the excess returns of U.S. military contractors. Auerbach and Gorod-
nichenko (2012) and Caggiano, Castelnuovo, Colombo, and Nodari (2015) ex-
tracted the shock from the revisions in the professional forecasters. However,
the validity of all of these approaches hinges upon how well the additional
variable catches the information held by the public. Another possibility is
to use Blaschke matrices to �nd the corresponding fundamental representa-
tion (see Mertens and Ravn 2010). These theoretical dynamic restrictions may,
nevertheless, excessively shrink the set of possible underlying economic pro-
cesses.

In this essay, I contribute to the �scal policy literature by estimating the im-
pact of government spending with a noncausal model that implicitly controls
for the foresight of economic agents, while being �exible about the underlying
economic process. I deviate from the conventional VAR analysis by augment-
ing the speci�cation with the lead terms of observables, which corresponds
to the noncausal VAR model of Lanne and Saikkonen (2013). Without as-
suming the included variables to align with economic agents' information set,
the future terms resolve the nonfundamentalness problem as the predictable
error term of the model may now contain anticipated shocks. The impulse re-
sponses to the shocks are then derived from the two-sided MA representation

2For recent surveys, see Leeper et al. (2013), Ramey (2016) and Stock and Watson (2018).
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of the model, which depends both on the past and future errors.
In contrast to its causal counterpart, the noncausal model is able to re-

cover a shock that may already be internalised by the economic agents. I
parsimoniously identify an anticipated spending shock using typical exclu-
sion restrictions imposed on a �scal policy rule. According to the rule, the
government responds to the recent shocks of the economy with a lag. Under
�scal foresight, the model generates impulse responses of forward-looking
variables to an anticipated government spending shock. By contrast, when
anticipation does not matter, the model reduces to a causal VAR model with
the exclusion restrictions following Blanchard and Perotti (2002). However,
to distinguish between causal and noncausal speci�cations, the estimation re-
quires non-Gaussianity as the models are observationally equivalent by their
�rst and second moments. To that end, I assume multivariate t-distributed
errors, under which the Gaussian structural shocks share a volatility term and
normality is nested as limiting case. Consequently, the noncausal model can
be estimated by a computationally ef�cient Gibbs sampler following Lanne
and Luoto (2016).

On the methodological side, the essay belongs to the literature on non-
fundamentalness in the VAR models, tracing back to Hansen and Sargent
(1980), followed by Hansen and Sargent (1991) and Lippi and Reichlin (1994),
and more recently discussed in Fernández-Villaverde, Rubio-Ramírez, Sar-
gent, and Watson (2007), Lütkepohl (2014), Forni and Gambetti (2014) and
Beaudry and Portier (2014).3 In general, nonfundamentalness could be tested
and resolved by adding information in terms of factors extracted from large
data sets (Forni and Gambetti, 2014). However, a wide range of macroeco-
nomic indicators does not necessarily include information on �scal anticipa-
tion, either. This chapter proceeds directly with a non-fundamental represen-
tation, which relaxes the need for suf�cient information but requires either
theoretical structure (Lippi and Reichlin, 1994; Mertens and Ravn, 2010) or
non-Gaussianity (Rosenblatt, 2000; Lanne and Saikkonen, 2013) for identi�ca-
tion. Similar to the framework of the essay, Chen, Choi, and Escanciano (2017)
assume non-Gaussianity and propose a general test for nonfundamentalness.
By the strategy of this essay, testing of nonfundamentalness is unnecessary, as
the dynamic effects of government spending can be estimated regardless of
the nonfundamentalness issue. In other words, the impulse responses can be
produced even if a test rejects invertibility.

Understanding how government spending in�uences the economy is im-

3For recent review, see Kilian and Lütkepohl (2017), Ch. 17.
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portant for validating the consistency of macroeconomic models as well as for
designing �scal policy. In the neoclassical theory, government spending may
either crowd out private consumption and investment or stimulate the econ-
omy. The latter occurs when the economy involves nominal rigidities and
households are non-Ricardian, eventually leading to a �scal multiplier larger
than one. Under �exible prices, instead, spending causes negative consump-
tion and real wage responses as crowding out dominates. In the empirical
literature, the exclusion restrictions based on the predetermined �scal policy
tend to produce positive consumption and real wage responses, whereas the
studies employing a proxy for expectations document a decline of these vari-
ables (Ramey, 2016). In a straightforward manner, the noncausal model gives
insights into the extent to which these differences stem from the anticipation
of �scal shocks.

Using the U.S. postwar data, I document non-negligible anticipation of
macroeconomic variables in the face of a spending shock. Investment mildly
rises during the anticipation phase before returning to its long-run trend, and
the shock increases consumption, employment and the real wage. These reac-
tions imply a �scal multiplier above but close to one, although it is estimated
with high uncertainty. The identi�ed shock is also closely related to defence
spending, commonly held as a source of exogeneity in the �scal policy liter-
ature. Finally, I extensively compare my results on different, previously used
identi�cation strategies. First, the shock I identify coincides over time with the
one obtained by the short-run restrictions from the causal VAR model. How-
ever, the impulse responses of the causal VAR incorrectly ignore the anticipa-
tion phase and underestimate the size of �scal multipliers. Second, the results
are insensitive to the inclusion of a variable that is informative about agents'
expectations, in line with the theory. In particular, identi�cation schemes rely-
ing on the narrative measure of Ramey (2011b) or the excess returns used by
Fisher and Peters (2010) do not alter the conclusions in the noncausal frame-
work.

This chapter proceeds as follows. The next section presents the method-
ology to identify government spending shocks based on the noncausal VAR
and illustrates the approach with a model of �scal foresight. Section 3.3 ex-
plores the effects of government spending shocks in the US economy. The last
section concludes.
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3.2 Theory

By the institutional structure of the government, introducing a new policy in-
volves a lag between legislation and implementation. When economic agents
see the forthcoming policies, they are likely to hold richer information for
decision-making than an econometrician observes. As a result, a structural
VAR model is unable to extract exogenous policy changes from �scal variables
only. In this section, I propose an approach to recover a government spend-
ing shock when allowing for misalignment between the information sets of the
economic agents and the econometrician. First, I show how impulse responses
to the anticipated spending shock can be reproduced by means of noncausal-
ity. Second, I illustrate the proposed approach analytically in a model of �scal
foresight. Finally, I review the estimation of the model.

3.2.1 Identi�cation of government spending shocks under an-
ticipation

Let yt = ( gt , y0
2,t )

0 be an n-dimensional vector of observables with the de-
trended quarterly real government spending gt and the n � 1 variables of
interest collected in vector y2,t . Assume the mutually uncorrelated structural
shocks in ut propagate to yt through the MA representation

yt =
¥

å
k= 0

Bkut � k = B(L)ut , (3.1)

where ut = ( ug,t , u0
2,t )

0 consists of the government spending shock ug,t and
(n � 1) other structural shocks u2,t , L is the usual lag operator and B(L) =
å ¥

k= 0 BkLk an (n � n) matrix polynomial convergent in the powers of L.

Conventionally, the identi�cation of the government spending shock and
the derivation of the impulse responses of yt are based on the causal VAR(p)
model

A(L)yt = #t , (3.2)

A(L) = In � A1L � . . . � ApLp, #t � (0,G),
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with an MA representation

yt = A(L) � 1#t =
¥

å
k= 0

Ck#t � k = C(L)#t , (3.3)

which coincides with (3.1) as long as its one-step ahead forecast error is a lin-
ear combination of structural shocks, i.e. yt � E[yt jyt � 1, yt � 2, . . .] = A(L)yt =
#t = B0ut . Let the �rst row of the structural VAR model (3.2) correspond to a
�scal or spending rule of the government,

gt =
p

å
i= 1

a0
1,iyt � i + b11ug,t + b12u2,t , (3.4)

where a1,i (n � 1) collects the autoregressive coef�cients and (b11, b12) is the
�rst row of matrix B0. Government spending is therefore determined by
changes in the lags of observables and by the current structural shocks ug,t
and u2,t . Tracing back to Blanchard and Perotti (2002) (BP, henceforth), the
spending shock is identi�ed from the system of equations (3.2) with #t = B0ut
by imposing exclusion restrictions b12 = 01� (n� 1) . Accordingly, based on the
predetermined nature of economic policy, it takes at least a quarter for the
government to learn about the state of the economy and to implement any
measures in response. The spending shockug,t is thus the only exogenous
change that both drives current spending gt and is unrelated to the past states
of the economy.4

However, the strategy of BP potentially fails to recover an unexpected ex-
ogenous shock to government spending. In particular, the identi�ed shock in
the U.S. data is related to defence spending and shown to be predictable by
war dates as well as by professional forecasts (Ramey, 2011b), i.e. by infor-
mation available to the public. Consequently, such �scal foresight prevents
the VAR model (3.2) from producing a forecast error unexpected both to the
economic agents and the econometrician. The error is instead a linear combi-
nation of past errors from which a static impact matrix B alone cannot recover
the structural shocks (Lippi and Reichlin, 1994). Consequently, the measured
effects of government spending may be starkly distorted as the MA represen-

4Originally, Blanchard and Perotti (2002) identify both spending and tax shocks using a non-
recursive system that combines the exclusion restrictions b12 = 01� (n� 1) with information about
elasticities. Nevertheless, ignoring the tax shock and identifying the spending shock through
recursive restrictions produces similar results (Ramey, 2011b, 2016). See also Caldara and Kamps
(2017) for non-zero estimates of the spending rule elasticity with respect to output.

62



3.2 Theory

tation (3.3) cannot reveal the underlying impulse responses to the shocks ut
(Ramey, 2011b; Leeper et al., 2013).

The above nonfundamentalness problem boils down to the noninvertibility
of the MA representation as economic agents react based on broader informa-
tion than the history of yt contains.5 The invertibility of the MA representation
(3.1) could be attained by enriching yt with variables re�ecting the informa-
tion set of economic agents (Ramey, 2011b; Fisher and Peters, 2010; Auerbach
and Gorodnichenko, 2012; Caggiano et al., 2015) or by using a large-scale
VAR model (Ellahie and Ricco, 2017). Alternatively, by imposing dynamic
structure on the nonfundamental error term, a Blaschke matrix would recover
the spending shock (Mertens and Ravn, 2010).6 However, while the former
approach is subject to the ability of the additional variables to establish in-
vertibility and to identify relevant sources of exogeneity, the latter approach
may implicitly impose restrictive structure on the underlying economy. 7

As an alternative to the above approaches, consider a representation

�
gt

y2,t

�
=

¥

å
k= 0

M ket � k +
�

0
f2,t

�
, (3.5)

where M (L) = å ¥
k= 0 M kLk, M0 = In, is a convergent (n � n) MA polynomial

invertible in L and et � (0,Ḡ) is an independent and identically distributed
(iid) error term. In turn, the (n � 1)-dimensional vector f2,t depends directly
on the future values of yt :

f2,t = F 21,1gt+ 1 + F 22,1y2,t+ 1 + . . .+ F 21,sgt+ s + F 22,sy2,t+ s, (3.6)

where F 21,k and F 22,k for k = 1, . . . ,s are ((n � 1) � 1) and ((n � 1) � (n � 1))
matrices, respectively. In particular, the inclusion of f2,t tackles the noninvert-
ibility of the MA representation (3.1) by allowing y2,t to depend on the future
structural shocks. That is, when the observables induce nonfundamentalness
in (3.1), f2,t ensures that the dynamics can be correctly captured with respect

5In other words, yt is noninvertible in the past as there exist roots inside the unit circle for
jB(z)j.

6In detail, Mertens and Ravn (2010) derive from a rational expectations model a Blaschke
matrix that maps the nonfundamental error term of the VAR model to the anticipated spending
shock.

7The information de�ciency could also be tested based on factors (Forni and Gambetti, 2014) or
non-normality (Chen et al., 2017). However, concluding nonfundamentalness from these tests may
not necessarily be due to the �scal foresight but equally well be a result of other misspeci�cation
issues or omitted factors.
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to an anticipated error term et . Hence, the future terms control for the effects
of omitted factors and expectations dismissed by the invertible MA polyno-
mial M (L).8 On the contrary, when the underlying MA representation (3.1) is
invertible to the past and the causal VAR model is valid, f2,t is approximately
zero as the lead terms become super�uous, and the equation (3.5) reduces to
the implicitly invertible MA representation (3.3) of the causal VAR model with
an unpredictable error term et = #t .9

Now, from the representation (3.5), a government spending shock ūg,t that
is allowed to be anticipated by the variables in y2,t can be identi�ed. Assume
the error term et is a static rotation of the shocks ūt , containing current or
lagged values of the underlying, unanticipated structural shocks ut . The un-
correlated structural shocks ūt with unit variance are mapped into the error
term as

et = B̄ūt , (3.7)

and B̄ satis�es E[ete0
t ] = Ḡ= B̄B̄0. Let the �rst row of B̄ be (b̄11, b̄12) with scalar

b̄11 and a row vector b̄12 of dimension n � 1. Noting that M0 = In, by (3.5),
the impact effect of the current structural shocks on government spending gt
is equal to

e1,t = b̄11ūg,t + b̄12ū2,t . (3.8)

Imposing b̄12 = 01� (n� 1) , spending is predetermined within one quarter ex-
cept for exogenous changes due to ūg,t . In other words, the �scal policy
responds contemporaneously only to its own shock in addition to the past
variation.

By the above scheme, the spending shock is identi�ed by the strategy of
BP but relaxed to be anticipated through the term f2,t , leaving gt unchanged
prior to t. Accordingly, the government follows the spending rule (3.4), but the
non-systematic deviation, ug,t , may now be anticipated. For f2,t = 0(n� 1)� 1,
the identi�cation reduces to the original scheme of BP and recovers an unan-
ticipated spending shock. Under noninvertibility, instead, the past observ-
ables are incapable of recovering the fundamental shock, which can then be
obtained with the help of f2,t . It should, however, be noted that the represen-
tations (3.1) and (3.5) are not necessarily equivalent in a way that the former
could directly be rewritten in terms of ūt and ft to produce the latter. An

8Speci�cally, the future terms account for noninvertibility of (3.1), when the unstable roots of
the underlying MA polynomial B(L) are inverted to the future.

9Under noncausality, the conditional expectation E [et+ j jyt , yt � 1, . . .], j > 0 is nonzero such that
errors can be predicted by the past observed variables, in contrast to the forecast error #t of the
causal VAR.
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exact, direct mapping may instead only exist for a particular set of economic
models. The approach is rather a parsimonious departure from invertibil-
ity to approximate the true process and to �exibly identify an anticipated
government spending shock. The representation (3.5) additionally covers a
wider range of underlying economic dynamics and forms of anticipation than
a causal VAR model (3.2) alone.

The model (3.5) can be written as the noncausal VAR(r,s) model of Lanne
and Saikkonen (2013)

P (L)F (L� 1)yt = et , (3.9)

where

F (L� 1) = I � F 1L� 1 � . . . � F � s
s ,

F i =
�

0 01� (n� 1)
F 21,i F 22,i

�
, i = 1, . . . ,s.

and P (L) = I � P 1L � . . . � P r Lr . To see this, write the representation (3.5)
equivalently as

F (L� 1)yt = M (L)et ,

where M (L) can be inverted to the left-hand side and its inverse be approxi-
mated up to a truncation error with the causal polynomial P (L). As a result,
the �scal rule of the noncausal model (3.9) coincides with (3.4), as

gt =
r

å
i= 1

p 0
1,iyt � i + b̄11ūg,t + b̄12ū2,t , (3.10)

where p 0
1,i is the �rst row of matrix P i , i = 1, . . . ,r. Simultaneously, anticipa-

tion of gt by y2,t is allowed through the future terms of yt .
The impulse responses to the identi�ed shock ūg,t are derived from the

two-sided MA representation of the model,

yt = F (L� 1) � 1P (L) � 1et =
¥

å
k= � ¥

YkB̄ūt � k (3.11)

through which yt generally depends both on the past and future shocks.
Hence, the impulse responses to a government spending shock read as

¶yt+ k

¶ūg,t
= Ykb̄1, k = . . . ,� 1, 0, 1, . . . (3.12)
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where b̄1 is the �rst column of matrix B̄, obtained from Ḡ= B̄B̄0after imposing
the exclusion restrictions.10 By the stability of the matrix polynomials P (L)
and F (L� 1), the coef�cients Yk decay to zero ask ! � ¥ .11 Despite the in�-
nite number of lead terms, the two-sided representation approximates the true
model (3.1) but shows the responses of the most recent shocks at the negative
lags. Beyond the anticipation horizon of economic agents, the corresponding
MA coef�cients in (3.12) are close to zero.

3.2.2 Analytical example: a model of �scal foresight

Next, I illustrate how the above noncausal approach resolves the noninvert-
ibility issue in an example of �scal foresight from Leeper et al. (2013). In this
particular setting, a mapping from the theoretical noninvertible model to the
noncausal VAR exists.

In the model, a representative household maximises the expected welfare
by deciding upon consumption under perfect depreciation of capital Kt , ex-
ogenous productivity A t and a proportional tax t t on production, t tYt =
t t A tKa

t � 1. The tax revenue is redistributed by the government through lump-
sum transfers Tt . Maximising the expected welfare E 0 å ¥

t= 0 bt log Ct subject
to the budget constraint Ct + Kt + Tt � (1 � t t )A tKa

t � 1, log-linearising and
assuming that at = log A t � log A is uncorrelated, the solution for capital
becomes

kt = akt � 1 + at + ( 1 � q)
t

1 � t

¥

å
i= 0

qiEt t̂ t+ i+ 1, (3.13)

where q = ab(1 � t ) < 1 and kt , at and t̂ t are log-deviations from the steady
state.

Consider now agents observing a perfect signal on the tax rate q periods
forward, i.e. t̂ t = ut ,t � q. Furthermore, let at = uA,t and assume uA,t and ut ,t
are uncorrelated. Substituting these to the solution yields

kt = akt � 1 + uA,t � k(ut ,t � q+ 2 + qut ,t � q+ 1 + . . .+ qq� 1ut ,t ), (3.14)

10In practice, B̄ is derived as a lower triangular matrix from the Cholesky decomposition of Ḡ.
The essay considers only partial identi�cation of B̄, i.e. its �rst column. The remaining shocks
of the economy are contained in the reduced-form term B̄22ū2,t , where B̄22 is the lower-triangular
lower-right ((n � 1) � (n � 1)) block of matrix B̄. By the structure of the model, the remaining
shock are restricted to be neither anticipated nor unanticipated.

11The stability is ensured by det P (z) 6= 0 and det F (z) 6= 0 for jzj � 1.
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where k = ( 1 � q)t / (1 � t ). Under foresight, i.e. q > 0, capital is determined
by a pattern where the most recent news, ut ,t , informative about the most
distant tax rates is discounted the heaviest by an anticipation rate q. By this
inverse discounting, the history of observables is likely insuf�cient to recover
the most recent shocks as they have the least weight on the current dynam-
ics.12 In particular, the MA representation of the observables yt = ( t̂ t , kt )0,

�
t̂ t
kt

�
=

"
Lq 0

� k Lq� 1+ qLq� 2+ ...+ qq� 1

1� aL
1

1� aL

# �
ut ,t
uA,t

�
= B(L)ut , (3.15)

is noninvertible in the past since jB(z)j = zq = 0 for z = 0. Hence, no causal
VAR representation exists for the observables.13

Nonetheless, yt can be written as in (3.5). For q = 2, rewrite kt as

kt = � k
L + q

1 � aL
ut ,t +

1
1 � aL

uA,t

= � kqtt+ 2 � k(1 + qa)t t+ 1 � ka
1 + aq
1 � aL

ut ,t � 2 +
1

1 � aL
uA,t ,

where ut ,t and ut ,t � 1 as signals about future tax rates are substituted out using
ut ,t = t̂ t+ 2. This leads to a representation of the form (3.5) for yt ,

�
1 0

k((1 + qa)L� 1 + qL� 2) 1

� �
t̂ t
kt

�
=

�
1 0
0 1

1� aL

� �
1 0

� ka(1 + qa) 1

� �
ut ,t � 2
uA,t

�
.

Multiplying from the left by the inverse of the MA polynomial on the right-
hand side yields the noncausal VAR(1,2) model (3.9)

�
1 0
0 1 � aL

� �
1 0

k((1 + qa)L� 1 + qL� 2) 1

� �
t̂ t
kt

�
= et (3.16)

with

et = B̄ūt , B̄ =
�

1 0
� ak(1 + qa) 1

�
, ūt =

�
ut ,t � 2
uA,t

�
.

12See Leeper et al. (2013) for a more thorough discussion.
13Leeper et al. (2013) additionally show that the nonfundamental representation produced by

a causal VAR can severely misspecify the tax shocks. Ramey (2009) demonstrates with Monte
Carlo evidence that noninvertibility has equally adverse consequences on the inference about
government spending shocks.
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Figure 3.1: Impulse response functions of the �scal foresight model to a tech-
nology and an anticipated tax shock
The upper panel corresponds to the theoretical impulse responses obtained from the solution. The lower graphs
plot the impulse responses obtained from the noncausal VAR(1,2) model.

The error term et in (3.16) now contains shocks ut ,t � 2 and uA,t , the former
being anticipated by the economic agents. Moreover, ( t̂ t , kt )0 has a two-sided
MA representation (3.11) and, as a result, the impulse responses with respect
to a tax shock ut ,t � 2 read as

¶yt+ k

¶ut ,t � 2
= Ykb̄1, k = . . . ,� 1, 0, 1, . . . . (3.17)

The impulse responses from the noncausal VAR model can thus be interpreted
in a conventional manner but they are located additionally at the leads, i.e. at
k < 0, due to the different time-indexing of the shock. In particular, this
time-shifting occurs as noninvertibility prevents obtaining the shock as unan-
ticipated using the current and past values of yt only. Noncausality facilitates
then the recovery of an anticipated shock corresponding to the lagged un-
derlying shock. Figure 3.1 depicts the impulse responses from the theoretical
and noncausal models in the upper and lower plots, respectively, and con-
�rms the equivalence of the MA representations (3.1) and (3.11) in this set-up.
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3.2 Theory

Evidently, the impulse responses coincide, but through the two-sided MA
representation of the noncausal VAR, the timing of the tax shock differs. The
anticipation effects in capital can now be seen before k = 0. The policy shock
thus in�uences capital already at the coef�cients corresponding to the lead
terms of errors, but those responses are zero at leads beyondk = � 2.

3.2.3 Estimation

This subsection outlines the estimation of the noncausal VAR( r,s) model (3.9).
To identify a noncausal VAR( r,s) from a causal VAR(r + s) model in terms of
likelihood, it is necessary deviate from Gaussianity as the models are obser-
vationally equivalent by their �rst and second moments and cannot be dis-
tinguished under normality. In what follows, the error term et is assumed to
be multivariate t-distributed, implying unique identi�cation of the model pa-
rameters through its likelihood function. 14 The noncausal VAR is then equiv-
alently written as

w1/2
t P (L)F (L� 1)yt = ht , (3.18)

where lw t is c2
l -distributed and ht � N (0,S) such that Ḡ= E[ete0

t ] = l
l � 2S.

Hence, the error distribution is Gaussian conditional on the scalar volatility
term w � 1/2

t that controls for leptokurtosis of the time series, i.e. wt catches
exogenous, common volatility in observables. For small l , the distribution has
fatter tails than under normality. On the other hand, the distribution is closer
to Gaussianity for large values of l . Moreover, ht is a linear combination of the
Gaussian structural shocks, which are recovered through the rotation matrix
B̄.15

I rely on Bayesian methods to tackle the large parameter space arising
due to the additional lead terms. As shown in Appendix 3.A, the model
has a conditional likelihood function and a computationally feasible posterior
distribution under standard prior distributions. In particular, exploiting the
multiplicative structure of the model and the conditional normality in (3.18),
the model can be estimated using a Metropolis-within-Gibbs sampler of Lanne
and Luoto (2016) with which the parameters are drawn from the posterior
distribution as follows. First, the lag and lead coef�cients in P (L) and F (L� 1)

14For details on identi�ability, see Lanne and Saikkonen (2013).
15The distributional assumption implies that ht may contain both anticipated and unantici-

pated structural shocks that share the same volatility term. Avoiding this potential caveat would
require a less parsimonious empirical strategy such as considering an alternative non-Gaussian
distribution.
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are conditionally normally distributed. Second, the scale matrix S follows an
inverse Wishart distribution conditional on the remaining parameters of the
model. Last, w = ( wr+ 1, . . . ,wT� s), and l can be conditionally drawn using a
c2

l + n-distribution and a kernel for l , with the latter solely depending on the
volatility terms w.

3.3 The impact of government spending in the U.S.
economy

This section examines the dynamic effects of an exogenous change in govern-
ment spending in the U.S. economy. According to economic theory, the effects
of a government spending shock hinge on the interaction of wealth, intertem-
poral and distortionary effects (Ramey, 2011a). If the wealth effect of labour
supply dominates, Ricardian households decrease both consumption and in-
vestment in response to increased spending, and crowding-out effects imply
a �scal multiplier smaller than one. In contrast, when the economy involves
non-Ricardian and Keynesian elements, a spending shock is followed by in-
creasing marginal product of labour and, consequently, rising wages lead to
a positive consumption response and stimulative effects of �scal policy. 16 Fi-
nally, distortionary taxation to �nance spending dampens the positive effects
on consumption, employment and output.

However, validating the effects of government spending poses an econo-
metric challenge due to �scal foresight. According Ramey (2011b), inference
on the effects of government spending essentially depends on the timing of
the shocks and their anticipation. Ellahie and Ricco (2017) show that the use of
large-scale VARs mitigate the distortionary effects of insuf�cient information.
Chen et al. (2017) analyse the presence of nonfundamentalness in �scal VAR
models with their test for noninvertibility. According to their results, both
baseline speci�cations of Blanchard and Perotti (2002) and Ramey (2011b)
survive the hypothesis of invertibility. However, this observation is in con-
trast with the results of Ramey (2011b) who document forecasting power of
the constructed narrative measure with respect to the government spending
of BP. The noncausal VAR overcomes the noninvertibility issue as the gov-
ernment spending shock may but need not be anticipated. In particular, the
approach retains the VAR methodology with the conventional exclusion re-

16See Galí et al. (2007) and Ramey (2011a) for more in-depth discussion on propagation mech-
anisms of government spending.
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strictions on the �scal rule, without assuming additional variables to account
for the foresight.

3.3.1 Data and estimation

I use the following U.S. quarterly macroeconomic data. My measure of pub-
lic spending is government consumption expenditures and gross investment.
Output is the Gross Domestic Product (GDP), private consumption is the sum
of consumption of nondurables and services, and investment consists of �xed
private investment and consumption of durables. These national accounts
variables, taken from the National Income and Product Accounts (NIPA) Ta-
bles of the Bureau of Economic Analysis, are transformed into real values by
the GDP de�ator, into per-capita terms by the civilian noninstitutional popu-
lation and expressed in logs. Employment and wages are the log per-capita
hours and the log real hourly compensation, respectively, from the nonfarm
business sector. I derive the average tax rate as all federal receipts divided by
the nominal GDP. These seven variables, from which I subtract their quadratic
trend, form the baseline speci�cation and span the quarters from 1945Q1 un-
til 2013Q4. Additionally, I consider annualised in�ation, computed as a log
difference of the GDP de�ator, and two interest rates, the 3-month T-bill rate
and the Moody's Seasoned Baa Corporate Bond Yield.17

The noncausal VAR(r,s) models I estimate include the above variables with
the number of lags and leads set to four. Four lags, on the one hand, allows ob-
servables to have an invertible MA polynomial M (L) in (3.5) general enough
to fully catch the variation of structural shocks in the absence of nonfunda-
mentalness. On the other hand, s = 4 leads imply a rich structure for the
noncausal part f2,t if nonfundamentalness arises as a result of anticipation. In
particular, the structural shocks are recovered by the lead terms as anticipated
(3.1) in case the underlying MA representation is noninvertible to the past but
invertible to the past and future. As a whole, four lags and leads are then
expected to be suf�cient to account for the full dynamics of observables.

I estimate the model with Bayesian methods and set a Minnesota-Litterman-
type prior distribution as also used by Lanne and Luoto (2016), explained in
Appendix 3.A. Speci�cally, I control for the tightness of the prior distribution
separately for the lag and lead coef�cients. By adjusting the overall tightness
parameters, the prior about the lag coef�cients is less informative, whereas
the lead coef�cients are shrunk more strongly towards zero. Hence, a priori,

17Apart from the NIPA variables, data are retrieved from the FRED database.
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Figure 3.2: Posterior distribution of degrees-of-freedom parameter l
Posterior draws of l from the baseline noncausal VAR. The dashed vertical line is the posterior
mean.

the lag terms are more important to determine the dynamics of variables. I
proceed by drawing 50,000 times from the posterior distribution. For each
draw, I derive the MA representation (3.11) and impose the exclusion restric-
tions using the Cholesky decomposition Ḡ= B̄B̄0. As for any Gibbs sampler,
the algorithm to obtain posterior draws performs well when the distribution
is unimodal. Multimodality, however, easily arises in the estimation of the
noncausal VAR, as observed by Lanne and Luoto (2016). Nonetheless, the less
loose prior distribution for the lead coef�cients by the greater overall tightness
and the restrictions imposed in (3.9) are powerful in attaining a unimodal pos-
terior distribution. 18

For identifying a unique VAR( r,s) speci�cation, it is necessary to assume
non-Gaussianity of the error term. Conveniently, the assumed multivariate
t-distribution nests Gaussianity for a large degrees-of-freedom parameter l .
Low estimates of l thus immediately suggests the validity of the distribu-
tional assumption compared to Gaussianity, implied by excess kurtosis in the
error distribution. 19 In Figure 3.2, I plot the histogram of the posterior draws
of l from the baseline VAR model. The histogram clearly indicates that a
large probability mass is located at low degrees of freedom. Moreover, the
data strongly dominate the assumed prior mean 10 with a posterior mean of

18Details on estimation and convergence of the algorithm are found in Appendices 3.A and 3.B.
19Similarly, Chen et al. (2017) document signi�cant non-normality in �scal VAR models.
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4.2: the probability of l being greater than 6 is extremely low. Therefore,
the data lend support for the multivariate t-distribution, which facilitates the
identi�cation of the noncausal model.

3.3.2 Impulse responses to a government spending shock

In Figure 3.3, the solid lines depict the estimated impulse responses of the
seven variables included in the baseline noncausal VAR(4,4) model to a one
standard deviation government spending shock. Therein, I also report the
posterior medians of the estimates together with the 68 and 90 percent cred-
ible sets.20 Because of noncausality, the responses are additionally located at
the negative lags, corresponding to the lead terms of the MA representation.
Beyond lead 10, these reactions are close to zero. In Figure 3.12 of Appendix
3.C, I additionally plot the impulse responses from the models for various lead
orders, showing that the results remain similar irrespective of the number of
included leads.

According to the noncausal model, government spending increases by one
percent relative to its trend and output peaks at 0.4 percent in response to
a spending shock ūg,t . The shock materialises in spending from time 0 on-
wards, implied by the zero restrictions imposed on the lead terms of yt in
the �rst equation of the model. The other variables anticipate this increase
from quarter -6 onwards. While all variables increase at these anticipatory
lags, the most reactions are statistically insigni�cant. In contrast, GDP signi�-
cantly reacts approximately one and a half years ahead of the future spending
increase. Simultaneously, investment starts to increase and peaks at the re-
alisation of the shock, converging afterwards towards its trend level. On the
other hand, consumption remains close to its trend level before the shock ar-
rives after which it rises in a hump-shaped pattern. Hours worked rise fast
at the anticipation lags and stay positive for the following 10 quarters after
starting to decrease at the materialisation of the shock. The real wage ex-
hibits a hump-shaped increase, which occurs simultaneously with the decline
of hours. Last, the average tax rate rises both at the anticipation phase and at
the materialisation of the shock, potentially induced by automatic stabilisers.

I continue by augmenting the baseline VAR model with in�ation, the short-
term rate and the corporate bond yield. In panel (a) of Figure 3.4, I report for
the sake of space only the responses of the three additional variables from

20Both the posterior medians and the credible sets are computed as periodwise quantiles from
the impulse responses derived from the posterior draws.
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Figure 3.3: Impulse responses to the government spending shock from the
baseline model
Solid lines and dashed lines are the median impulse responses from the noncausal VAR(4,4) and causal VAR(4)
models, respectively, to a one standard deviation government spending shock. The dark and light grey shaded
regions are the 68 and 90 percent, respectively, credible sets of the estimated impulse responses from the
noncausal model.

this ten-variable VAR(4,4) model. A one percent, exogenous increase in gov-
ernment spending has a small, negative impact on in�ation, which decreases
by 0.1 annualised percentage points.21 The 3-month rate shows no signi�cant
movements whereas the corporate bond rate mildly declines after the shock
materialises, although the effect is statistically insigni�cant.

Above, the spending shock caused an initially increasing investment and
a positive reaction of consumption at the realisation of the shock. For a more
in-depth analysis, I replace consumption and investment with their subcom-
ponents in the baseline VAR. Panel (b) of Figure 3.4 plots the responses of dis-
aggregated consumption and investment components from the re-estimated
noncausal VAR(4,4). Both services and nondurable consumption respond sig-
ni�cantly and positively to a spending shock, which translates to the previ-
ously documented increase of the aggregate consumption. Suggesting that
consumption at least partly anticipates the spending increase, consumption
of services rises to some extent at its leads. On the other hand, the observed

21This slight but somewhat counter-intuitive decline is potentially resulted by other factors such
as oil price changes and has been found in earlier studies as well. See also Mountford and Uhlig
(2009) for discussion.
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(a) In�ation and interest rates

(b) Consumption and investment components

Figure 3.4: Impulse responses to the government spending shock from the
VAR models with additional variables
Solid lines and dashed lines are the median impulse responses from the noncausal VAR(4,4) and causal VAR(4)
models, respectively, to a one standard deviation government spending shock. The dark and light grey shaded
regions are the 68 and 90 percent, respectively, credible sets of the estimated impulse responses from the
noncausal model. The impulse responses in panel (a) are from the 10-variable VAR including the baseline and
the plotted variables. The impulse respones in panel (b) are computed from the 10-variable VAR including the
baseline variables but consumption and investment replaced by the variables shown.
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Figure 3.5: Spending shock, defence and non-defence expenditures
The solid, light grey line depicts the posterior median of the 4-quarter moving average of the spending shock
identi�ed from the baseline noncausal VAR(4,4). Dot-dashed and dashed lines are the log real national defense
consumption expenditures and gross investment, respectively. Dotted line refers to the log of real federal
non-defence consumption expenditures and gross investment. All variables are demeaned and standardised.

increase in investment is due to durable consumption and nonresidential in-
vestment.22

To illustrate movements of the identifed shock over time, Figure 3.5 plots
its four-year moving average from the baseline noncausal model. I addition-
ally plot federal spending divided into three components, consumption ex-
penditures and gross investment on national defence, and non-defence fed-
eral spending. Accordingly, the spending shock is closely related to the U.S.
defence expenditures in the medium run. The spending shock series leads
consumption and investment components of defence expenditures and is un-
related to non-defence spending. However, the linkage between the shock
and defence expenditures has faded since the 1990s, after which the identi-
fed exogenous changes have evolved in a less systematic pattern. By these
observations, the shock can be characterised by two insights. First, the great

22In both of the augmented speci�cations, the estimated responses of the seven remaining
variables not shown in Figure 3.4 are indistinguishable from those obtained from the baseline
model and reported in in Appendix 3.C.
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persistence of the shock observed in the impulse responses is likely to stem
from the nature of defence spending, from decade-lasting military build-ups
and wars that the United States was engaged in. Second, the shock is unre-
lated to the non-defence component of federal spending. It induces instead
variation that mainly belongs to a particular class of events, the U.S. military
expenditures, which likely are orthogonal to the present state of the economy
and which have been used to identify exogenous events in spending in the
existing literature. 23

In the noncausal model, the identi�ed spending shock may be predictable
to the economic agents, without ruling out causality a priori. To assess the
importance of the lead terms of yt , Figures 3.3 and 3.4 include in dashed lines
the impulse responses from the causal VAR(4) models to an unanticipated
spending shock following the identi�cation of Blanchard and Perotti (2002).
Setting s = 0 and disregarding noncausality, conclusions about the spending
shock are slightly altered, despite the general pattern of the estimates remain-
ing close to their noncausal counterparts at the positive lags. Most impor-
tantly, the causal VAR is unable to reveal the positive reaction of investment
located at the negative lags, causing a negative response estimate. Similarly,
the tax rate is estimated to decline from quarter 0 onwards, and the negative
responses of in�ation and interest rates are estimated stronger.

In general, the causal VAR ignores – by construction – the responses at
the leads, despite the fact that the shock may well be anticipated. Given
the statistical signi�cance of these reactions, the causal model suffers from
de�cient information. Moreover, as shown in Figure 3.14 in Appendix 3.C,
the shock identi�ed from the causal VAR virtually coincides over time with
the one from the noncausal model. In other words, the causal VAR recovers
a shock that aligns with the shock from the noncausal model, but only the
latter is able to uncover the reactions that occur at the anticipatory, negative
lags. A causal VAR model under the exclusion restrictions is thus at high risk
to catch defence-spending-related events that the economic agents are able to
forecast.24

23U.S. defence spending and military events are regarded as a source of exogenous variation,
amongst others, by Ramey and Shapiro (1998), Fisher and Peters (2010), Ramey (2011b) and
Ben Zeev and Pappa (2017).

24The results obtained in this section are robust to various perturbations in the research set-
ting. First, the conclusions remain the same when less informative prior distributions for the lag
coef�cients are used. The results are also invariant to a somewhat less informative prior distribu-
tion of the lead coef�cients, although this loosening is subject to the emergence of multimodality.
Second, in the causal VAR, the corresponding least squares estimates are close to the reported
posterior medians, and the results are qualitatively similar to those obtained in a model where
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In view of the economic theory, I interpret the results as follows. The in-
crease of both output and employment in response to the anticipated spend-
ing shock suggests the dominance of the wealth over substitution effects of
the households. Moreover, as the shock induces a profound increase in real
wage and no signi�cant decline of consumption or investment, there is evi-
dence, to some extent, on the existence of non-Ricardian and Keynesian mech-
anisms. On the other hand, the absence of strong positive consumption and
investment responses suggests certain degree of crowding out of private busi-
ness. The path of investment is mostly due to the non-residential investment,
whereas residential investment show no signi�cant reactions. Somewhat sur-
prisingly, the shock has de�ationary effects on the price level in contrast with
the neoclassical theory and positively reacting consumption.

3.3.3 The size of the �scal multiplier

Does government spending stimulate the economy? A �scal multiplier greater
than unity indicates that an increase in government spending boosts private
economy in a way that the bene�ts dominate the crowding-out and distor-
tionary effects of public consumption and taxation. The spending literature
calculates the multiplier in two alternative ways, either as a peak output re-
sponse relative to the initial government spending impact effect or as a ratio
between the present value integrals of output and government spending re-
sponses. I follow the latter technique, also suggested by Mountford and Uhlig
(2009) and Ramey (2016), as the former method tends to overestimate the size
of the �scal multiplier. In addition, the latter takes into account more �exi-
bly timing, persistence and anticipation of the shock. The �scal multiplier is
de�ned as

å H2
k= H1

(1 + r) � (k� H1) ¶ log GDPt+ k
¶ūg,t

å H2
k= H1

(1 + r) � (k� H1) ¶ log Gt+ k
¶ūg,t

GDP
G

, (3.19)

where H1 is set to -10, to the time point of initial reactions according to Figure
3.4, H2 is the length of horizon after the shock has realised and r is the long-
run real interest rate computed as a sample mean of the difference between
the T-bill rate and in�ation. Last, GDP/ G is the sample mean of the ratio
of GDP to government spending and converts the percentage deviations to

variables are included in log levels with no quadratic trend. Third, the estimated noncausal im-
pulse responses remain the same when produced from a larger set of smaller-dimensional models
which included the above variables.
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Figure 3.6: Histogram of posterior draws for �scal multipliers on different
horizons H2
The multipliers are computed using (3.19) with H1 = � 10 and based on the baseline noncausal VAR(4,4)
model. Quantities on the y-axis are normalised such that histograms integrate to 1. Dotted vertical lines are
the medians of the multipliers. The red dashed lines are the median �scal multipliers from the corresponding
causal VAR(4) model.

monetary units in real terms.

Figure 3.6 reports the posterior distribution of the �scal multiplier (3.19)
and their medians in dotted lines for various horizons. Under shorter hori-
zons, H2 2 f 0, 5, 10g, in the upper plots, the median multiplier is signi�cantly
above one, being the largest when only the impact effect of government spend-
ing is included, H2 = 0. Eventually, when the horizon lengthens, the posterior
distribution of multiplier converges to a distribution with a median of 1.4, as
seen in the lower graphs. The impulse responses of Figure 3.3 generate the
mechanism behind this pattern. Since the government spending response is
prolonged relative to the reaction of GDP, the size of multiplier decreases as
more inputs are added to the denominator of (3.19).

Overall, there is great uncertainty on whether government spending can be
stimulative beyond a short horizon, seen as large dispersions in the posterior
distributions of Figure 3.6. As soon as the horizon is longer, a signi�cant por-
tion of the probability mass is concentrated on the region below one, and the
long-run multiplier with H2 = 40 reaches with high probability values both
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above and below one.25 It is also noteworthy that the multiplier computed
here is not purely de�cit-based as government spending may be followed by
a distortionary increase in tax rate. In light of this evidence, the overall impact
of the identi�ed exogenous government spending on the private economy re-
mains imprecise.26

Finally, I draw in dashed lines the posterior medians of �scal multipliers
computed from the causal VAR(4) model with the baseline variables. At all
horizons, the multipliers are quanti�ed to be smaller than their correspond-
ing estimates from the noncausal model. Strikingly, despite the positive re-
sponse of consumption, the causal VAR model with the BP identi�cation has
a tendency to produce small multipliers (See also, Ramey, 2016). This well-
known controversy can be explained from the causal responses shown in Fig-
ure 3.3. As the causal structural VAR model disregards the anticipation effect
in GDP, the nominator of (3.19) is necessarily smaller relative to the denomi-
nator, which results in a smaller multiplier.

3.3.4 Relation to government spending shock measures

In the government spending literature, �scal foresight and nonfundamental-
ness have been tackled by using a measure of news either to enrich the infor-
mation set of a VAR model or to derive the responses to a shock using local
projections (Jordà, 2005). In the noncausal model (3.9) instead, the anticipated
spending shock can be recovered independent of the nonfundamentalness is-
sue exploiting the predetermined nature of government policy, i.e. through
the exclusion restrictions imposed on the error term. Including a proxy to the
noncausal VAR can then shed light on how informative the variable is about
the identi�ed shock.

As concluded in Figure 3.5, the shock identi�ed in the noncausal VAR re-
�ects defence expenditures, and I thus consider two prominent measures of
shocks applied in the literature, the narrative defence news and the excess
returns of military contractors. First, Ramey's narrative news (Ramey, 2011b)

25Owyang, Ramey, and Zubairy (2013) and Ramey (2016) argue that a trend in the GDP-to-
spending ratio leads to a bias in the multiplier estimates computed using (3.19). In the sample,
the mean value of Y/ G is 4.8, while the ratio varies over time between 4 and 6.5. I reproduced,
for robustness, impulse responses and �scal multipliers by transforming the national accounts
variables with the Gordon-Krenn transformation as the authors suggest. The results are of the
same magnitude as those reported in this section.

26One possible explanation for this uncertainty may be the time-dependence in the effectiveness
of �scal policy, as examined by Auerbach and Gorodnichenko (2012), Owyang et al. (2013) and
Caggiano et al. (2015).
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Figure 3.7: The identi�ed spending shock, Fisher-Peters excess returns and
Ramey's narrative news
Grey solid line depicts the median of identi�ed anticipated spending shocks from the baseline VAR(4,4) model,
the dark solid line the Ramey (2011b) narrative news of anticipated goverment spending, measured as a share
of future government spending of GDP and the black dashed line the excess returns of military contractors
constructed by Fisher and Peters (2010).

captures information held by the public about the expected discounted value
of government spending changes due to foreign policy events relative to GDP.
On the other hand, the Fisher-Peters excess returns (Fisher and Peters, 2010)
aims to gauge the market expectations about future spending by the asset
prices of top three U.S. military contractors. 27 According to Fisher and Peters
(2010), the difference between these series stems from the fact that market ex-
pectations about military spending evolve in a more nuanced way than the
immediate changes seen in the Ramey's news series. However, Ramey (2016)
argues the excess returns series has low instrumental relevance for govern-
ment spending.

In Figure 3.7, I plot these two variables along with the identi�ed govern-

27The defence news variable and Fisher-Peters excess returns are available as supplementary
data of Ramey (2016) in Valerie Ramey's webpage. The narrative news series, extended by
Owyang et al. (2013), spans the whole post-war period until 2013Q4 whereas the last observation
for Fisher-Peters data is 2007Q4.
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ment spending shock estimated from the baseline noncausal VAR(4,4) model.
The shock spikes during military events, similar to the the narrative defence
news, most notably during the Korean and Vietnam wars at the beginning of
1950s and 1970s, respectively. The Fisher-Peters excess returns comoves with
the shock during the 1960s and 1970s as well as during Ronald Reagan's pres-
idency. However, neither of the series is a direct empirical counterpart of the
identi�ed shock.

I continue by adding the variables to the baseline noncausal VAR and allow
them to anticipate the shock identi�ed by the standard exclusion restrictions.
Given its relevance, a shock-related measure would respond positively to the
future spending increase. Figure 3.8 graphs the median impulse responses of
government spending, GDP and the two respective measures of defence news
to a one standard deviation shock identi�ed by the exclusion restrictions in
both models where the eighth variable is either Ramey's narrative news or
the Fisher-Peters excess returns.28 Accordingly, the exclusion or inclusion of
either of the proxies does not alter the estimates about the responses of gov-
ernment spending and GDP – in line with the prediction that the noncausal
model remains valid regardless of information contained in the observables.
Interestingly, before the realisation moment at 0, Ramey's news variable reacts
slightly positively whereas the excess returns move statistically signi�cantly
upwards, implying that the latter series is able to predict the future spending
increase.

The relevance of the spending shock can also be analysed by means of its
relative contribution to the overall movements in a variable. Formally, the ith
variable in the noncausal VAR has an MA representation

yi ,t = e0
i

¥

å
k= � ¥

Yk
�
b̄1ū1,t � k + b̄2ū2,t � k

�
, (3.20)

where ei = ( 0, ..., 1, ..., 0)0 with 1 in its ith element and an (n � (n � 1)) ma-
trix b̄2 consists of columns of B̄ corresponding to the n � 1 remaining shocks
contained in ū2,t � k. Now, de�ne the fraction of variance of yi ,t due to the

28The excess returns being available only until 2007Q4, the second model spans a shorter time
period. However, the results from the baseline model or from the speci�cation with Ramey's
narrative news do not alter when using data up to 2007Q4. The model with the excess returns
includes four lags and leads. The inclusion of Ramey's news to the model, however, induces
convergence problems to the algorithm, caused by the fact that the series is dominated by zero
values. A smooth running of the algorithm can be achieved by diminishing the lag and lead
orders to three. The results would remain qualitatively the same if four lag and leads were used.
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Figure 3.8: Impulse responses from the VAR models with a measure of news
Marked and solid lines are the posterior median impulse responses to the anticipated spending shock from the
noncausal VAR models augmented with Ramey's narrative news and the Fisher-Peters excess returns, respec-
tively. The dark and light grey shaded regions are the 68 and 90 percent posterior credible sets, respectively,
shown in the responses of spending, GDP and Ramey's news from the former and in the response of excess
returns from the latter VAR model.

Panel (a) Identi�cation by the exclusion restrictions

Baseline VAR Baseline + Ramey Baseline + F-P

Horizon ( H2) gt GDPt gt GDPt Ramey gt GDPt F-P

-10 – 3.18 – 4.76 3.18 – 6.58 24.14
-5 – 6.35 – 8.86 7.34 – 8.29 30.49
0 100.00 15.92 100.00 13.69 1.21 100.00 15.76 24.49
5 84.70 17.09 89.28 12.27 1.87 71.48 20.30 21.28
10 68.29 16.23 78.13 11.18 2.05 56.34 22.25 19.98
20 49.16 14.12 60.83 9.71 2.14 45.61 23.16 19.05
30 40.27 12.52 49.57 8.50 2.19 41.68 23.26 18.85
40 35.42 11.68 42.16 8.02 2.23 39.53 23.13 18.83

Panel (b) Identi�cation by the proxy variables

Baseline + Ramey Baseline + F-P

Horizon ( H2) gt GDPt Ramey gt GDPt F-P

-10 – 0.40 0.38 – 11.15 64.73
-5 – 0.48 0.63 – 7.53 74.22
0 0.35 0.40 96.71 20.86 4.88 79.94
5 0.94 0.41 90.35 9.47 4.51 80.07
10 0.93 0.40 89.09 7.43 4.60 78.57
20 0.78 0.39 88.10 7.53 5.00 75.74
30 0.71 0.40 87.57 8.01 5.40 73.41
40 0.68 0.41 87.20 8.25 5.70 71.77

Table 3.1: Fractions of variance contributed by the spending shock
The shares shown in percentages are computed using (3.21) with H1 = � 10 as posterior medians. Baseline +
Ramey refers to the VAR(3,3) model with the seven baseline variables and the Ramey news, Baseline + F-P to the
VAR(4,4) model with the baseline variables and the Fisher-Peters excess returns. In panel (b), the identi�cation
is proceeded by the approach maximising the contribution of the shock to the eighth variable, explained in text.
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government spending shock ūg,t over horizon [H1, H2] as

r (yi ,t ; H1, H2) =
å H2

k= H1
e0
i Ykb̄1b̄0

1Y0
kei

å H2
k= H1

e0
i YkSY0

kei

. (3.21)

Under causality, the fraction (3.21) reduces to the forecast error variance de-
composition of a VAR model over horizon H2. Once s > 0, r (yi ,t ; H1, H2)
generally gives the fraction of the unconditional variance of variable yi ,t ex-
plained by the spending shock.

In panel (a) of Table 3.1, I report the fractions (3.21) in the baseline model
and in the models with a proxy variable. The identi�ed shock explains over
50 percent of the detrended variation in government spending and approxi-
mately 15 percent in output. Anticipation of the government spending shocks,
observed at negative H2, accounts for �ve percent of the overall variation in
output. Strikingly, the shock is able to explain a part of movements in Ramey's
news before time 0 after which it contributes minimally to the movements of
the variable. The shock accounts, in turn, for a �fth of the variation in the ex-
cess returns both before and after the time point 0. Overall, the both measures
are to a great extent explained by factors other than those caught by the shock
from the standard identi�cation. However, given their positive contributions
for H2 < 0, both series are able to predict the government spending shock to
some extent.

Does the use of identi�cation based on the proxies of news lead to different
conclusions about the effects of government spending? The mild responses
of these variables to the spending shock and their small contributions sug-
gest that the changes in the measures consist of events different from those
captured by the identi�ed shock. Nonetheless, these events, provided their
exogeneity, may induce effects similar to the structurally identi�ed shock. I
therefore derive impulse responses to a shock identi�ed by the variation of a
news measure. In both of the augmented eight-variable models above, I pro-
ceed by �nding a shock that explains the most of the overall movements of the
variable informative about the defence news, i.e. it maximises the fraction of
variance (3.21) among all possible linear mappings from structural shocks to
the reduced-form error term. 29 Given that the variable is mainly driven by the

29Appendix 3.D shows in detail that this identi�cation can be achieved through an eigenvalue
problem, similar to the Max Share approach (Uhlig, 2004; Francis et al., 2014) which rotates the
error of a VAR model to �nd the shock that maximises its amount to the forecast error variance.
In the identi�cation, I use a horizon of [� 20, 20]. The use of a shorter horizon has no effect on the
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exogenous variation that translates to changes in spending, the identi�cation
strategy is valid recovering the causal effects.

Panel (b) of Table 3.1 reports the shares contributed by these two alterna-
tively identi�ed shocks to the unconditional variance of government spend-
ing, GDP and the respective news measure. A single shock is able to explain
the major part of the variance of the variable. While the Fisher-Peters shock
also moderately contributes to the overall detrended variation in spending
and GDP, the Ramey shock barely in�uences these variables. In Figure 3.9,
I report the results from all identi�cation strategies, in Panel (a) for Ramey's
news and in Panel (b) for the Fisher-Peters excess returns. First, the solid and
marked solid lines draw the impulse responses to the shock identi�ed by the
standard exclusion restriction from the augmented models. They are identical
to those in Figure 3.8 but are rescaled by normalising the maximum impact
on spending to one percent. Second, the dashed and dashed-dotted lines de-
pict the responses to the Ramey and Fisher-Peters shocks, derived from the
alternative identi�cation strategy with respect to the these two measures.

In response to the Ramey shock, shown in Panel (a), the narrative news
variable jumps by three percentage points, as expected from the identi�ca-
tion strategy that maximises the contribution of the shock to the variable.
The jump is followed by a gradual increase of spending which peaks after
a year. Broadly, the responses to the Ramey shock are also similar to those
from the standard identi�cation and within the credible bands, despite the
shocks being empirically unrelated. Notably, the Ramey shock induces a de-
layed increase of government spending, and the timing of the shock differs
from the baseline shock. The increase of the news variable is, however, an-
ticipated in real wages and consumption already at the negative lags of the
horizon, which can now be observed as a result of noncausality. Correspond-
ingly, the reactions to the Fisher-Peters shock are remarkably similar to the
other identi�cation strategies. The Fisher-Peters shock induces a substantial
and hump-shaped increase of the excess returns, occurring both at the posi-
tive and negative lags. The spending increase is also signi�cantly anticipated
by GDP, investment, real wages and tax rate. These reactions are stronger but
broadly consistent with the standard identi�cation strategy – despite being
driven by separate factors as suggested by Table 3.1.

Unlike the previously employed empirical strategies, the noncausal VAR
approach can assess the connection between the structurally identi�ed shock
and the empirical measures of the latent shock, as the error term need not

results.
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(a) VAR with Ramey's news

(b) VAR with the Fisher-Peters excess returns

Figure 3.9: Impulse responses to a spending shock identi�ed by two alterna-
tive strategies
Black marked lines in panel (a) and solid lines in panel (b) are the posterior median impulse responses to the
shock identi�ed by the standard exclusion restrictions from the noncausal models augmented with Ramey's
narrative news and the Fisher-Peters excess returns, respectively. The dashed and dot-dashed lines are the
responses to the proxy-based identi�ed Ramey and Fisher-Peters shocks, respectively. The dark and light grey
shaded regions are the 68 and 90 percent posterior credible sets, respectively, from the standard identi�cation.
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be unanticipated. According to the evidence presented here, the variation
measured by the narrative news and excess returns unlikely originate from
the source that drives the structurally identi�ed shock. Therefore, the use of
these variables does not directly alleviate the predictability problem of the
shock of Blanchard and Perotti (2002). The different results rather stem from
the sources of exogenous variation used for identi�cation and their validity.

3.4 Conclusions

This essay addressed the question of the implications of a government spend-
ing shock in the face of anticipation. Any empirical strategy attempting to
quantify these effects confronts an econometric issue with the timing of the
shock as the economic agents are likely to have a larger information set than
the model assumes. I resolved the issue of de�cient information with the non-
causal VAR that is able to incorporate �scal foresight, while it simultaneously
retains the advantages of the VAR methodology by imposing few assumptions
on the underlying economy. The analysis of �scal policy could then be em-
ployed with a standard identi�cation strategy based on exclusion restrictions,
and an anticipated government spending shock could be recovered.

The noncausal VAR methodology deviates from the forecast error inter-
pretation of the residual but – despite anticipation – facilitates the conduct of
conventional structural analysis. In a simple model of �scal foresight, I ana-
lytically showed that the noncausal model is able to solve the noninvertibility
problem. In a more general setting, the lead terms of the model are expected
to capture �exibly anticipation which would be misinterpreted when relying
on the lagged observables only. Essentially, the approach does not rule out
the causal case a priori as invertibility of the underlying MA representation is
nested in the framework.

In the U.S. postwar economy, the estimated spending shock induced an in-
crease in the forward-looking variables during the anticipatory phase. Spend-
ing also turned out to be followed by rising consumption, nonresidential in-
vestment, worked hours and wages. Together, these movements implied a
�scal multiplier above but close to unity. In addition, anticipation is impor-
tant to take anticipation into consideration as it affects the measured �scal
multiplier and the overall impact of forward-looking variables. I also revis-
ited two prominent alternative strategies based on measures of spending news
that attempt to circumvent the nonfundamentalness problem. Notably, a vari-
able to catch the expectations of economic agents is unlikely to measure the
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same variation identi�ed by the exclusion restrictions, although they produce
broadly similar results.

Finally, I consider the following areas useful for further research. First, the
noncausal approach is readily available for the study of government spend-
ing shocks in other economies, as research can be done using conventional
macroeconomic data only, without engaging in costly and demanding data
collection of proxy variables. Second, the examination of tax policy with the
noncausal model, after imposing adequate structure, can be viewed as a useful
extension. Finally, the estimation of the model was based on a simple devia-
tion from Gaussianity which, however, assumed cross-dependent volatility for
the structural shocks. Furthermore, detrended variables were used because
the implications of stochastic trends in the model are yet unknown. Using al-
ternative distributions and allowing for nonstationarity could strengthen the
robustness of the approach.
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Appendices

3.A Estimation of the noncausal VAR( r,s)

I outline here a version of the Gibbs sampler constructed by Lanne and Lu-
oto (2016). Let P and F be matrices stacking P 0

i for i = 1, . . . ,r and F 0
i for

i = 1, . . . ,s, respectively. Furthermore, write p = vec(P ) and f = vec(F ),
J = ( p 0, f 0)0 and q = ( p 0, f 0, vech(S)0, l )0. To impose s� zero restrictions on
matrix F to satisfy (3.9), introduce an ((n2s � s� ) � 1) vector f r containing the
unrestricted parameters of F and an (n2s � (n2s � s� )) deterministic matrix
Rf which maps the unrestricted parameters to the matrix F as f = Rf f r .

The approximate conditional joint density of y = ( y1, . . . ,yT) on w =
(wr+ 1, . . . ,wT� s) is

p(yjw, q) �
T� s

Õ
r+ 1

p(et (J)jwt , S)

with

p(et jwt , S) =
wn/2

t

(2p )n/2 jSj1/2
exp

�
�

1
2

wtet (J)0S� 1et (J)
�

,

et (J) = vt (f ) �
r

å
j= 1

P j (p )vt � j (f ),

and
vt (f ) = yt � F 1(f )yt+ 1 � . . . � F s(f )yt+ s.

The prior distributions are set as follows: p � N (p , Vp ) I (p ), f r � N (f
r
,

V f r
) I (f ), S � iW (S, n) and l � Exp( l ), where I (�) is indicator function

equal to 1 when the polynomial to which p or f is mapped is stable and
iW denotes the inverse Wishart distribution. Furthermore, de�ne the follow-
ing matrices. First, stack y�

t = w1/2
t P (L)yt to a (( T � r � s)n� 1) vector y � ,

and X �
t = w1/2

t P (L)X t to a (( T � r � s)n� sn2) matrix X� , where X t = In

[y0

t+ 1 � � � y0
t+ s]

0. De�ne similarly matrices Y and U by stacking v�
t = w1/2

t v0
t (f )

and U �
t = w1/2

t [v0
t � 1(f ) � � � v0

t � r (f )]0, respectively, for t = r + 1, . . . ,T � s.
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Following Lanne and Luoto (2016), the full conditional posterior distribu-
tion of f r can be derived as

f r jy, p , S, w � N ( f̄ r , V̄f r ) I (f ), f = Rf f r

V̄ � 1
f r

= V � 1
f r

+ R0
f X� 0WX� Rf , f̄ = V̄f r

�
V � 1

f r
f

r
+ R0

f X� 0WY�
�

and W = IT� r � s 
 S� 1. The conditional distribution of p reads as

p jy, f , S, w � N (p̄ , V̄p ) I (p ),

V̄ � 1
p = V � 1

p + S� 1 
 U0U, p̄ = V̄p

�
V � 1

p f + vec
�

U0YS� 1
��

De�ning further S̄ = S + E0E, E = Y � UP and n̄ = n + T � s � r, the
conditional posterior distribution for S is

Sjy, p , f , w � iW (S̄, n̄).

The remaining paremeters w = ( wr+ 1, . . . ,wT� r � s) and l are jointly drawn
from

�
l + et (J)0S� 1et (J)

�
wt jy, p , f , S, l � c2( l + n), t = r + 1, . . . ,T � s

and with Metropolis-within-Gibbs step from kernel
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. (3.22)

The last step uses the univariate normal distribution with mean equal to the
mode and variance equal to the inverse of the second hessian of the above ker-
nel as a candidate distribution. The standard Metropolis-Hastings acceptance
probability is computed using (3.22).

In the empirical analysis, I use the following Minnesota type prior distri-
bution. I set the means of p and f r , p and f

r
, to 0, and the coef�cients are
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assumed, a priori, independent by having zeros on the off-diagonals of covari-
ance matrices Vp and V f r

. On the other hand, s2
p ,ijl and s2

f r ,ijl
, the diagonal

elements of Vp and V f r
corresponding to the l th lag or lead of variable j in

equation i are given by

sp ,iil =
g1,p

lg3
, sp ,ijl = g2

g1,p

lg3

si

sj
, i = 1, . . . ,n, j = 1, . . . ,n, l = 1, . . . ,r,

sf r ,iil =
g1,f

lg3
, sf r ,ijl = g2

g1,f

lg3
, i = 2, . . . ,n, j = 1, . . . ,n, l = 1, . . . ,s,

where si is estimated as the residual standard error from a univariate au-
toregression with r lags on the ith variable, g1,p and g1,f control for over-
all tightness, g2 for relative tightness and g3 is a decay parameter for more
distant lags and leads. For these hyperparameters, I use valuesg1,p = 0.2,
g2 = 0.5 and g3 = 1, standard in the Bayesian VAR literature. Additionally,
I set g1,f = 0.15, which shrinks the lead coef�cients moderately but some-
what more towards zero. Last, I use the following values for the remaining
hyperparameters: S = ( n � n � 1)diag(s2

1 , . . . ,s2
n) with degrees-of-freedom

parameter n = n + 2 and l = 10.

3.B Convergence of the posterior sampler

Figures 3.10 and 3.11 plot the paths of the Markov chains obtained from the
Gibbs sampler in the estimation of the baseline model. The model is estimated
with 50,000 draws, and every 10,000th draw is started from new initial values
with 1,000 burn-in draws. As can be seen from the plots, the sampler con-
verges fast to the ergodic distribution and is invariant to the starting values.

3.C Further empirical results

Figure 3.12 plots results from the baseline speci�cation when the number of
leads is changed. In Figure 3.13, I plot the impulse responses of the remaining
variables in the additional speci�cation not reported in text. Figure 3.14 plots
the shock from the noncausal and causal VAR of the baseline speci�cation
over time.
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(a) p

(b) f

Figure 3.10: Paths of the Markov chains for the draws of elements in p and f
of the baseline noncausal VAR(4,4) model
The x-axes correspond to the draws, the y-axes to the parameter values
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(a) vech(S) (b) l

Figure 3.11: Paths of the Markov chains for the draws of scale matrix and the
degrees-of-freedom parameter of the baseline noncausal VAR(4,4) model
The x-axes correspond to the draws, the y-axes to the parameter values

Figure 3.12: Impulse responses of the baseline variables from the noncausal
VAR(4,s) models for s = 0, 1, 2, 3, 4.
Impulse responses produced from the noncausal VAR models with different lead lengths. The dark and light
grey shaded regions are the 68 and 90 percent, respectively, credible sets of the estimated impulse responses
from the VAR(4,4) model.
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(a) VAR(4,4) with in�ation and interest rates

(b) VAR(4,4) with consumption and investment components

Figure 3.13: Impulse responses of the remaining variables to the government
spending shock in the additional speci�cations
The graphs show the impulse responses of the remaining variables of the model not shown in Figure 3.4.
Solid lines and dashed lines are the median impulse responses from the noncausal VAR(4,4) and causal VAR(4)
models, respectively, to a one standard deviation government spending shock. The dark and light grey shaded
regions are the 68 and 90 percent, respectively, credible sets of the estimated impulse responses from the
noncausal model. The impulse responses in Panel (a) of Figure are from the 10-variable VAR including the
baseline variables, in�ation and interest rates. The impulse responses in Panel (b) are computed from the 10-
variables VAR including the baseline variables but consumption and investment replaced by the variables in
Panel (b) of Figure 3.4.
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Figure 3.14: Spending shocks of the noncausal and causal VAR models
Solid grey lines and the black dashed lines show the posterior medians of the identi�ed spending shock from
the noncausal VAR(4,4) and causal VAR(4) models, respectively.

3.D Alternative identi�cation scheme

To identify a shock contributing the most to a news variable, the starting point
is the two-sided MA representation of yt

yt =
¥

å
k= � ¥

YkB̄ūt � k,

where matrix B̄ rotates the structural shocks ūt to the reduced-form errors et
as

et = B̄ūt .

B̄ can now be found from
B̄B̄0 = Ḡ

as E[ete0
t ] = Ḡ= l

l � 2S = E[B̄ūt ū0
t B̄

0] = B̄B̄0. On the other hand, by Cholesky
decomposition, Ḡ = Ā Ā0, or, by introducing an orthogonal matrix W, Ḡ =
ĀWW0Ā0. Consequently, rotation of W yields B̄ = ĀW. As the interest is in
one shock only, it suf�ces to �nd the �rst column of W, w1 such that g1 = Āw1
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is the �rst column of B̄.

The MA representation of the ith variable in yt is then

yi ,t =
¥

å
k= � ¥

e0
i YkĀWūt � k

with variance

Var(yi ,t ) =
l

l � 2

¥

å
k= � ¥

e0
i YkĀ Ā0Y0

kei

yi ,t can further be decomposed to the contributions by the n structural shocks

yi ,t =
¥

å
k= � ¥

e0
i YkĀ[w1ū1,t � k + . . .+ wnūn,t � k].

such that the contribution of the �rst shock to the variable reads as

y1
i,t =

¥

å
k= � ¥

e0
i YkĀw1ū1,t � k =

¥

å
k= � ¥

e0
i YkĀw1ū1,t � k.

As the aim is to �nd a shock with the greatest contribution to the ith
variable, w1 is found, similar to Uhlig (2004), by maximising

Var(y1
i,t )

Var(yi ,t )
=

å ¥
k= � ¥ e0

i YkĀw1w0
1Ā0Y0

kei

å ¥
k= � ¥ e0

i YkĀ Ā0Y0
kei

subject to the orthogonality of W, w0
1w1 = 1. By rewriting

e0
i YkĀw1w0

1Ā0Y0
kei = tr

�
e0
i YkĀw1w0

1Ā0Y0
kei

�

= tr
�
w0

1Ā0Y0
keie

0
i YkĀw1

�

= tr
�
w0

1Ā0Y0
kEii YkĀw1

�

= tr
�
w0

1Skw1
�

,

the nominator of the objective function is

H

å
k= � H

w0
1Skw1 = w0

1S̄w1
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for large H. As the denominator is independent of w1, the problem can be
solved by setting up the Lagrangian

L = w0
1S̄w1 � m(w0

1w1 � 1).

The �rst-order condition is
S̄w1 = mw1,

and since w0
1mw1 = m, the eigenvector corresponding to the maximal eigen-

value of the positive de�nite matrix S̄ is the optimum.
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4 Evidence on news shocks
under information de�ciency 1

4.1 Introduction

In news-driven business cycles, economic agents receive signals about fu-
ture productivity, creating �uctuations in forward-looking variables before
the news materialises. However, dynamics driven by these news shocks likely
generates a situation where the information set of economic agents relevant
for decision making is broader than what an econometrician observes. Conse-
quently, a conventional vector autoregressive model (VAR) used for empirical
validation may produce misleading results about the implications and signif-
icance of the news shocks.

Starting from the seminal paper of Beaudry and Portier (2006), the struc-
tural VAR (SVAR) methodology identi�es the news shock as a shock that
changes stock prices on impact but has delayed but persistent effects on total
factor productivity (TFP). 2 However, by the expectations of forward-looking
agents, the news shocks imply noninvertibility of the theoretical moving av-
erage (MA) representation for a typical small number of variables included
to the VAR model (Leeper, Walker, and Yang, 2013; Forni, Gambetti, and
Sala, 2014). The resulting nonfundamentalness problem prevents obtaining
the structural shocks and their impulse responses from a causal autoregres-
sive representation of the observed variables.3

1An early version of the essay is released asHECER Discussion Paper No. 415.
2Beaudry and Portier (2014) review the recent literature on news-driven business cycles.
3Hansen and Sargent (1991) and Lippi and Reichlin (1994b) provide earlier discussion on the

topic. For a more recent review, see Lütkepohl (2014) and Beaudry and Portier (2014). In addition
to technology-related news shocks, nonfundamentalness is in the �scal policy under anticipation
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Nonfundamentalness or noninvertibility eventually boils down to the fact
that the observables do not contain all relevant state variables of the economy
(Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson, 2007). The prob-
lem can thus be avoided by including enough relevant variables to the VAR
which then approximates the underlying MA representation. In the studies of
Beaudry and Portier (2006) and Barsky and Sims (2011), nonfundamentalness
is absent if the variables included are suf�ciently forward-looking to achieve
invertibility. Alternatively, augmenting the VAR with factors extracted from
large-dimensional macroeconomic data can resolve the information de�ciency
(Forni and Gambetti, 2014; Forni et al., 2014).4

This chapter introduces a new approach to structural analysis of news
shocks under insuf�cient information while still imposing few restrictions
on the underlying economic process. In place of leaning on information in
the observables only, I consider a noncausal representation that includes lead
terms, arising as a result of nonfundamentalness. I make the representation
operational by estimating the noncausal VAR model of Lanne and Saikkonen
(2013).5 Under nonfundamentalness, a causal model produces errors that are
linear combinations of the past and present shocks (Lippi and Reichlin, 1994b),
while the noncausal VAR model �lters out, through its distinct lag and lead
polynomials, an error term consisting of fundamental shocks anticipated by
the economic agents.

As the noncausal VAR nests a causal VAR model by its lag terms, the
approach conveniently complements the VAR analysis and facilitates checking
fundamentalness of observables for the underlying economy. If data lend
support for nonzero lead terms, nonfunfamentalness is present and the model
involves anticipated shocks. However, to distinguish noncausal and causal
representations, it is necessary to deviate from Gaussianity of the error term.
As one particular deviation, I use a multivariate t-distribution, which adds a

of economic agents. See Leeper et al. (2013) and the references therein.
4The issue of nonfundamentalness can also be avoided by imposing enough theoretical struc-

ture such as in Schmitt-Grohé and Uribe (2012) and Görtz and Tsoukalas (2017) who directly es-
timate theoretical models with news shocks. Plagborg-Møller (2018) and Barnichon and Matthes
(2018) have proposed alternative methodologies to estimate possibly noninvertible representa-
tions directly. However, these strategies require strong prior information on the propagation
mechanism of news shocks, making the results heavily dependent on the structural assumptions.
A study of Arezki, Ramey, and Sheng (2017) derives the impulse responses using a narrative
approach by collecting proxies for news shocks from oil discoveries.

5For statistical theory of noncausal autoregressions, see Rosenblatt (2000). To recent con-
tributions on noncausal and noninvertible autoregressions belong, amongst others, Lanne and
Saikkonen (2013), Davis and Song (2012) and Gouriéroux and Zakoian (2013).
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common volatility term to the Gaussian structural shocks. The noncausal VAR
model can then be identi�ed and estimated by maximum likelihood (Lanne
and Saikkonen, 2013) or by Bayesian methods (Lanne and Luoto, 2016).

I make two methodological contributions in this essay. First, I show how
to conduct structural analysis under nonfundamentalness with the noncausal
VAR model. In particular, the error term can be mapped into anticipated struc-
tural shocks, and the impulse response analysis is based on the two-sided MA
representation of the model.6 Second, I propose the use of a medium-run
identi�cation following Francis, Owyang, Roush, and DiCecio (2014) and Uh-
lig (2004) to identify a news shock in the noncausal framework. I �nd the
news shock as a shock driving total factor productivity the most. Once the
observables induce fundamentalness and causality, the identi�cation scheme
reduces to the Max Share approach of Francis et al. (2014) and nests the strat-
egy of Kurmann and Sims (2017) to identify news shocks. Importantly, the
identi�cation strategy is consistent with the observation that news shocks have
long-lasting effects on TFP. However, unlike the recent literature, it imposes
no orthogonality of the shock with productivity but �nds the news shock in-
directly if the identi�ed shock induces early reactions.

I examine the performance of the approach by means of Monte Carlo sim-
ulations of a New Keynesian model augmented with news shocks. When the
model implies fundamentalness for observables, the noncausal model is out-
performed by the causal model that is capable of replicating the true impulse
responses. On the other hand, noncausality arises through choosing lead
terms to the VAR model under nonfundamentalness. Moreover, the noncausal
model reproduces the theoretical impulse responses while a causal VAR fails
to reveal the initial reactions as the identi�cation is based on a misspeci�ed
error term strongly weighted by the lagged shocks. Hence, although the non-
fundamentalness issue may only slightly distort the results on news shocks in
situations with a persistent technological process and the discount factor close
to unity as argued by Sims (2012), Beaudry and Portier (2014) and Beaudry,
Fève, Guay, and Portier (2015), the performance of a causal model may well
be considerably deteriorated when not all relevant variables are included to
the VAR.

In the postwar U.S. data, I �nd support for non-Gaussianity of the error

6Exploiting non-normality, Chen, Choi, and Escanciano (2017) propose an approach to detect
noninvertibility in the data. As noncausality is a counterpart of noninvertibility, their method
is similar to the noncausal appoach presented in this essay. With the noncausal VAR I use, the
inference does not hinge upon the noninvertibility issue such that impulse response analysis can
be proceeded under information de�ciency directly.
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term of the estimated VAR, which allows me to compare causal and non-
causal models. Moreover, noncausality is found to be a strong feature of data.
In response to the news shock, investment, hours, consumption and output
increase on impact and in�ation turns negative. The news shock prompts a
continuous, steady improvement of TFP and smooth responses of macroeco-
nomic variables, in contrast to the stronger reactions found by Beaudry and
Portier (2006). In this respect, my results are in line with Barsky and Sims
(2011) and Forni et al. (2014) who measure limited role for the news shock
in the short run. 7 Hence, under information de�ciency, a causal VAR model
may overemphasise the relevance of news shocks, as also found by Forni et al.
(2014), when nonfundamental errors capture the timing of the shock incor-
rectly.

The chapter is organised as follows. Next, in Section 4.2, I review general
results on noncausality and nonfundamentalness, present the methodology
based on the noncausal VAR, and propose the identi�cation scheme for �nd-
ing news shocks. Section 4.3 presents Monte Carlo simulation results. In
Section 4.4, I present empirical evidence on news shocks. The last section
concludes.

4.2 Theory

When news shocks drive the economy, the past observables may not con-
tain suf�cient information to recover the structural shocks of interest, which
eventually leads to the existence of a noncausal representation. This section
presents an approach to study the effects of news shocks based on a non-
causal VAR model. The implied two-sided MA representation of the model
facilitates the derivation of impulse responses to the shocks that affect the
current state of the economy before being observed by the econometrician but
already anticipated by the forward-looking economic agents.

4.2.1 Nonfundamentalness and noncausality

I start by reviewing general results on noninvertibility and nonfundamen-
talness, and demonstrate how they give rise to noncausality. 8 Consider the

7For further empirical results, see Schmitt-Grohé and Uribe (2012), Beaudry et al. (2015),
Barsky et al. (2015) and Kurmann and Otrok (2013).

8Throughout, I use terms noninvertibility and nonfundamentalness interchangeably.
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equilibrium of a linearised macroeconomic model for k observed variables in
yt with a vector autoregressive moving average (VARMA) representation

A(L)yt = B(L)ut , (4.1)

A(L) = I � A1L � . . . � ApLp, B(L) = B0 + B1L + . . .+ BdLd,

where ut is a vector containing the k uncorrelated structural shocks driving
the economy, and Et [ut+ j ] = 0 when j > 0 and Et [ut+ j ] = ut+ j for j � 0. Et [�]
denotes the expectation conditional on the information set of the agents. A(L)
and B(L) are (k � k) matrix polynomials, with L the usual lag operator, that
determine the unique equilibrium of the model in terms of �nite lags up to
a truncation. A(L) is assumed to be stable, implying an MA representation
yt = A(L) � 1B(L)ut .

When the MA polynomial B(L) in (4.1) is invertible in the past, i.e. jB(z)j
has no roots inside the unit circle, the structural shocks and the impulse re-
sponses can be obtained with a conventional causal VAR(p) model,

C(L)yt = #t , C(L) = I � C1L � . . .CpLp, (4.2)

from the reduced-form error term #t = B0ut after imposing identifying re-
strictions on matrix B0.9 However, under nonfundamentalness, the polyno-
mial B(L) is noninvertible in the past, implying that there exists no VAR( ¥ )
representation to recover the shocks ut from the history of yt only. In that
case, �tting a conventional VAR model to yt produces a nonfundamental er-
ror term which is a linear combination of the past shocks (Lippi and Reichlin,
1994b; Fernández-Villaverde et al., 2007), distorting conclusions drawn from
the estimated impulse responses.

Noninvertibility of the MA polynomial is potentially caused by the exis-
tence of news shocks, when the forward-looking agents see exogenous changes
not contained in the empirical model. For the sake of illustration, let the ob-
servables yt contain all state variables except k uncorrelated exogenous vari-

9There may be a truncation error when the inverse of B(L) is of in�nite order, which can be
diminished by increasing lag order p.
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ables in zt .10 By Sims (2002),yt has a forward-looking solution 11

yt = Q1yt � 1 + Qc + Q0zt + Qy

¥

å
s= 1

Qs� 1
f QzEtzt+ s. (4.3)

The exogenous variables are driven by unanticipated shocks when zt = ut ,
and the last term vanishes, leading directly to a VAR(1) representation. In
contrast, when agents have foresight on the exogenous variables q periods
ahead, zt = ut � q, and the equilibrium is determined by

yt = Q1yt � 1 + Qc + Q0ut � q+

QyQzut � q+ 1 + QyQ f Qzut � q+ 2 + . . .+ QyQq� 1
f Qzut , (4.4)

which corresponds to the VARMA representation (4.1) of the model. Strik-
ingly, even though the more distant expected events of zt obtain a weaker
weight in the forward-looking solution (4.3), the most recent innovation ut
informative about the future event zt+ q is discounted the heaviest by factor

QyQq� 1
f Qz in (4.4). This reverse discounting easily causes noninvertibility of

the MA polynomial B(L) = Q0Lq + QyQzL + . . .+ QyQq� 1
f Qz, the most recent

shocks having the least in�uence on the overall dynamics of yt .
The noninvertible solution prevents the recovery of the news shock con-

tained in ut based on the past and current values of yt only. To gain fun-
damentalness for (4.4), an obvious strategy is to include in yt variables such
as measured proxies for news or other forward-looking variables that do not
suffer from the inverse discounting of the shock term. By the strategy, B(z)
would eventually become invertible. However, it may be dif�cult to come up
with suitable forward-looking variables and ascertain their validity. The er-
ror term #t and the structural shocks ut could alternatively be restored from
the nonfundamental error term of a causal VAR by a known Blaschke ma-
trix (Lippi and Reichlin, 1994b). Unfortunately, this dynamic rotation is not
unique, and the set of Blaschke matrices can be shrunk only by means of
economic theory (See, e.g. Mertens and Ravn, 2010; Forni, Gambetti, Lippi,

10This illustration follows Leeper et al. (2013). See also, Walker and Leeper (2011), Forni and
Gambetti (2014), Forni et al. (2014), Beaudry and Portier (2014) and Sims (2012).

11Matrices Q1, Qc, Q0, Qy, Q f , Qz are functions of parameters of the model of dimensions
(k � k), (k � 1), (k � k), (k � m), (m � m) and (m � k), respectively. m is a dimension of the
unstable block of the system, de�ned in Sims (2002).
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and Sala, 2017), which may be infeasible or set restrictive assumptions on the
underlying structure.

As an alternative to the above approaches, it is possible to rewrite the
VARMA model (4.1) under noninvertibility as a noncausal autoregressive rep-
resentation for yt , representing the structural shocks in terms of past and fu-
ture terms. Let l roots of jB(z)j lie within the unit circle. Then yt is noncausal
as

c̄l b(L) � 1Badj(L)a(L� 1) � 1A(L)yt = ut � l , (4.5)

where c̄l is constant, Badj(z) is the adjoint matrix of B(z), and a(z� 1) � 1 and
b(z) � 1 are scalar convergent power series expansions in z� 1 and z, respec-
tively (see Appendix 4.A for details). Through the lead polynomial a(z� 1) � 1,
the time-shifted structural shocks ut � l are functions of the past, current and
future terms of yt . While the history of yt lacks information to catch the varia-
tion of ut , movements of the lagged shocks are captured by a linear weighted
sum of the past and future values of yt .12 Hence, both lags and leads of
observables are suf�cient to recover the structural shocks that are now antici-
pated due to the time-shifting.

4.2.2 Noncausal VAR

Noncausality implied by nonfundamentalness facilitates the recovery of an
anticipated but exogenous error term and the derivation of impulse responses
to structural shocks. However, direct inference on the noncausal representa-
tion (4.5) is infeasible. In this section, I present the noncausal VAR model
proposed by Lanne and Saikkonen (2013) which I use to make inference on
the propagation of the news shock.

The noncausal VAR model of Lanne and Saikkonen (2013),

P (L)F (L� 1)yt = et , (4.6)

includes distinct lag and lead polynomials P (z) = Ik � P 1z � . . . � P rzr and
F (z� 1) = Ik � F 1z� 1 � . . . � F sz� s. The error term et is independent and
identically distributed (iid) with zero mean and positive de�nite covariance

12To establish an exact mapping between (4.1) and (4.5), an in�nite number of terms has to be
included. However, as the more distant terms of the both scalar polynomials converge to zero, a
�nite number of terms are suf�cient to obtain the structural shocks up to a truncation error. If all
roots of jB(z)j within the unit circle are equal to zero, the noncausal representation is �nite in its
leads.
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matrix. Hence, the observed variables are written in a form with separate
past and future-relevant parts. In the rest of the essay, model (4.6) is referred
to as VAR(r,s). If s = 0 or F i = 0, i = 1, . . . ,s, the model reduces to a standard
causal VAR(r).

To guarantee stationarity and the existence of an MA representation, the
following stability conditions hold:

det P (z) 6= 0, jzj � 1 and det F (z) 6= 0, jzj � 1,

i.e. the polynomials P (z) and F (z) have well-de�ned inverses convergent in
the powers of z. The processF (L� 1)yt = yt � F 1yt+ 1 � . . . � F syt+ s is by the
former condition stationary and has an MA representation

F (L� 1)yt = P (L) � 1et = M (L)et =
¥

å
j= 0

M jet � j . (4.7)

The processyt can also be decomposed as

yt = F 1yt+ 1 + . . .+ F syt+ s +
¥

å
j= 0

M jet � j = ft +
¥

å
j= 0

M jet � j , (4.8)

which highlights the dependence of yt on the future through the lead terms
F i , i = 1, . . . ,s. Conveniently, when yt is fundamental, the lead coef�cients
are zeros and the decomposition (4.8) reduces to an MA representation of the
causal VAR model (4.2). A nonzero future-dependence ft in (4.8) indicates
instead the insuf�ciency of the lags to recover the structural shocks. Conse-
quently, et consists of anticipated shocks – lagged and current components of
ut – and is generally different from the fundamental error term #t recovered
by a valid VAR model.

It should, however, be emphasised that no direct mapping between a non-
invertible and noncausal model exists in general, but the latter may include
representations which lack economic interpretation. To prevent the emergence
of such representations, it is possible to set parameter restrictions on the lead
coef�cients of the model. Speci�cally, I re�ne the set of noncausal represen-
tation by assuming that total factor productivity y1,t = at , ordered as the �rst
variable in yt , has a future-dependent term f1,t of the form

f1,t = f 11,1at+ 1 + . . .+ f 11,sat+ s, (4.9)
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which is the �rst element of ft in (4.8). Hence, total factor productivity is
backward-looking with respect to the other observables but may be nonin-
vertible with respect to its own innovation. 13

Finally, inverting the stable polynomial F (L� 1) in (4.7) produces a two-
sided MA representation for yt :

yt =
¥

å
j= � ¥

Y jet � j . (4.10)

Thus yt depends, in general, both on the past and future error terms. Given
nonzero Y j resulting from lead terms in F (L� 1) different from zero, et has an
effect on yt both before and after period t. The effect of more distant error
terms disappears sinceY j converges to zero when j ! ¥ or j ! � ¥ .

If the error term of the model is Gaussian, a noncausal VAR( r,s) is obser-
vationally equivalent to a causal VAR( r + s) model as they cannot be statisti-
cally distinguished by the properties of the �rst and second moments alone. 14

Therefore, estimation of the noncausal model necessarily requires departure
from Gaussianity. In what follows, the error term is assumed to be multivari-
ate t-distributed, i.e. it can be characterised by et = w � 1/2

t ht , ht � N (0,S) and
lw t is c2

l -distributed. As a consequence,

w1/2
t P (L)F (L� 1)yt = ht .

Accordingly, the non-Gaussian assumption adds a stochastic volatility fac-
tor w1/2

t that affects yt in addition to the normally distributed error term ht .
Conditional on wt , the error term is Gaussian, but unconditionally, higher
moments of data are relaxed to be determined by the degrees-of-freedom pa-
rameter l . For small l , the variables exhibit leptokurtic pattern, as also ob-
served in economic time series.15 On the other hand, when l increases, the
distribution approaches the Gaussian distribution. Estimating l thus allows

13This type of restriction is not fully exhaustive in ruling out representations that are unlikely
to be generated by the underlying noninvertible model. Nevertheless, experience from Monte
Carlo simulations suggests that imposing such restrictions performs well in practice.

14This nonidenti�ability holds for noninvertible models as well. See, e.g., Rosenblatt (2000).
15Various studies consider non-Gaussian distributions using macroeconomic data. Distribution

of growth rates of output in OECD have been observed to be fat-tailed by Fagiolo et al. (2008).
The estimation results of Cúrdia et al. (2014) and Chib and Ramamurthy (2014) suggest a t-
distribution for innovations in DSGE models in the low-frequency data. See also Ascari et al.
(2015) for fat-tailed distributions in macroeconomic time series.
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for checking the validity of the departure from normality.

The model can be estimated by maximising the log-likelihood function
using standard inference, as shown by Lanne and Saikkonen (2013), or by
Bayesian methods (See Appendices 4.B and 4.F.1 for details). The latter ap-
proach is particularly useful as the prior distribution of VAR coef�cients can
then be shrunk towards zero when the number of parameters is large. Finally,
selecting orders r and s can be based on conventional information criteria by
comparing all nested VAR( r,s) models satisfying r + s � pmax with s � 0 and
r > 0, i.e. causality is not ruled out in advance. Alternatively, a VAR model
with a suf�cient number of lag and lead terms directly covers both causal
and noncausal dynamics and, under fundamentalness, the lead terms become
innocuous.

Consequently, selecting s > 0 or estimating signi�cant values for lead co-
ef�cients directly suggest, by (4.8), the inadequacy of the causal VAR and its
invertible MA representation to capture the underlying shocks. In this respect,
the estimation of lead terms can be seen as a test for nonfundamentalness,
similar to the more general framework of Chen et al. (2017). Independent of
the conclusion of a test, however, the noncausal VAR is able to reproduce the
underlying impulse response function via its MA representation (4.10).

4.2.3 Noncausality in a stylised model with news shocks

Next, I illustrate in a stylised, two-variable rational expectations model simi-
lar to that used by Beaudry and Portier (2014), how noninvertibility and non-
causality arise when news shocks drive exogenous technology. This leads to
an exact mapping between the noncausal representation (4.5) and the non-
causal VAR model (4.6) that reproduces the true impulse responses. Let the
equilibrium conditions for an endogenous variable xt and a technology pro-
cessat be

at = r at � 1 + #a
t � 2 (4.11)

xt = bEt [xt+ 1] + at + nt , (4.12)

where Et [�] denotes conditional expectation with respect to the information
set containing history of f at , xt , #a

t , ntg. #a
t and nt are mutually uncorrelated

structural shocks with #a
t being a news shock that affects productivity two

periods later and nt an unexpected nominal shock on xt .
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Assuming b < 1, xt has a forward-looking solution

xt =
¥

å
j= 0

bjEt at+ j + nt (4.13)

and together with (4.11),

xt = qat + qb2#a
t + qb#at � 1, (4.14)

where q = ( 1 � br ) � 1. Thus, at and xt have a VARMA representation

�
1 � r L 0
� qrL 1

� �
at
xt

�
=

�
L2 0

qb2 + qbL + qL2 1

� �
#a

t
nt

�
= B(L)ut , (4.15)

which is noninvertible in the past since jB(z)j = z2 = 0 for z = 0. Hence,
the history of yt = ( at , xt )0 is insuf�cient to recover the structural shocks
ut = ( #a

t , nt )0, and impulse responses cannot be derived from a causal VAR
representation for yt .

However, as in (4.5), yt can be written as noncausal in terms of an an-
ticipated error term. By (4.11), #a

t � 1 and #a
t reveal productivity perfectly two

periods forward, and future terms of productivity can be directly substituted
to xt in (4.14) using #a

t = � at+ 2 + r at+ 1 such that

xt = r at � 1 + bat+ 1 + qb2at+ 2 + #a
t � 2 + nt .

Hence, xt is noncausal with �nite leads. Together with (4.11), yt is equivalently
expressed as
�

I2 �
�
r 0
r 0

�
L

� �
I2 �

�
0 0
b 0

�
L� 1 +

�
0 0

qb2 0

�
L� 2

� �
at
xt

�
=

�
1 0
1 1

� �
#a

t � 2
nt

�
,

(4.16)

which is the noncausal VAR(1,2) model (4.6) with the right-hand side error
term containing the anticipated shock #a

t � 2.

Since both matrix polynomials on the left-hand side of (4.16) are stable, yt
has the two-sided MA representation (4.10). I show in Appendix 4.C.1 that
this representation collects the impulse response coef�cients to the structural
shocks #a

t � 2 and nt , which analytically coincide with their theoretical counter-
parts. In Figure 4.1, I plot the theoretical and empirical impulse responses
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of at and xt in the upper and lower panels, respectively, when b = 0.9 and
r = 0.9. Comparing the panels reveals that the noncausal VAR reproduces the
theoretical impulse responses with respect to the anticipated shock #a

t � 2. This
shock realises in at at lag 0 but affects xt at the negative lags due to terms #a

t � 1
and #a

t in (4.14). Importantly, the theoretical and empirical responses differ
only in the timing of the shock #a

t , and the inclusion of negative lags allows to
track the full propagation of the shock. Despite this time-shifting which oc-
curs due to the absence of a causal representation, the impulse responses can
be interpreted from the two-sided MA representation in a conventional man-
ner, and they provide conclusions consistent with the underlying economic
process.

This example established an exact mapping from the theoretical model
under noninvertibility to the noncausal VAR (4.6). In Appendix 4.C.2, I show
that this mapping holds for a more general technology process as well. How-
ever, due to the multiplicative structure of the noncausal VAR, the equivalence
does not hold in general for all noninvertible models as the former does not
cover all possible noncausal representations. Nevertheless, as con�rmed in
the Monte Carlo simulations of the next section, the empirical model approx-
imates the theoretical representation accurately enough.

4.2.4 Identi�cation of news shocks

I turn now to the structural analysis and identi�cation of a news shock with
the noncausal VAR, which is the main contribution of the essay. 16 The causal
SVAR methodology identi�es the news shock as a shock with an immedi-
ate effect on forward-looking variables, most notably investment and stock
prices, followed by a delayed, long-term impact on total factor productivity
(TFP). However, the strategy fails to recover the true shock under nonfunda-
mentalness. The identi�cation scheme I propose extracts from the reduced-
form error of a noncausal VAR model a shock that explains the most of the
movements in productivity at a long but �nite horizon.

Decompose the anticipated, multivariate t-distributed error term of the the
noncausal VAR to structural shocks as

et = w � 1/2
t ht = B̄ūt , (4.17)

16Prior to this study, the noncausal VAR model has not been used for identifying structural
shocks. Davis and Song (2012) also conduct impulse response analysis based on the two-sided
MA representation. However, with the recursive identi�cation through Cholesky decomposition
they use, it is dif�cult to draw a structural interpretation.
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4.2 Theory

Figure 4.1: Theoretical and empirical impulse response functions of the exam-
ple
b = 0.9 andr = 0.9. The upper row shows the theoretical impulse responses of at and xt to shocks
#a

t and nt . The lower row plots the impulse responses obtained from the MA representation of the
noncausal VAR to the shocks of the error term, #a

t � 2 and nt .

where the t-distributed structural shock vector, ūt = w � 1/2
t u�

t = [ ū1,t � � � ūk,t ]0 �
t l ( Ik), is a product of two latent factors, a k-dimensional vector of Gaussian
shocks u�

t � N (0, Ik) and the volatility term w � 1/2
t . Hence, compared to

the standard Gaussian setting, the term w � 1/2
t is added to the normally dis-

tributed structural shocks in u�
t to control for overall volatility. As a whole,

the structural shocks are mapped by a rotation matrix B̄ to the reduced-form
error term et . From the two-sided MA representation (4.10), a reaction to a
unit shock in ūi ,t is

¶yt+ j

¶ūi ,t
= Y jg i , j = . . . ,� 1, 0, 1, . . . , (4.18)

where g i denotes the ith column of matrix B̄.

The identi�cation of structural shocks follows the standard strategy by
�nding a nonsingular matrix B̄ such that E[ete0

t ] = E[B̄ūt ū0
t B̄

0], or

S = B̄B̄0. (4.19)
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Furthermore, let W be an orthogonal (k � k) matrix with wi its ith column,
and Ã a Cholesky factor satisfying S = eA eA0. Assume now the news shock
ū1,t is ordered �rst in ūt . By rewriting the rotation matrix as B̄ = eAW, the
impulse responses to the news shock are obtained by solving for w1 such that
g1 = eAw1.

Finding w1 builds in turn on the view of Beaudry and Portier (2006) that
the news shock induces a persistent, long-term change in productivity. For
this purpose, consider the MA representation (4.10) for TFP, the �rst variable
in yt ,

y1,t =
¥

å
j= � ¥

e0
1Y j ÃWūt � j (4.20)

with the vector ei = [ 0 � � � 1 � � � 0]0 having one in its ith element. As Wūt � j =
w1ū1,t + . . .wkūk,t , TFP is a sum of the contributions of the k structural shocks

y1,t = y1
1,t + . . .+ yk

1,t , yl
1,t =

¥

å
j= � ¥

e0
1Y j eAw l ūl ,t � j . (4.21)

Hence, the share of variance ofyt due to a news shock over a horizon [H1, H2]
reads as

W[H1,H2]
1,y1,t

=
E[å H2

j= H1
e0
1Y j Ãw1ū1,t � j ū0

1,t � jw
0
1Ã0Y0

je1]

E
h
å H2

j= H1
e0
1Y jSY0

je1

i =
å H2

j= H1
e0
1Y j Ãw1w0

1Ã0Y0
je1

å ¥
j= � ¥ e0

1Y jSY0
je1

,

(4.22)
which reduces to the share of the forecast error variance if yt is causal. Now,
I �nd the single component among the possible orthogonal structural shocks
weighting the most on the variance of TFP over the �nite horizon [H1, H2].
In other words, ū1,t emerges as a shock that accounts for the largest share
of the variance of y1,t . Formally, w1 is found by maximising (4.22) subject to
the orthogonality of W, w0

1w1 = 1. Appendix 4.D shows the maximisation
problem has a unique solution as an eigenvalue problem.

The above strategy is a close variant of the medium-run identi�cation ap-
proach of Francis et al. (2014), which builds on Uhlig (2004). For studying
news shocks, similar identi�cation schemes have been employed by Barsky
and Sims (2011), Kurmann and Otrok (2013), Forni et al. (2014) and Kurmann
and Sims (2017). However, instead of the forecast error variance decomposi-
tion, I use the share of unconditional variance (4.22) explained by one shock.
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As soon as the VAR model is causal, the identi�cation scheme coincides with
the Max Share approach of Francis et al. (2014).

In contrast with the existing literature, I do not impose orthogonality of the
shock to current productivity, motivated by two insights. First, due to the two-
sided MA representation (4.10), identifying restrictions on the impact effects
are generally dif�cult to implement in the noncausal VAR as the timing of the
shock is unknown a priori. Second, as extensively discussed in Kurmann and
Sims (2017), relaxing the impact effects is potentially more robust to revisions
and noise in the TFP measure as well as to a small sample bias involved in
long-run identi�cation schemes.

Essentially, the identi�cation is consistent with the view that permanent
changes in productivity stem mainly, but not solely, from a single shock that
is interpreted as the news shock if it has anticipatory effects on the forward-
looking variables. When the impact effect on TFP is negligible and the ob-
servables induce fundamentalness, the shock is equivalently recovered by the
approach of Barsky and Sims (2011), where the news shock maximises the
share of forecast error variance and is orthogonal to current productivity. 17

Finally, it is worth noting that the proposed identi�cation of news shocks does
not exclude the existence of surprise technology changes. The latter shocks
need, however, be relatively less important for the variation in total factor
productivity in the medium run.

Overall, the key advantage of the approach outlined here is its invariance
to the information in the observables. Estimating a causal VAR model under
nonfundamentalness instead produces reduced-form errors from which any
static identi�cation scheme extracts misspeci�ed structural shocks. In con-
trast, the identi�cation in the noncausal VAR remains valid independent of
nonfundamentalness as the model nests a causal VAR model by its lag terms.

4.3 Monte Carlo simulation

In this section, I analyse with Monte Carlo simulations how causal and non-
causal VAR models are able to identify news shocks and match the true im-
pulse responses of a small-scale macroeconomic model.

17The news shocks identi�ed by the strategy may also have impact effects on productivity and
in fact nest both smoothly diffusing technology shocks as in Lippi and Reichlin (1994a) or Walker
and Leeper (2011) as well as shocks with delayed effects on TFP as mostly considered in the VAR
literature starting from Beaudry and Portier (2006).
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4.3.1 New Keynesian model with news shocks

Consider a textbook New Keynesian (NK) model (See Galí, 2009). The equi-
librium is characterised by the dynamic IS equation

ỹt = �
1
s

( i t � Etp t+ 1 � rn
t ) + Et ỹt+ 1,

where ỹt is the output gap relative to the �exible price outcome, p t is in�ation,
i t is the interest rate and rn

t = r + sy n
yaEtDat+ 1 is the natural interest rate. The

NK Phillips curve determines in�ation:

p t = bEt [p t+ 1] + kỹt ,

and the central bank sets the nominal interest rate according to the Taylor rule

i t = r (1 � r m) + r mi t � 1 + f p p t + f yỹt + #m
t .

The economy is driven by three exogenous shocks, the anticipated and unan-
ticipated shocks on technology, #a

t and #u
t , respectively, and the monetary pol-

icy shock #m
t . Technology follows

at = r aat � 1 + #a
t � q + su#u

t (4.23)

so through the news shock #a
t , agents are able to predict technology q periods

forward. The surprise technology, or noise shock #u
t prevents the agents from

perfectly observing future technology and su determines its relative impor-
tance.

The inclusion of the news shock alters the dynamics of the sticky-price
model as follows. In response to a positive news shock, �rms anticipate the
future improvement in productivity and have an incentive to decrease prices
beforehand. As a result, the economy initially experiences a boom with posi-
tive output gap, which accelerates in�ation. To stabilise in�ation and output
gap, the Taylor rule responds by increasing the interest rate. Consistent with
sticky-price models, the news shock at the time of its materialisation even-
tually turns the output gap and in�ation negative, similar to the effects of a
surprise technology shock in a basic NK model.
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4.3 Monte Carlo simulation

4.3.2 Simulation design

I solve the model numerically using standard calibration (see Appendix 4.E.1).
In addition, I vary the signi�cance of news shocks and the anticipation hori-
zon in the model by considering values su 2 f 0.5, 1g and q 2 f 3, 16g. These
values are motivated as follows. First, increasing the standard deviation of
the noise shock from su = 0.5 to su = 1 decreases the signi�cance of news
shocks in driving technology. The nonfundamentalness-inducing shock com-
prises then a smaller share of exogenous variation, which may alleviate the
noninvertibility problem. 18 Second, compared to the benchmark anticipa-
tion horizon q = 3 also used by Sims (2012), the longer anticipation horizon
q = 16 is more consistent with the empirical estimates starting from Beaudry
and Portier (2006) who measure news shocks moving the economy several
years ahead. However, lengthening the horizon relates news to more distant
changes in technology, which worsens the ability of the current observables
to recover the underlying shocks and to replicate the true impulse responses
from the causal model.

I simulate from the model 1,000 samples of time series of length T = 250
with structural shocks ut = ( #a

t ,#
m
t ,#u

t )0 drawn from multivariate t-distribution
t l ,(m� 1/2

w � 1 I3) with l = 4.19 The structural shocks are therefore uncorrelated

and Gaussian conditional on the latent volatility factor w � 1/2
t . Due to the low

degrees-of-freedom parameter l , the distribution of shocks has more weight
on tails than in the purely Gaussian case, extreme shocks being more fre-
quent.20 For each simulated sample, I estimate both causal and noncausal
VAR models with two sets of observables, y1

t = ( at , ỹt , p t ) and y2
t = ( at , i t , p t )

as the number of included state variables in�uences the nonfundamentalness
issue. The �rst set includes two forward-looking variables, in�ation and out-
put gap, whereas the latter includes two state variables, technology and the
interest rate. The models are estimated by maximum likelihood with the re-
strictions (4.9) imposed on productivity at .

18However, see Sims (2012) for a contrasting view.
19The term m� 1/2

w� 1 =
q

l � 2
l induces a unit variance for (#a

t ,#
m
t ,#u

t )0.
20Since structural shocks are uncorrelated, the additional assumption compared to the Gaussian

case has no consequences to the equilibrium conditions of the DSGE model up to the �rst order
approximation.
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4.3.3 Nonfundamentalness and model selection

In Table 4.1, I summarise statistics from the simulated models. I report the
maximum absolute eigenvalue of the invertibility condition of Fernández-
Villaverde et al. (2007), computed from the theoretical state space representa-
tion for the observables. When this eigenvalue is greater than one in modulus,
the observables suffer from nonfundamentalness.21 Examining the nonfunda-
mentalness issue further, I estimate all VAR(r,s) models satisfying r + s �
pmax = 6 with s � 0 and r > 0 and compare them by the Akaike Information
Criterion (AIC) in each simulated sample. 22 The shares of selected speci�ca-
tions are collected in Table 4.1.

For the anticipation horizon q = 3, Table 4.1 shows that including two
forward-looking variables, output gap and in�ation, in yt is insuf�cient to
attain invertibility, the maximum absolute eigenvalue remaining greater than
one. The absence of an invertible MA representation is consequently re�ected
by primarily selecting models with lead terms. In turn, the invertibility condi-
tion is satis�ed for observables y2

t . By replacing one forward-looking variable
from the observable vector by a state variable, the interest rate, the causal VAR
remains valid with respect to the structural shocks. In line with this fact, fun-
damental observables y2

t induce the dominance of causal speci�cations over
noncausal variants in the model selection. When lengthening the horizon to
q = 16, the interest rate is, however, unable to recover the state space, which
now includes 16 lags of #a

t , and the noninvertibility problem emerges irrespec-
tive of the used variables. In fact, avoiding nonfundamentalness can only be
achieved, if feasible, by including a suf�ciently precise proxy for the news
shock #a

t , which would revert an invertible state space representation. As a
consequence of nonfundamentalness, over 90 percent of the selected models
are noncausal.

Although the above model selection performs well in checking the suf�-
ciency of information, it has a slight bias towards including additional lead
terms under fundamentalness. Hence, the procedure cannot be regarded as
a formal test for nonfundamentalness but it rather provides �rst-hand infor-

21That is, under a state space representation with xt , an (n � 1) vector of state variables,

xt = Ax t � 1 + But

yt = Cxt � 1 + Du t ,

where A, B, C and D are (n � k), (n � k), (k � n) and (k � k) matrices, respectively, yt is funda-
mental, if matrix F = A � BD� 1C has all eigenvalues inside the unit circle.

22Increasing the maximum number of lags and leads does not change the results
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Model

q 3 16 3 16
su 0.5 0.5 1 1

Observables y1
t y2

t y1
t y2

t y1
t y2

t y1
t y2

t
Maximum eigenvalue 14.13 0.71 1.59 1.37 14.13 0.71 1.59 1.37

Orders Speci�cation selected by AIC (%)

r = 1 s = 0 0.0 0.0 0.0 0.0 1.1 0.0 0.2 0.0
r = 2 s = 0 0.1 0.0 0.0 0.0 0.6 0.0 0.9 0.0
r = 3 s = 0 0.9 0.0 0.3 0.0 1.2 0.0 0.7 0.0
r = 4 s = 0 0.1 1.9 0.5 0.0 0.1 7.5 0.9 0.0
r = 5 s = 0 0.0 70.0 0.9 0.0 0.1 64.3 0.5 0.0
r = 6 s = 0 0.1 7.6 1.4 0.0 0.0 6.2 0.1 0.0
r = 1 s > 0 36.6 0.5 28.7 85.2 41.9 0.6 35.8 76.7
r = 2 s > 0 17.3 1.0 9.1 9.6 16.9 2.2 18.3 17.8
r = 3 s > 0 40.6 0.4 16.5 4.0 34.4 0.3 12.7 5.0
r = 4 s > 0 3.6 8.5 13.6 1.2 3.3 9.3 12.1 0.5
r = 5 s > 0 0.7 10.1 29.0 0.0 0.4 9.6 17.8 0.0

Causal (%) 1.2 79.5 3.1 0.0 3.1 78.0 3.3 0.0
Noncausal (%) 98.8 20.5 96.9 100.0 96.9 22.0 96.7 100.0

(r �
AIC , s�

AIC ) (1,2) (5,0) (5,1) (1,2) (1,2) (5,0) (5,1) (1,2)
p�

AIC 3 5 6 3 3 5 6 3

Table 4.1: Estimation results for the simulated models: causal and noncausal
speci�cations selected by AIC
Percentages refer to the frequency of a VAR(r,s) model being selected from minimising the Akaike informa-
tion criterion. Models are estimated by maximum likelihood with multivariate t-distributed residuals and
restrictions (4.9) on at for 1,000 simulated Monte Carlo samples with T = 250. Noncausal speci�cation with
r = r � ,s� > 0 nests all leads satisfying r � + s� � 6, (r �

AIC , s�
AIC ) is the most selected model with s � 0, p�

AIC the
most selected causal model (s = 0).

mation on the �t and validity of a causal model compared to including lead
terms. It is also worth noting that the chosen number of leads and lags, r and
s, in Table 4.1 are evenly distributed under nonfundamentalness, suggesting
that no particular noncausal VAR( r,s) is a direct empirical alternative to rep-
resent the structural shocks. This is in part due to numerical reasons since the
multimodality of the nonlinear likelihood function is dif�cult to control for in
the simulations.

4.3.4 Impulse responses

In the simulated samples, I estimate the impulse responses to the news shock
from the causal VAR( p) and noncausal VAR(r,s) models using the orders of
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(a) Causal VAR(3) on y1
t = ( at , ỹt , p t )

(b) Noncausal VAR(1,2) on y1
t = ( at , ỹt , p t )

Figure 4.2: Impulse responses to a news shock from a causal and noncausal
VAR in the NK model with q = 3 and su = 0.5
The estimates are the periodwise medians of impulse responses from the Monte Carlso samples.
In the causal VAR, the dashed lines and solid marked lines refer to the Barsky-Sims (B-S) and Max
Share (MS) identi�cation, respectively. The light and dark grey shaded areas border the middle
90 and 68 percent, respectively, of the distribution for the estimated impulse responses. The solid
lines are the theoretical impulse responses, aligned in panel (b) with the estimated noncausal
impulse responses according to the maximum impact on technology.

the most selected speci�cation. In the causal models, the news shock is identi-
�ed by two alternative strategies, the Barsky-Sims strategy (Barsky and Sims,
2011), where the shock has no impact effect on technology, and by the Max
Share approach of Subsection 4.2.4.23 These schemes are consistent with the
theoretical model as long as observables are fundamental for the underlying
process andsu < 1. Speci�cally, the latter strategy does not impose a zero im-
pact effect on technology. If a noncausal VAR is selected, I identify the news
shock as described in Subsection 4.2.4: the news shock is a shock explain-
ing the most of the movements in technology y1,t = at over a �nite horizon
[H1, H2] with H1 = � 20 and H2 = 40.

Panel 8a) of Figure 4.2 plots the impulse responses ofy1
t to a news shock

from the estimated VAR(3) models for q = 3 and su = 0.5. As an immediate

23In the former, the shock maximises the sum of the forecast error variance of
the causal VAR (4.2). The �rst column of matrix B0 is then found by maximising

å
H2
h= 0

�
å h

j= 0 e0
1Y j A0g1g0

1A0
0Y0

j e1

�
/

�
å h

j= 0 e0
1Y j A0A0

0Y0
j e1

�
subject to g0

1g1=1 and g1,1 = 0, A0 be-

ing a lower-triangular satisfying E [#t #0
t ] = A0A0

0.
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consequence of nonfundamentalness, the dashed (B-S, Barsky-Sims) and solid
marked (MS, Max Share) median responses from the causal VAR in panel (a)
fail to coincide with the theoretical counterparts. The distortion follows a pat-
tern where the theoretical responses are lagged by two periods, originating
from the nonfundamental error term that strongly weighs the past shocks. 24

As the causal VAR cannot then retrieve the most recent shock, the model is
incapable to reproduce the initial reactions. This drawback disappears only if
the observables imply fundamentalness, which can be achieved by including
the interest rate. The causal VAR with y2

t and both the Barsky-Sims and Max
Share identi�cation schemes are then able to reproduce the true impulse re-
sponses, shown in Appendix 4.E.2. Hence, although both observables could
well be used for an empirical analysis on news shocks, their capability to
derive the true responses heavily depends on invertibility.

Instead, the impulse responses of y1
t can be recovered by the noncausal

VAR selected by AIC, shown in panel (b) of Figure 4.2, where the timing of the
theoretical responses are changed such that the peak response of technology
is aligned with those from the empirical model. Notice that no information
about this shifting of the error term was needed in the estimation. Evidently,
the noncausal VAR is able to match the theoretical impulse responses and
measures the early reactions to a news shock at negative lags, as a result of
the two-sided MA representation including the leads of time-shifted shocks.
In Appendix 4.E.2, I additionally show results when the relative weight of the
news shock is greater, su = 1, referring to a situation when the identi�cation
strategy is not consistent with the underlying model as the noise and news
shocks are equally important. In that case, the impulse responses can still be
accurately enough recovered from the noncausal VAR while the distortion in
the causal VAR prevails.

Once the anticipation horizon is q = 16, fundamentalness becomes unattain-
able even with the inclusion of the interest rate. This information de�ciency
has adverse effects on the performance of causal VAR models as seen in panels
(a) and (b) of Figure 4.3. For both y1

t and y2
t , the estimated impulse responses

lead the theoretical counterparts by several periods and are therefore unable
to reveal the initial, smooth responses to a news shock. Concluding from the
causal VAR with the Barsky-Sims identi�cation, the news shock would in-
duce an immediate, strong response of output gap, interest rate and in�ation.
Similarly, with the Max Share strategy, the effects of the shock are falsely mea-
sured. The risk of nonfundamentalness thus concerns missing the responses

24See Lippi and Reichlin (1994b); Leeper et al. (2013) for deeper evaluation.
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(a) Causal VAR(6) on y1
t = ( at , ỹt , p t )

(b) Causal VAR(3) on y2
t = ( at , i t , p t )

(c) Noncausal VAR(5,1) on y1
t = ( at , ỹt , p t )

(d) Noncausal VAR(1,2) on y2
t = ( at , i t , p t )

Figure 4.3: Impulse responses to a news shock from a causal and noncausal
VAR in the NK model with q = 16 and su = 0.5
The estimates are the periodwise medians of impulse responses from the Monte Carlso samples.
In the causal VAR, the dashed lines and solid marked lines refer to the Barsky-Sims (B-S) and Max
Share (MS) identi�cation, respectively. The light and dark grey shaded areas border the middle
90 and 68 percent, respectively, of the distribution for the estimated impulse responses. The
solid lines are the theoretical impulse responses, aligned in panels (c) and (d) with the estimated
noncausal impulse responses according to the maximum impact on technology.
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at the initial path of anticipation. 25 In contrast, the noncausal VAR models are
robust to the nonfundamentalness problem: their impulse responses shown
in panels (c) and (d) are consistent with the theoretical model after shifting
the timing of the shock to the left. In spite of this shifting, the interpretation
about the propagation of the news shock remains the same.

Finally, I study the sensitivity of the non-Gaussian distributional assump-
tion. Originating from the fact that noncausal or noninvertible models cannot
be statistically identi�ed by the properties up to the second moments, the non-
Gaussianity is the sole way out under nonfundamentalness. In this purpose,
the multivariate t-distribution functions as a simple departure from Gaussian-
ity, although the error term may then collect both anticipated and unantici-
pated shocks that share a common volatility term. Examining whether the
assumed multivariate t-distribution is critical for the results, I draw Gaussian
structural shocks but alternatively generate heavier tails by amplifying their
size as described in Appendix 4.E.2. Estimating now a noncausal VAR with
multivariate t-distributed errors produces, �rst, a median estimate of 4.3 for
degrees of freedom parameter l and, second, recovers the underlying impulse
responses.26 Hence, in practice, the multivariate t-distribution performs well
in controlling for leptokurtosis originating from an alternative source.

4.4 News shocks and U.S. business cycles

News shocks generate �uctuations stemming from reactions to productivity
changes that materialise in the future. Beaudry and Portier (2006) concluded
that they account for a half of the output variation and increase stock prices,
investment, consumption and hours on impact. Nonetheless, the estimated
impulse responses and the signi�cance of the news shock starkly depend on
the choice of variables and identi�cation strategy. Using the medium-run
identi�cation, Barsky and Sims (2011) �nd that news shocks increase con-
sumption, while it initially decrease investment, hours and prices. Moreover,
the news shocks play a less important role for the short-run �uctuations. Us-
ing the factor-based test of Forni and Gambetti (2014), Forni et al. (2014) reject

25Distortion in causal VAR models is also independent of the chosen lag length. Moreover, least
squares estimation of the causal VAR model produces similar results but with wider con�dence
bands.

26On the other hand, when I simulate the theoretical model with Gaussian shocks, I estimate
the degrees-of-freedom parameter to be considerably larger, above 30. Higher estimates of l thus
lead to a failure of the distributional assumption and weak identi�cation of the noncausal VAR.
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the hypothesis of fundamentalness in small-scale VAR models. In a factor-
augmented VAR they use, the news shock signi�es less at the business cycle
frequencies, and positive news shocks do not produce such economic expan-
sions as suggested by Beaudry and Portier (2006).

On the other hand, according to Beaudry et al. (2015), nonfundamentalness
does not alter the conclusions about the news but the identi�cation scheme is
a vital issue in reproducing the results of Beaudry and Portier (2006). Simi-
larly, Sims (2012) and Forni et al. (2018) argue that an informationally de�cient
VAR may well recover a news shock suf�ciently accurately despite the under-
lying model implies noninvertibility. However, the simulation results from the
previous section suggest that the nonfundamentalness issue may be a conse-
quential factor for the results drawn from the causal VAR.

Here, I revisit the evidence on news shocks in the U.S. economy with the
noncausal VAR. The approach tackles the above issues with inference robust
against the potentially insuf�cient information set.

4.4.1 Data

I use quarterly U.S. macroeconomic time series. Total factor productivity
(TFPt ) is the capacity-utilisation adjusted measure constructed by Fernald
(2012). Consumption is de�ned as a sum of consumption of nondurables
and services, output as the real gross domestic product (GDP) and invest-
ment as the sum of �xed private investment and consumption of durables.
Hours worked and the real compensation per hour, measuring the real wage,
are from the nonfarm business sector. The variables are seasonally adjusted,
expressed in logs and per-capita terms by the civilian noninstitutional pop-
ulation. Annualised in�ation is computed from the consumer price index.
Following the literature, stock prices, measured as the log of the real S&P 500
index, is transformed to per-capita terms. The above data span quarters from
1948:1 to 2015:4, where the �rst quarter is lost because of differencing.

In the further analysis, I additionally use the following variables. The
effective Federal Funds rate (FFRt ), available from quarter 1954:3 onwards,
is aggregated to the quarterly frequency. As the long-term rate ( r10

t ), I use
the 10-year Constant Treasury Maturity Rate, available from quarter 1953:2
onwards. Last, consumer con�dence is measured by the Index of Consumer
Sentiments, released by the Michigan Surveys of Consumers and starting from
quarter 1961:1.27

27The national accounts variables are taken from the National Income and Product Accounts
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4.4.2 Estimation and identi�cation

To avoid the estimation of large models, I include the above variables in dif-
ferent speci�cations which all include TFP, either investment or stock prices,
consumption and hours in addition to the variables of interest. I difference
all except hours and interest rates, as the lag and lead polynomials of the
noncausal model are required to be stable.

I use Bayesian inference to tackle the large parameter space and also to
circumvent the model selection problem found to be somewhat less robust in
Section 4.3. Speci�cally, instead of relying on information criteria, I �x the
number of lags and leads to four. The resulting speci�cation is then able to
cover a rich class of both fundamental and nonfundamental representations.
Moreover, Bayesian prior shrinkage implicitly facilitates the model selection
by weighing those lag and lead coef�cients supported by data. Importantly,
setting a suf�ciently high number of lags, r = 4, does not rule causality out
a priori, as the invertible MA part in (4.7) is then able to capture the full dy-
namics. If invertibility is instead not supported by data, s = 4 leads with
restrictions (4.9) imposed on TFP accommodate noncausality induced by non-
fundamentalness. As a consequence of noncausality, the impulse responses
will generally be located both on the positive and negative lags but produce
results consistent with the underlying process.

I set a Minnesota-type prior distribution, discussed in Appendix 4.F.1 in
detail. In particular, I use tightness parameters to adjust the shrinkage sepa-
rately for the lag and lead coef�cients. I set their values in a way that less prior
information is imposed on the lag terms whereas the lead terms are shrunk
more towards zero. Hence, a priori, the lag terms are more important to deter-
mine the dynamics of variables. The estimation is eventually based on a Gibbs
sampler derived by Lanne and Luoto (2016), where conditional normality of
the likelihood is exploited to draw ef�ciently from the posterior distribution
(See Appendix 4.F.1). The noncausal VAR, however, easily involves a multi-
modal posterior distribution, as observed by Lanne and Luoto (2016). By a
stronger degree of tightness for the lead terms and the restrictions (4.9), the
multimodality can be avoided in practice.

As was discussed in Subsection 4.2.2, the identi�cation of a unique non-

(NIPA) Tables of Bureau of Economic Analysis and transformed into real values by the GDP
de�ator. The TFP series of Fernald (2012) is taken from the Federal Reserve Bank of San Francisco
database, the stock price data from Robert Shiller's webpage and the consumer con�dence index
from the Michigan Survey of Consumers tables. The remaining data are downloaded from the
FRED database.
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Figure 4.4: Posterior distribution of degrees-of-freedom parameter l
Posterior draws of l from the baseline noncausal VAR. The dashed vertical line is the posterior
mean.

causal VAR model requires deviation from Gaussianity. Fortunately, the as-
sumed multivariate t-distribution nests Gaussianity for large values of degrees-
of-freedom parameter l and provides thereby a measure of non-normality and
excess kurtosis. In other words, a low estimate of l will support the validity
of the distributional assumption compared to Gaussianity. In Figure 4.4, I plot
the histogram of the posterior draws of l for the baseline speci�cation which
includes TFP, investment, consumption, hours, output and in�ation. The his-
togram evidently reveals that the posterior distribution heavily weighs low
degrees of freedom. Data also strongly dominate the prior mean of l set to
10 with a posterior mean lower than 5. Moreover, although not reported, de-
grees of freedom is estimated low in the causal VAR(4) model as well. Hence,
allowing for fatter tails improves the �t of the model and facilitates the iden-
ti�cation of the noncausal model.

In the VAR models I estimate, the identi�cation of news shocks follows the
strategy outlined in Section 4.2.4. The news shock is then a shock explaining
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the most of the variation of total factor productivity, y1,t

y1
1,t = log TFPt =

H2

å
j= � H1

e0
1Ȳ j Ãw1ū1,t � j

where Ȳ j = å
j
k= � ¥ Yk is a cumulative sum that transforms the differenced

variables to levels. In other words, the news shock maximises the share of vari-
ance of TFP in levels,W[H1,H2]

1,y1,t
in (4.22), over the horizon [H1, H2] = [ � 20, 40].

The results are robust at a broad range of values of H1 and H2.

4.4.3 Results from the baseline model

Figure 4.5 plots the impulse responses to a one standard deviation news shock
from the baseline VAR(4,4) model. The posterior median responses are shown
in solid lines together with the 68 and 90 percent periodwise credible sets. The
news shock triggers an increase of total factor productivity, and investment,
consumption, hours and output respond positively and persistently. The in-
crease of TFP is anticipated by the forward-looking variables which move at
the negative lags of the horizon.

The identi�ed shock diffuses to the economy as follows. First, at the neg-
ative lags, TFP slightly starts to absorb the shock. At these anticipatory lags,
investment and hours move from their initial levels modestly but statistically
signi�cantly, and in�ation starts to decline two years ahead of the jump of TFP.
At quarter 0, investment, consumption and output permanently increase, and
hours continue to rise. Simultaneously, in�ation starts to recover and con-
verges to zero after a year. During the �nal phase, at the positive lags, the
shock continues to diffuse to TFP, investment and hours experience hump-
shaped increases, while consumption and GDP remain at their new levels.

Overall, the estimated shock identi�es persistent changes in TFP – consis-
tent with the view that a news shock signals long-run productivity improve-
ment. The shock also in�uences the forward-looking variables, most notably
in�ation, before it materialises in productivity. The responses at the negative
lags before productivity attains its new level are, however, modest. Instead of
strong reactions, the long-run, not-yet-materialised productivity movements
induce smooth anticipation effects. Hence, it is dif�cult to view the news
shock as a strong signal from the future productivity and as a trigger of short-
run �uctuations. Rather, the comovement of TFP and the forward-looking
variables suggests that the permanent technology shock propagates not only
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Figure 4.5: Impulse responses to a news shock from the baseline model
The black solid lines are the posterior median responses to the news shock from the noncausal VAR(4,4). The
dashed and marked lines depict the impulse responses from the causal VAR(4) model to the shock identi�ed
with the Barsky-Sims (B-S) and Max Share (MS) strategy, respectively. All responses are shown in levels. Light
and dark grey shaded areas are the 90 and 68 percent periodwise credible sets of the noncausal model.

through expectations but also through the simultaneous productivity growth.
The plots of Figure 4.5 included additionally in dashed and solid marked

lines the impulse responses to the news shock identi�ed from the causal
VAR(4) model by the Barsky-Sims (B-S) and the Max Share (MS) schemes,
respectively.28 Considering the both identi�cation schemes allows to exam-
ine, how crucial is the zero impact restriction of the former strategy for the
results. Regardless of the identi�cation scheme, the responses are remarkably
similar for all variables except TFP. The Barsky-Sims strategy produces a con-
stant growth path of TFP, while the Max Share scheme increases the variable
on impact. However, the implied growth rates of TFP coincide from the both
identi�cation schemes after quarter 0. The latter observation casts doubt on
the validity of the zero impact restriction as also argued by Kurmann and
Sims (2017). In particular, the Barsky-Sims strategy involves a risk that the
potential initial effect of the shock on TFP will be ignored. 29

28In both of the schemes, I consider a horizon of 60 quarters. Changing the horizon has negli-
gible effects on the results.

29Results remain similar when estimating a causal VAR in levels with a constant term as well
as estimating a causal VAR with least squares. In particular, the risk of distortion caused by
differencing variables, pointed out by Beaudry and Portier (2014), can be regarded as low.
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Comparing the noncausal and causal responses from the Max Share iden-
ti�cation reveals, in turn, that the reactions from both models align at the
positive lags of the horizon. However, the causal VAR is unable to recover the
initial effects of the forward-looking variables observed at periods before time
0. In particular, the estimates from the noncausal VAR document smoother
responses of productivity and forward-looking variables starting at the neg-
ative lags, whereas the causal VAR produces somewhat stronger immediate
reactions. In fact, the causal responses potentially misinterpret the impact
effects under nonfundamentalness. When noninvertibility matters, a causal
VAR depicts reactions to a shock from the incorrectly identi�ed, nonfunda-
mental error. The model may then overestimate the initial responses, as the
nonfundamental shock is a compound of the past shocks already anticipated
by the economic agents.30 Correspondingly, the responses to the most recent
shocks are dismissed, as seen in the Monte Carlo simulations. In contrast,
the inclusion of lead terms facilitates the recovery of the anticipated shock,
and the resulting responses of the noncausal VAR show the earliest, smooth
reactions at the negative lags.

How much do news shocks contribute to the economic �uctuations? In
place of the forecast error variance decomposition of causal VAR models, the
noncausal VAR measures the signi�cance of the news shock by the relative

conditional variance of yi ,t due to news shocks, W[H1,H2]
1,yi ,t

in (4.22), over the
horizon from H1 = � 20 until H2. In Figure 4.6, these shares contributed
by the news shock along with the credible sets are plotted for the baseline
speci�cation. The identi�ed shock determines the major part of TFP at longer
horizon, consistent with Beaudry and Portier (2006) who identify the news
shock as a long-run component of productivity. The identi�ed shock is also
central in explaining �uctuations in investment, consumption, employment,
output and in�ation. However, the evidence contrasts the news shock view
and the results from the Barsky-Sims identi�cation in one important aspect:
the shock explains a considerable part of movements in TFP also in the short
run.

Figure 4.7 plots the four-quarter moving average of the identi�ed news
shock ū1,t along with a cycle component of capital-to-TFP measure.31 In

30In particular, this observation is also consistent with the �ndings of Forni et al. (2014) who
measure the reactions to a news shock to become smoother after conditioning on more informa-
tion.

31The series is detrended using the Hodrick-Prescott (HP) �lter with smoothing parameter
1,600. Capital-to-TFP ratio is computed from the investment and TFP series of Fernald (2012).
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Figure 4.6: Share of variation due to the identi�ed news shock
The shares are computed from the baseline VAR model using equation (4.22) with all variables in levels. H1 =
� 20 and H2 is varied on the x-axes. The dashed and marked lines depict the shares due to the news shock
identi�ed by the Barsky-Sims (B-S) and Max Share (MS) strategy, respectively, from the causal VAR. The solid
lines are the posterior medians. Light and dark grey shaded areas are the 90 and 68 percent credible sets of the
noncausal model.

addition, the NBER recessions are drawn as shaded grey areas. As noted
by Beaudry and Portier (2014), the large positive deviations from the trend
capital-productivity ratio tend to be followed by recessions. In turn, the
changes in the capital-productivity ratio are preceded by the identi�ed news
shock. The decrease of the ratio due to the shock is thus caught up by increas-
ing investment in the subsequent periods.

In conclusion, the news shock generates a growth of TFP together with
modest positive reactions of forward-looking variables. The results con�rm
the positive comovement of consumption and investment conditional on the
news shock, in line with Beaudry and Portier (2006) and the news view of
business cycle, but dif�cult to be theoretically generated in dynamic general
equilibrium models. Given the less signi�cant anticipation of future technol-
ogy, my results also align with Barsky and Sims (2011) and Forni and Gambetti
(2014). Inferring from the above results, the comovement can be explained
by the contemporaneous improvement of TFP, which gives the news shock a
character similar to a shock that slowly diffuses to technology as in Lippi and
Reichlin (1994a) or Walker and Leeper (2011). As also interpreted by Kurmann
and Sims (2017), the news shock is related to sustained productivity growth
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Figure 4.7: News shock and investment over time
The solid line is the posterior median of the four-quarter moving average of the identi�ed shock from the
baseline noncausal VAR(4,4) model. The cycle component of the capital-to-TFP ratio in dashed lines is a
percentage deviation from the HP-trend with smoothing parameter 1,600. The shaded grey areas are the NBER
recessions.

and affects TFP both on impact and with a lag.

4.4.4 Reactions of further forward-looking variables

The above results documented that persistent technology shocks are smoothly
predicted by the main macroeconomic indicators. However, since the identi�-
cation imposes no impact effects, the news shock is revealed indirectly under
the assumption that surprise technology shocks are less important for the
changes in TFP. Next, I con�rm with a set of forward-looking variables that
the permanent TFP growth is indeed anticipated.

The plots of Figure 4.8 show the impulse responses of four additional vari-
ables, the stock price index, the real wage, consumer con�dence and research
and development (R&D) expenditures, the solid lines depicting the results
from the noncausal model. 32 The responses are separately estimated in the

32The R&D expenditures are measured as per-capita investment to intellectual property prod-
ucts divided by the GDP de�ator, taken from the NIPA tables.
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Figure 4.8: Impulse responses of the forward-looking variables to a news
shock
The impulse response of each variable is derived from a speci�cation that additionally includes �ve baseline
variables shown in Figures 4.16 and 4.17 in Appendix 4.F.3. The black solid lines are the posterior median
responses to the news shock from the noncausal VAR(4,4) model. The dashed and marked lines depict the
impulse responses from the causal VAR(4) model to the shock identi�ed with the Barsky-Sims (B-S) and Max
Share (MS) strategy, respectively. All responses are shown in levels. Light and dark grey shaded areas are the
middle 90 and 68 percent credible sets from the noncausal model.

VAR models that include �ve variables from the baseline speci�cation – ex-
cluding in�ation – in addition to the variable of interest. The estimates re-
garding the remaining variables coincide with those shown in Figure 4.5 and
are only reported in Appendix 4.F.3. In response to the technology shock,
stock prices start to increase two years before TFP jumps, eventually peaking
at quarter 0. Similarly, consumer con�dence signi�cantly rises �ve quarters
before the main realisation moment of the shock, supporting the view that the
public is able to foresee the improvement of technology. Simultaneously, the
real wage is prompted to a steady growth path. R&D expenditures gradually
increase prior to TFP: the anticipation of the shock fosters development of
complementary technologies. On the contrary, the causal responses plotted in
dashed and marked lines are generally unable to show the initial anticipatory
path of dynamics tracked in the noncausal model on the negative lags.

Finally, to analyse the behaviour of interest rates, Figure 4.9 depicts the im-
pulse responses from a speci�cation that includes the term spread r10

t � FFRt
and the 10-year rate as well as variables from the baseline speci�cation. I
additionally back out the response of the Federal Funds rate as a difference
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Figure 4.9: Impulse responses of the interest rates to a news shock
The impulse responses are derived from a model that additionally includes �ve baseline variables shown in
Figure 4.18 of Appendix 4.F.3. The federal funds rate is computed as a different between the 10-year rate and
the term spread. The black solid lines are the posterior median responses to the news shock from the noncausal
VAR(4,4) model. The dashed and marked lines depict the impulse responses from the causal VAR(4) model to
the shock identi�ed with the Barsky-Sims (B-S) and Max Share (MS) strategy, respectively. All responses are
shown in levels. Light and dark grey shaded areas are the middle 90 and 68 percent credible sets from the
noncausal model.

between the long-term rate and the spread.33. According to the solid lines
depicting the noncausal responses, the Federal Funds rate initially declines in
response to the de�ationary effects, consistently with in�ation-targeting mon-
etary policy. As the 10-year rate changes only mildly, the constant increase of
the term spread is caused by the decreasing policy rate. These observations
are also in line with Kurmann and Otrok (2013) who use a similar set of vari-
ables to examine the effects of news shocks on the term structure of interest
rate. At date 0, once TFP experiences the fast growth, the term spread peaks
after which it returns to its long-run mean within the �ve subsequent quar-
ters. The news shock thus has de�ationary effects, leading to a decrease of the
Federal Funds rate and an increase in the slope of the term structure. How-
ever, compared to the causal responses, the jump of the spread is explained
by the anticipatory movements of the interest rates at the negative lags, which
cannot be measured in the causal framework.

4.5 Conclusions

The presence of news shocks permits economic agents to respond not only to
the current but also to the future changes in productivity. However, causal
VAR models fail to provide reliable evidence in validating these dynamics

33The conclusions about the baseline variables are consistent with Figure 4.5 and shown in
Appendix 4.F.3
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under nonfundamentalness, when economic agents possess more informa-
tion than an econometrician. Consequently, the inference drawn from a VAR
model may be based on misinterpreted structural shocks.

By allowing for noncausality, the nonfundamentalness issue is resolved
by including future terms that capture variation omitted in an information-
ally de�cient causal VAR. Structural analysis on the anticipated technology
shocks can then be conducted using the two-sided MA representation with
the identi�cation scheme I introduced. I identi�ed a technology shock as the
most signi�cant factor moving productivity, which indirectly reveals the news
shock. According to the Monte Carlo simulations, the approach is able to, �rst,
detect nonfundamentalness in the form of noncausality and, second, recover
the responses to a news shock under nonfundamentalness.

The evidence from the U.S. economy suggested that the news shock in-
duced contemporaneous increases in investment, hours, output and consump-
tion as well as in total factor productivity, which may be the determining
factor behind the strong anticipating responses usually observed in the VAR
literature. Rather than being a pure signal about productivity in the distant
future, the news shock diffuses into TFP both in the short and long run. Mir-
roring this evidence with the news shock literature, the results con�rm that
the news shock explains the major part of long-run movements in TFP and
is as such central in contributing to business cycle �uctuations. Nonetheless,
it is dif�cult to view the news shock as generating strong short-run reactions
with materialisation in productivity only in the long run.

Finally, the analysis proceeded with the following limitations in mind.
First, the noncausal VAR model is not a one-to-one empirical alternative to
a noninvertible model but provides a suf�ciently accurate approximation as
its multiplicative form may rule out certain representations. The link between
noncausality and noninvertibility could be shown to exist in the Monte Carlo
simulations, and the risk of misspeci�cation has been minimised by the selec-
tion of lag and lead orders. Second, the multivariate t-distribution provides
a simple departure from Gaussianity by adding a single volatility term to
the error term that may contain both anticipated and unanticipated shocks.
Hence, establishing identi�ability and estimation theory for more general
non-Gaussian distributions or conditional heteroskedasticity can be viewed
as useful extensions. I leave these considerations for subsequent research.
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Appendices

4.A Noncausal representation of a noninvertible VARMA
model

To derive (4.5), let l roots of jB(z)j lie inside the unit circle with l0 roots equal
to zero. By standard algebra, jB(z)j as scalar polynomial of order kd can be
factorised to jB(z)j = zl0(1 � z� 1

l0+ 1z) . . . (1 � z� 1
kd z), and

jB(z)j � 1 = z� l0

 
l

Õ
i= l0+ 1

(1 � z� 1
i z)

! � 1  
kd

Õ
i= l+ 1

(1 � z� 1
i z)

! � 1

= z� l c̄l a(z� 1) � 1b(z) � 1

with

a(z� 1) = Õ l
i= l0+ 1(1 � ziz� 1), b(z) = Õ kd

i= l+ 1(1 � z� 1
i z),

and c̄l = ( � 1) l � l0 Õ l
i= l0+ 1 zi . Now, scalars a(z� 1) � 1 and b(z) � 1 are well-

de�ned power series expansions in z� 1 and z, respectively, decaying to zero
at geometric rate. Consequently, the inverse of B(z) is

B(z) � 1 = z� l c̄l a(z� 1) � 1b(z) � 1Badj(L),

where Badj(z) is the adjoint matrix of B(z) of degree at most (k � 1)d. Hence,

L� l c̄l b(L) � 1Badj(L)a(L� 1) � 1A(L)yt = ut

or

c̄l b(L) � 1Badj(L)a(L� 1) � 1A(L)yt = ut � l
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4.B Maximum likelihood estimation of the noncausal VAR model

4.B Maximum likelihood estimation of the noncausal
VAR model

The log-likelihood function of the noncausal VAR is

l (q) =
T� s

å
t= r+ 1

log f (et (u)0S� 1et (u); l )

with density f (�; l ) of the multivariate t, u = ( p , f ), p = vec(P ), f = vec(F ),
scale matrix S, degrees-of-freedom parameter l , and residuals

et (u) = vt (f ) �
r

å
j= 1

P j (p )vt � j (f ),

where

vt (f ) = yt � F 1(f )yt+ 1 � . . . � F s(f )yt+ s.

Derived by Lanne and Saikkonen (2013), the maximum likelihood estimator
is asymptotically normal as

p
T(q̂ � q0) d! N (0, I qq(q0) � 1)

with I qq(q0) = � (T � r � s) � 1E
h

¶2l (q0)
¶q¶q

i
. I qq(q0) can be consistently estimated

by � (T � r � s) � 1 ¶2l (q̂)
¶q¶q0 .

4.C Details on the stylised example

4.C.1 Derivation of the MA coef�cients

The MA coef�cients Y j of the noncausal VAR (4.16) solve recursion

Y j = P j
1 + F 1Y j+ 1 + F 2Y j+ 2, j � 0

Y j = F 1Y j+ 1 + F 2Y j+ 2, j < 0.
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By solving for each j,

Y j =
�

r j 0
qr j 0

�
, j > 0,

Y0 =
�

1 0
brq 1

�

Y j =
�

0 0
qb� j 0

�
, j = � 1, � 2

Y j = 0, j < � 2,

the impulse responses are computed from

yt =
¥

å
j= � ¥

Y jet � j =
¥

å
j= � ¥

Y j

�
1 0
1 1

� �
#a

t � 2� j
nt � j

�

=
¥

å
j= � ¥

"
y j,11#a

t � 2� j + y j,12(#a
t � 2� j + nt � j )

y j,21#a
t � 2� j + y j,22(#a

t � 2� j + nt � j )

#

as

¶at+ j

¶#a
t � 2

= y 11,j + y 12,j = y 11,j ,
¶at+ j

¶nt
= y 12,j = 0,

¶xt+ j

¶#a
t � 2

= y 21,j + y 22,j ,
¶xt+ j

¶nt
= y 22,j ,

where y k,mn is the (m,n) element of matrix Y j . The impulse responses from
the noncausal model to the anticipated shock #a

t � 2 are thus

¶at+ j

¶#a
t � 2

=
�

r j , j � 0
0, j < 0

,
¶xt+ j

¶#a
t � 2

=

8
<

:

qr j , j � 0
qb� j , � 2 � j < 0
0, j < � 2

,

which coincide with the theoretical impulse responses.
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4.C.2 Noncausal representation with a more general technol-
ogy process

Instead of (4.11), consider a more general technology process

at = r at � 1 + #a
t � q + c#a

t , (4.24)

and assume it determines the equilibrium together with (4.12). Accordingly,
a shock #a

t affects both at and at+ q such that agents gradually learn about the
future technology q periods forward. 34 If c < 1, #a

t has a greater contribution
to at+ q than to at , in which case the ARMA process for at is primarily driven
by shocks observed by the economic agents beforet.

The solution can now be derived from (4.13) such that xt = qzt + nt for
q = 0 and

xt = qat + q
q� 1

å
j= 0

bq� j#a
t � j (4.25)

for q > 0. Let now the anticipation horizon be q = 2. By inserting (4.11) to the
latter equation and collecting terms, yt = ( at , xt )0 follows

yt =
�

r 0
qr 0

�
yt � 1 +

�
c + L2 0

q(b2 + c ) + qbL + qL2 1

�

| {z }
= B(L)

�
#a

t
nt

�
. (4.26)

If movements in the exogenous process for at are dominated by the antici-
pated lag term, i.e. c < 1 and q > 0, yt = ( at , xt ) is noninvertible in the
past since jB(z)j = 0 for z = �

p
c i. In other words, as soon as the news

shock contributes to at relatively more, c < 1, the observables suffer from
nonfundamentalness and no causal VAR representation in terms of yt exists
for structural shocks ut = ( #a

t , nt ).
As before, the solution can be written in terms of future observables. In

particular, rewriting the noninvertible process (4.24) as

(1 � r L)at = ( L2 + c )#a
t , (4.27)

34Walker and Leeper (2011) describe#a
t as a correlated news shock. An example with a similar

process is also considered in Beaudry and Portier (2014).
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and its right-hand side as (1 + c L� 2)#a
t � 2, the modi�ed lag polynomial, 1 +

cz2, has no roots smaller than one in modulus such that (4.27) implies

(1 � r L)(1 + c L� 2) � 1at = #a
t � 2. (4.28)

Therefore, at is noncausal with a time-shifted error, and the shock #a
t � 2 is a

function of the past and future values of at . Using the representation (4.28) to
substitute the shocks #t � 1 and #t in (4.26), xt has a noncausal form,

xt = r at � 1 +
�

b � cr + q(b2 + c )L� 1
� ¥

å
j= 0

(� c L� 2) j at+ 1 + #a
t � 2 + nt (4.29)

consisting of an in�nite number of leads of at . Furthermore, at and xt in (4.28)
and (4.29) satisfy

( I2 � P 1L)( I2 � F 1L� 1 � F 2L� 2 � . . .)yt = et , (4.30)

with

F j =
�
f j,11 0
f j,21 0

�
,

f j,11 =

(
0, j = 1, 3, . . .

� (� c )
j
2 , j = 2, 4, . . .

,

f j,21 =

(
b(� c )

j � 1
2 , j = 1, 3, . . .

q(b2 + c )( � c )
j
2 � 1, j = 2, 4, . . .

.

and the error term

et =
�
1 0
1 1

� �
#a

t � 2
nt

�
.

In particular, the noncausal representation (4.30) is directly related to the un-
derlying model when the in�nite number of lead terms is truncated by large
lead order s, and the noncausal VAR(1,s) recovers a linear combination of
structural shocks #a

t � 2 and nt .
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4.D Solution to the identification problem

Figure 4.10: Theoretical and empirical impulse response functions of the
model with q = 2, b = 0.9, r = 0.9 and c = 0.5
The upper �gures show the theoretical impulse responses of at and xt to shocks #a

t and nt . The
lower row plots the impulse responses obtained from the MA representation of the noncausal
VAR to the shocks in the error term, #a

t � 2 and nt .

Finally, the MA coef�cients are numerically obtained from recursions

Y j = P j
1 + F 1Y j+ 1 + . . .+ F SY j+ S, j � 0

Y j = F 1Y j+ 1 + . . .+ F SY j+ S, j < 0,

where S is a suf�ciently large integer. The impulse responses of the noncausal
VAR(1,s) and the theoretical model are now plotted in the lower and upper
plots of Figure 4.10, respectively, for c = 0.5. Similar to Figure 4.1, the non-
causal impulse responses replicate the theoretical counterparts shown in the
upper panel.

4.D Solution to the identi�cation problem

w1 solves
max

w1
W[H1,H2]

1,y1,t
, (4.31)
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W[H1,H2]
1,y1,t

=
E[å H2

j= H1
e0
1Y j Ãw1ū1,t � j ū0

1,t � jw
0
1Ã0Y0

je1]

E
h
å H2

j= H1
e0
1Y jSY0

je1

i =
å H2

j= H1
e0
1Y j Ãw1w0

1Ã0Y0
je1

å ¥
j= � ¥ e0

1Y jSY0
je1

,

(4.32)
subject to the orthogonality of W, w0

1w1 = 1.
Solving the problem follows Uhlig (2004). By rewriting

e0
1Y j Āw1w0

1Ā0Y0
je1 = tr

�
e0
1Y j Āw1w0

1Ā0Y0
je1

�

= tr
�

w0
1Ā0Y0

je1e0
1Y j Āw1

�

= tr
�

w0
1Ā0Y0

j E11Y j Āw1

�

= tr
�
w0

1Skw1
�

,

the nominator of the objective function is

H2

å
j= H1

w0
1Sjw1 = w0

1S̄w1

As the denominator is independent of w1, the problem can be solved by setting
up the Lagrangian

L = w0
1S̄w1 � m(w0

1w1 � 1).

The �rst-order condition is
S̄w1 = mw1,

and since w0
1mw1 = m, the eigenvector corresponding to the maximal eigen-

value of the positive de�nite matrix S̄ is the optimum.

4.E Monte Carlo simulations

4.E.1 NK model of Section 4.3

Equilibrium is determined by equations

ỹt = �
1
s

( i t � Etp t+ 1 � rn
t ) + Et ỹt+ 1

p t = bEt [p t+ 1] + kỹt ,

i t = r (1 � r m) + r mi t � 1 + f p p t + f yỹt + #m
t ,
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4.E Monte Carlo simulations

Discount factor b 0.99
Risk averion s 2
Frisch elasticity f 1
Calvo paremeter q 2/3
Capital share a 1/3
Elasticity of substitution # 6
Taylor rule coef�cient for in�ation F p 1.5
Taylor rule coef�cient for output gap F y 0.5/4
Persistence of interest rate r m 0.8
Persistence of technology r a 0.9

Table 4.2: Calibration of the New Keynesian Model

by rn
t = r + sy n

yaEtDat+ 1 and technology (4.23). Coef�cients are functions of
deep parameter of the model:

k = l (s +
f + a
1 � a

),

l =
(1 � q)(1 � bq)

q
Q

Q =
(1 � a

1 � a + a#

y ya =
1 + f

s(1 � a) + f + a

The calibration is summarised in Table 4.2.

4.E.2 Further simulation results

Figure 4.11 plots the impulse responses in the causal VAR models, where the
observables induce fundamentalness. In Figure 4.12, the results are shown for
the underlying model, where news and noise shocks are equally important.
Figure 4.13 plots the impulse responses when the shocks are generated from
an alternative non-normal distribution.
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(a) su = 0.5

(b) su = 1

Figure 4.11: Impulse responses to a news shock from the causal VAR(5) with
y2

t = ( at , i t , p t ) in the NK model with q = 3 and su 2 f 0.5, 1g
The VAR estimates are the periodwise medians of impulse responses from the Monte Carlso samples. The
dashed lines and solid marked lines refer to the Barsky-Sims (B-S) and Max Share (MS) identi�cation, re-
spectively. The light and dark grey shaded areas border the middle 90 and 68 percent, respectively, of the
distribution for the estimated impulse responses. The solid lines are the theoretical impulse responses.

(a) Causal VAR(3) on y1
t = ( at , ỹt , p t )

(b) Noncausal VAR(1,2) on y2
t = ( at , i t , p t )

Figure 4.12: Impulse responses to a news shock from a causal and noncausal
VAR in the NK model with q = 3 and su = 1
The solid lines are the theoretical impulse responses, aligned in panel (b) with the estimated noncausal impulse
responses according to the maximum impact on technology. For additional explanations, see Figure 4.11
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4.E Monte Carlo simulations

(a) q = 3: Noncausal VAR(1,2) on y1
t = ( at , ỹt , p t )

(b) q = 16: Noncausal VAR(4,2) on y1
t = ( at , ỹt , p t )

Figure 4.13: Impulse responses to a news shock from noncausal models in the
NK Model with su = 0.5 and fat-tailed shocks
The model is simulated by structural shocks drawn in the following way. First, draw ut from N (0, I ). Second,
multiply ut with probability 0.1 by 3 to put weight on tails. Last, standardise the new error series and simulate
yt . The dashed lines are the median estimated impulse responses from the Monte Carlo samples. Light and dark
grey shaded areas border the middle 90 and 68 percent, respectively, of the distribution for estimated impulse
responses. The solid lines depict the theoretical impulse responses, aligned with the estimated noncausal
impulse responses according to the maximum impact on technology. The orderes of the models are those from
the most selected speci�cation according to AIC.
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4.F Details on the empirical part

4.F.1 Bayesian estimation of the noncausal VAR

I refer to Lanne and Luoto (2016) in the derivation of the following Gibbs
sampler algorithm. I additionally consider zero restrictions on the elements
of F i , i = 1, . . . ,s. Let P and F be matrices stacking P 0

i for i = 1, . . . ,r and F 0
i

for i = 1, . . . ,s, respectively. Furthermore, write p = vec(P ) and f = vec(F ),
J = ( p 0, f 0)0 and q = ( p 0, f 0, vech(S)0, l )0. To impose s� zero restrictions on
matrix F to satisfy (4.9), introduce an ((n2s � s� ) � 1) vector f r containing the
unrestricted parameters of F and an (n2s � (n2s � s� )) deterministic matrix
Rf which maps the unrestricted parameters to the matrix F as f = Rf f r .

The approximate conditional joint density of y = ( y1, . . . ,yT) on w =
(wr+ 1, . . . ,wT� s) is

p(yjw, q) �
T� s

Õ
r+ 1

p(et (J)jwt , S)

with

p(et jwt , S) =
wn/2

t

(2p )n/2 jSj1/2
exp

�
�

1
2

wtet (J)0S� 1et (J)
�

,

et (J) = vt (f ) �
r

å
j= 1

P j (p )vt � j (f ),

and
vt (f ) = yt � F 1(f )yt+ 1 � . . . � F s(f )yt+ s.

The prior distributions are set as follows: p � N (p , Vp ) I (p ), f r � N (f
r
,

V f r
) I (f ), S � iW (S, n) and l � Exp( l ), where I (�) is indicator function

equal to 1 when the polynomial to which p or f is mapped is stable and
iW denotes the inverse Wishart distribution. Furthermore, de�ne the fol-
lowing matrices. First, stack y�

t = w1/2
t P (L)yt to a (T � r � s)n � 1 vec-

tor y � , and X �
t = w1/2

t P (L)X t to a (T � r � s)n � sn2 matrix X� , where
X t = In 
 [y0

t+ 1 � � � y0
t+ s]

0. De�ne similarly matrices Y and U by stacking

v�
t = w1/2

t v0
t (f ) and U �

t = w1/2
t [v0

t � 1(f ) � � � v0
t � r (f )]0, respectively, for t =

r + 1, . . . ,T � s.

Following Lanne and Luoto (2016), the full conditional posterior distribu-
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tion of f r can be derived as

f r jy, p , S, w � N ( f̄ r , V̄f r ) I (f ), f = Rf f r

V̄ � 1
f r

= V � 1
f r

+ R0
f X� 0WX� Rf , f̄ = V̄f r

�
V � 1

f r
f

r
+ R0

f X� 0WY�
�

and W = IT� r � s 
 S� 1. The conditional distribution of p reads as

p jy, f , S, w � N (p̄ , V̄p ) I (p ),

V̄ � 1
p = V � 1

p + S� 1 
 U0U, p̄ = V̄p

�
V � 1

p f + vec
�

U0YS� 1
��

De�ning further S̄ = S + E0E, E = Y � UP and n̄ = n + T � s � r, the
conditional posterior distribution for S is

Sjy, p , f , w � iW (S̄, n̄).

The remaining paremeters w = ( wr+ 1, . . . ,wT� r � s) and l are jointly drawn
from

�
l + et (J)0S� 1et (J)

�
wt jy, p , f , S, l � c2( l + n), t = r + 1, . . . ,T � s

and with Metropolis-within-Gibbs step from kernel

p( l jy, w) µ
�

2l /2 G( l /2 )
� � (T� r � s)

l l (T� r � s)/2

 
T� s

Õ
t= r+ 1

w( l � 2)/2
t

!

(4.33)

exp

"

�

 
1
l

+
1
2

T� s

å
t= r+ 1

wt

!

l

#

. (4.34)

In the last step, I use the univariate normal distribution with mean equal
to the mode and variance equal to the inverse of the second hessian of the
above kernel as a candidate distribution. The standard Metropolis-Hastings
acceptance probability is computed using (4.34).

I use the following Minnesota-Litterman type prior distribution. I set the
means of p and f r , p and f

r
, to 0, and the coef�cients are assumed, a priori,

independent by having zeros on the off-diagonals of covariance matrices Vp
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and V f r
. On the other hand, s2

p ,ijl and s2
f r ,ijl

, the diagonal elements of Vp and
V f r

corresponding to the l th lag or lead of variable j in equation i are given
by

sp ,iil =
g1,p

lg3
, sp ,ijl = g2

g1,p

lg3

si

sj
, i = 1, . . . ,n, j = 1, . . . ,n, l = 1, . . . ,r,

sf r ,iil =
g1,f

lg3
, sf r ,ijl = g2

g1,f

lg3

si

sj
, i = 2, . . . ,n, j = 1, . . . ,n, l = 1, . . . ,s.

Last, the prior variance corresponding to the unrestricted lead coef�cients of
the TFP equation I set

sf r ,11l =
g11,f

lg3
, l = 1, . . . ,s.

Here, si is estimated as the residual standard error from a univariate autore-
gression with r + s lags on the ith variable, g1,p , g1,f and g11,f control for over-
all tightness, g2 for relative tightness and g3 is a decay parameter for more
distant lags and leads. For the tightness parameters regarding the lag coef�-
cients, I use values g1,p = 0.2, g2 = 0.5 and g3 = 1, standard in the Bayesian
VAR literature. For the lead coef�cients, I set g1,f = 0.15, which shrinks the
lead coef�cients moderately but somewhat more towards zero. Last, I do not
strictly shrink the variance corresponding to the lead coef�cients of the TFP
equation, with g11,f = 1, to allow – a priori – TFP to react to its own shock at
the negative lags. Last, I use the following values for the remaining hyperpa-
rameters: S = ( n � n � 1)diag(s2

1 , . . . ,s2
n) with degrees-of-freedom parameter

n = n + 2 and l = 10.

4.F.2 On the convergence of the posterior sampling

Using the algorithm, I draw 50,000 draws from the posterior distribution in
addition to 1,000 burn-in draws. The algorithm is proceeded in �ve rounds
such that every 10,000th draw is started from a new initial value. The paths of
the Markov chains plotted in Figures 4.14 and 4.15 clearly suggest convergence
of the algorithm.
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(a) p

(b) f

Figure 4.14: Paths of the Markov chains for the lag and lead coef�cients of the
baseline noncausal VAR(4,4) model
The x-axes correspond to the draws, the y-axes to the parameter values
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(a) vech(S) (b) l

Figure 4.15: Paths of the Markov chains for the covariance matrix and the
degrees-of-freedom parameter of the baseline noncausal VAR(4,4) model
The x-axes correspond to the draws, the y-axes to the parameter values
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4.F.3 Impulse responses from the additional speci�cations

(a) Model including the stock price index

(b) Model including the real wage

Figure 4.16: Impulse responses of the remaining variables in the speci�cations
with additional variables
Impulse responses to the baseline variables not shown in Figure 4.8. The black solid lines are the posterior
median responses to the news shock from the noncausal VAR(4,4) model. The dashed and marked lines depict
the impulse responses from the causal VAR(4) model, the news shock identi�ed with the Barsky-Sims (B-S) and
Max Share (MS) strategy, respectively. All responses are shown in levels. Light and dark grey shaded areas are
the 90 and 68 percent periodwise credible sets.
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Evidence on news shocks under information deficiency

(a) Model including consumer con�dence

(b) Model including R&D expenditures

Figure 4.17: Impulse responses of the remaining variables in the speci�cations
with additional variables
Impulse responses to the baseline variables not shown in Figures 4.8. The black solid lines are the posterior
median responses to the news shock from the noncausal VAR(4,4) model. The dashed and marked lines depict
the impulse responses from the causal VAR(4) model, the news shock identi�ed with the Barsky-Sims (B-S) and
Max Share (MS) strategy, respectively. All responses are shown in levels. Light and dark grey shaded areas are
the 90 and 68 percent periodwise credible sets.
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4.F Details on the empirical part

Figure 4.18: Impulse responses of the remaining variables in the speci�cation
including the interest rates
Impulse responses to the baseline variables not shown in Figure 4.9. The black solid lines are the posterior
median responses to the news shock from the noncausal VAR(4,4) model. The dashed and marked lines depict
the impulse responses from the causal VAR(4) model, the news shock identi�ed with the Barsky-Sims (B-S) and
Max Share (MS) strategy, respectively. All responses are shown in levels. Light and dark grey shaded areas are
the 90 and 68 percent periodwise credible sets.
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