Prestroke CHA2DS2-VASc Score and Severity of Acute Stroke in Patients with Atrial Fibrillation: Findings from RAF Study

Monica Acciarresi, MD,1 Maurizio Paciaroni, MD,1 Giancarlo Agnelli, MD,1 Nicola Falocci, PhD,1 Valeria Caso, MD, PhD,1 Cecilia Becattini, MD,1 Simona Marcheselli, MD,2 Christina Rueckert, MD,3 Alessandro Pezzini, MD,4 Andrea Morotti, MD,4 Paolo Costa, MD,4 Alessandro Padovani, MD, PhD,4 Laszló Csiba, MD,5 Lilla Szabó, MD,5 Sung-Il Sohn, MD, PhD,6 Tiziana Tassinari, MD,7 Azmil H. Abdul-Rahim, MD,8 Patrik Michel, PD-MER,9 Maria Cordier, MD,9 Peter Vanacker, MD,10 Suzette Remillard, MD,9 Andrea Alberti, MD,1 Michele Venti, MD, PhD,1 Cataldo D’Amore, MD,1 Umberto Scoditti, MD,11 Licia Denti, MD,12 Giovanni Orlandi, MD,13 Alberto Chiti, MD,13 Gino Gialdini, MD,13 Paolo Bovi, MD,14 Monica Carletti, MD,14 Alberto Rigatelli, MD,14 Jukka Putaala, MD,15 Turgut Tatlisumak, MD,15,16 Luca Masotti, MD,17 Gianni Lorenzini, MD,17 Rossana Tassi, MD,18 Francesca Guideri, MD,18 Giuseppe Martini, MD,18 Georgios Tsivgoulis, MD,19,20,21 Kostantinos Vadikolas, MD,19 Chrissoula Liantinioti, MD,21 Francesco Corea, MD, PhD,22 Massimo Del Sette, MD,23 Walter Ageno, MD,24 Maria Luisa De Lodovici, MD,25 Giorgio Bono, MD,25 Antonio Baldi, MD,26 Sebastiano D’Anna, MD,26 Simona Sacco, MD,27 Antonio Carolei,27 Cindy Tiseo, MD,27 Davide Imberti, MD,28 Dorjan Zabzuni, MD,28 Boris Doronin, MD,29 Vera Volodina, MD,29 Domenico Consoli, MD,30 Franco Galati, MD,30 Alessio Pieroni, MD,31 Danilo Toni, MD, PhD,31 Serena Monaco, MD,32 Mario Maimone Baronello, MD,32 Kristian Barlinn, MD,33 Lars-Peder Pallesen, MD,33 Jessica Kepplinger, MD,33 Ulf Bodechtle, MD,33 Johannes Gerber, MD,33 Dirk Deleu, MD,34 Gayane Melikyan, MD,34 Faisal Ibrahim, MD,34 Naveed Akhtar, MD,34 Maria Giulia Mosconi, MD,1 and Kennedy R. Lees, MD8
Background and Purpose: The aim of this study was to investigate for a possible association between both prestroke CHA2DS2-VASc score and the severity of stroke at presentation, as well as disability and mortality at 90 days, in patients with acute stroke and atrial fibrillation (AF). Methods: This prospective study enrolled consecutive patients with acute ischemic stroke, AF, and assessment of prestroke CHA2DS2-VASc score. Severity of stroke was assessed on admission using the National Institutes of Health Stroke Scale (NIHSS) score (severe stroke: NIHSS ≥10). Disability and mortality at 90 days were assessed by the modified Rankin Scale (mRS < 3 or ≥3). Multiple logistic regression was used to correlate prestroke CHA2DS2-VASc and severity of stroke, as well as disability and mortality at 90 days. Results: Of the 1020 patients included in the analysis, 606 patients had an admission NIHSS score lower and 414 patients higher than 10. At 90 days, 510 patients had mRS ≥3. A linear correlation was found between the prestroke CHA2DS2-VASc score and severity of stroke (P = .001). On multivariate analysis, CHA2DS2-VASc score correlated with severity of stroke (P = .041) and adverse functional outcome (mRS ≥3) (P = .001). A logistic regression with the receiver operating characteristic graph procedure (C-statistics) evidenced an area under the curve of .60 (P = .0001) for severe stroke. Furthermore, a correlation was found between prestroke CHA2DS2-VASc score and lesion size. Conclusions: In patients with AF, in addition to the risk of stroke, a high CHA2DS2-VASc score was independently associated with both stroke severity at onset and disability and mortality at 90 days. Key Words: Ischemic stroke—CHA2DS2-VASc score—severity—outcome—atrial fibrillation—scores.
Background and Purpose

In patients with atrial fibrillation (AF), current guidelines recommend using the CHA2DS2-VASc score to assess the risk of stroke. In retrospective studies, CHA2DS2-VASc score has been suggested as a predictor of severity of stroke on admission and poor outcome.

The aim of this study was to investigate for a possible association between both prestroke CHA2DS2-VASc score and the severity of stroke at presentation, as well as disability and mortality at 90 days, in patients with acute stroke and AF.

Methods

Data for this analysis were extracted from the database of a prospective multicenter study which had enrolled consecutive patients with acute stroke and AF (the RAF study). This study, carried out between January 2012 and March 2014, enrolled 1029 consecutive patients from 29 stroke units throughout Europe and Asia.

Prestroke CHA2DS2-VASc score was evaluated as previously described. On admission, the severity of acute stroke was assessed using the National Institutes of Health Stroke Scale (NIHSS); all investigators were certified on the use of this scale. Disability and mortality at 90 days were assessed using the modified Rankin Scale (mRS).

A cerebral computed tomography (CT) or magnetic resonance was performed on admission for all patients to exclude intracranial hemorrhage. A second cerebral CT scan or magnetic resonance was performed 48-72 hours from stroke onset. The sites and sizes of the qualifying infarcts were determined based on standard templates as previously described.

Statistical Analysis

The primary prespecified a priori study question was if CHA2DS2-VASc score had been associated with stroke severity assessed by the NIHSS at onset. Then, as a posthoc analysis, possible correlations between CHA2DS2-VASc scores and outcome assessed by mRS and between CHA2DS2-VASc scores and lesion size were investigated.

The admission NIHSS score was evaluated both as a continuous variable for the correlation coefficient r analysis and as a dichotomized variable (severe stroke NIHSS ≥10) for the multivariate analysis.

The correlation coefficient r, Pearson product-moment correlation coefficient, was used to measure the strength of the linear association between CHA2DS2-VASc before the event and NIHSS score on admission (as continuous variable).

Correlations between prestroke CHA2DS2-VASc and severity of stroke were sought by multiple logistic regression after adjusting for the following variables: smoking, hyperlipidemia, alcohol abuse, and use of statins in addition to CHA2DS2-VASc.

Thereafter, the probability of a receiver operating characteristic curve against NIHSS ≥10 as dependent variable was plotted. The area under this curve suggests an ability of the CHA2DS2-VASc score to predict for severe stroke, which is also referred to as the C-statistics (Harrell’s C).

The factors evaluated as independent predictors of 3-month adverse outcome (defined as mRS ≥3 or death) were assessed using multiple logistic regression analysis. The variables included in the model were CHA2DS2-VASc score, cardiovascular risk factors, reperfusion therapy, and severity of stroke on admission according to the NIHSS score.

The sites and sizes of the qualifying infarcts shown on CT scan were determined based on standard templates as follows: (1) small, when a lesion was ≤1.5 cm in the anterior or posterior circulation; (2) medium, when a lesion was in a cortical superficial branch of the middle cerebral artery (MCA), in the MCA deep branch, in the internal border zone territories, in a cortical superficial branch of the posterior cerebral artery, in the posterior cerebral artery branch, or in a cortical superficial branch of the anterior cerebral artery (ACA); (3) large anterior, when a lesion involved the complete territory of middle cerebral artery (MCA), posterior cerebral artery (PCA), or ACA in 2 cortical superficial branches of MCA, in a cortical superficial branch of MCA associated with the MCA deep branch, or in more than 1 artery territory (e.g., MCA associated with ACA territories); and (4) large posterior, when a lesion was ≥1.5 cm in the brain stem or cerebellum.

A possible correlation between lesion size and CHA2DS2-VASc score was investigated using chi-square test (P for trend).

Results

Overall, 1029 consecutive patients were included in the study (mean age: 77.2 ± 9.5 years; 560 females and 469 males). The distribution of CHA2DS2-VASc score in the study patients is reported in Table 1.

Nine patients were excluded from the analysis as their NIHSS score was not available. Of the 1020 patients included in the analysis, 606 patients had an admission NIHSS score lower and 414 patients higher than 10. The mean NIHSS scores for each of the CHA2DS2-VASc scores are reported in Table 1 (P = .071). A linear correlation was found between severity of stroke and CHA2DS2-VASc score (r²: 0.010, P = .001) (Fig 1). On multivariate analysis, CHA2DS2-VASc score correlated with severity of stroke (odds ratio [OR]: 1.084, 95% confidence interval [CI]: 1.003-1.172, P = .041, for each 1-point increase). Considering the
modest correlation, a logistic regression with a receiver operating characteristic graph procedure, to get the C-statistics, was performed and it evidenced that the area under the curve was .60 (.56-.63), \(P = .0001 \) for severe stroke.

When every single components of the CHA\(_2\)DS\(_2\)-VASc score were assessed for a correlation with stroke severity, only increasing age and female sex were significantly correlated with stroke severity according to NIHSS (\(P = .007 \) and \(P = .001 \), respectively) (Table 2).

A correlation was also found between prestroke CHA\(_2\)DS\(_2\)-VASc score and lesion size. After excluding patients treated with revascularization, 70% of patients with CHA\(_2\)DS\(_2\)-VASc score of 8 or 9 had a medium-large lesion, whereas 70% of patients with CHA\(_2\)DS\(_2\)-VASc score of 0 had a small lesion (Fig 2, \(P \) for trend = .042).

Table 1. Stroke severity (NIHSS) and 90-day outcome according to prestroke CHA\(_2\)DS\(_2\)-VASc score

<table>
<thead>
<tr>
<th>CHA(_2)DS(_2)-VASc score</th>
<th>Prestroke CHA(_2)DS(_2)-VASc (n = 1029)</th>
<th>NIHSS on admission (mean)(^*) (n = 1020(^\dagger))</th>
<th>90-day mRS score (\geq 3)(^\ddagger) (n = 1019(^\S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17 (1.7%)</td>
<td>5.18 ± 5.75</td>
<td>4/17 (23.5%)</td>
</tr>
<tr>
<td>1</td>
<td>54 (5.2%)</td>
<td>8.30 ± 8.16</td>
<td>16/53 (30.2%)</td>
</tr>
<tr>
<td>2</td>
<td>91 (8.9%)</td>
<td>8.31 ± 6.70</td>
<td>34/90 (37.7%)</td>
</tr>
<tr>
<td>3</td>
<td>200 (19.4%)</td>
<td>8.86 ± 7.10</td>
<td>81/198 (40.9%)</td>
</tr>
<tr>
<td>4</td>
<td>243 (23.6%)</td>
<td>9.12 ± 7.22</td>
<td>125/242 (51.6%)</td>
</tr>
<tr>
<td>5</td>
<td>206 (20.0%)</td>
<td>9.67 ± 7.73</td>
<td>113/202 (55.9%)</td>
</tr>
<tr>
<td>6</td>
<td>129 (12.8%)</td>
<td>9.70 ± 6.50</td>
<td>78/129 (60.5%)</td>
</tr>
<tr>
<td>7</td>
<td>66 (6.4%)</td>
<td>10.30 ± 8.20</td>
<td>43/65 (66.1%)</td>
</tr>
<tr>
<td>8-9</td>
<td>23 (2.2%)</td>
<td>12.09 ± 6.68</td>
<td>16/23 (69.6%)</td>
</tr>
</tbody>
</table>

Abbreviations: mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale.

\(^* P \) for trend = .071.

\(^\dagger P \) for trend = .0001.

\(^\ddagger \)Nine patients were excluded from the analysis as their NIHSS score was not available.

\(^\S \)1019 patients were available for the final functional outcome analysis (10 patients were lost to follow-up).

Figure 1. Linear correlation between NIHSS on admission and CHA\(_2\)DS\(_2\)-VASc score. Abbreviation: NIHSS, National Institutes of Health Stroke Scale.
At 90 days, 1019 patients were available for the functional outcome analysis (10 patients were lost to follow-up). The correlation between prestroke CHA2DS2-VASc score and 90-day outcome is reported in Table 1.

On multivariate analysis, both NIHSS score on admission and CHA2DS2-VASc score were correlated with disability and mortality at 90 days (mRS ≥ 3) (OR: 1.236, 95% CI: 1.197-1.277, $P < .0001$; OR: 1.278, 95% CI: 1.100-1.484, $P = .001$, respectively, for each point increase).

The administration of thrombolytic therapy and the use of statins on admission correlated with better outcome (OR: .313, 95% CI: .204-0.481, $P < .0001$; OR: .585, 95% CI: .354-0.967, $P = .036$, respectively).

Discussion

The results of our study found correlations between prestroke CHA2DS2-VASc score and severity of stroke at presentation, according to NIHSS, as well as between CHA2DS2-VASc score and 90-day mortality and disability, as measured by mRS, therein indicating that a higher CHA2DS2-VASc score is predictive of a worse outcome.

Moreover, in post-hoc analyses, we found, first, a correlation between higher CHA2DS2-VASc score and greater lesion size. This finding could support previous studies that have reported an association between CHA2DS2-VASc score and major vessel occlusion in patients with acute ischemic stroke and AF. Second, our study results are also in line with past studies reporting that among the risk factors, age and female sex are more predictive of severe stroke.

A strength of this study was that several stroke assessment scores were prospectively utilized, and each of these scores was correlated with CHA2DS2-VASc score, whereas several past studies were retrospective and used only a single assessment score.

In conclusion, we found that an increasing CHA2DS2-VASc score in AF patients predicted a more severe stroke at presentation, leading to a higher rate of disability and mortality at 90 days. This result highlights the need for physicians to more regularly investigate for AF in patients with other known vascular risk factors, especially increasing age and female sex.

References