Antiarrhythmic medication is superior to catheter ablation in suppressing supraventricular ectopic complexes in patients with atrial fibrillation

Christina Alhede a,⁎, Trine K. Lauridsen a,1, Arne Johannessen a,1, Ulrik Dixen b,1, Jan S. Jensen a,1, Pekka Raatikainen c,1, Gerhard Hindricks d,1, Haakan Walfridsson e,1, Ole Kongstad f,1, Steen Pehrson g,1, Anders Englund h,1, Juha Hartikainen i,1, Peter S. Hansen j,1, Jens C. Nielsen k,1, Christian Jons l,1

a Herlev-Gentofte University Hospital, Denmark
b Hvidovre University Hospital, Hvidovre, Denmark
c Helsinki University Hospital, Helsinki, Finland
d Leipzig University Hospital, Leipzig, Germany
e Linköping University Hospital, Linköping, Sweden
f Lund University Hospital, Lund, Sweden
Rigshospitalet, Copenhagen, Denmark
hf Orebro University Hospital, Orebro, Sweden
i Kupio University Hospital, Kupio, Finland
j Varde Heart Center, Varde, Denmark
k Aarhus University Hospital, Aarhus, Denmark

Article history:
Received 8 March 2017
Received in revised form 5 May 2017
Accepted 8 May 2017
Available online 10 May 2017

Keywords:
Arrhythmia
Treatment
Ablation
Premature ectopic beats
Recurrence

A B S T R A C T

Background: Supraventricular ectopic complexes (SVEC) originating in the pulmonary veins are known triggers of atrial fibrillation (AF) which led to the development of pulmonary vein isolation for AF. However, the long-term prevalence of SVEC after catheter ablation (CA) as compared to antiarrhythmic medication (AAD) is unknown. Our aims were to compare the prevalence of SVEC after AAD and CA and to estimate the association between baseline SVEC burden and AF burden during 24 months of follow-up.

Methods: Patients with paroxysmal AF (N = 260) enrolled in the MANTRA PAF trial were treated with AAD (N = 132) or CA (N = 128). At baseline and 3, 6, 12, 18 and 24 months follow-up patients underwent 7-day Holter monitoring to assess SVEC and AF burden. We compared SVEC burden between treatments with Wilcoxon sum rank test.

Results: Patients treated with AAD had significantly lower daily SVEC burden during follow-up as compared to CA (AAD: 19 [6–58] versus CA: 39 [14–125], p = 0.003). SVEC burden increased post-procedurally followed by a decrease after CA whereas after AAD SVEC burden decreased and stabilized after 3 months of follow-up. Patients with low SVEC burden had low AF burden after both treatments albeit this was more pronounced after CA at 24 months of follow-up. Lower SVEC burden was highly associated with lower AF burden during follow-up especially after CA.

Conclusion: AAD was superior to CA in suppressing SVEC burden after treatment of paroxysmal AF. After CA SVEC burden increased immediately post-procedural followed by a decrease whereas after AAD an early decrease was observed. Lower SVEC burden was highly associated with lower AF burden during follow-up especially after CA.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Today, first-line treatment of paroxysmal AF is antiarrhythmic medication or catheter ablation in selected patients [1]. However, challenges remain for both treatment methods; antiarrhythmic medication can be associated with severe adverse effects and the recurrence rate after catheter ablation remains high [1–3].

Numerous studies have demonstrated that ectopic complexes with short coupling interval are the primary trigger of AF paroxysms [4–8]. In the landmark study by Haïssaguerre et al., it was discovered that 94% of ectopic complexes initiating AF originated from the pulmonary veins which led to the current state-of-the-art catheter ablation strategy with pulmonary vein isolation [4]. However, patients with paroxysmal AF often experience frequent palpitations after catheter ablation...
which can be associated with reduced quality of life. Furthermore, our group and others have demonstrated that high prevalence of SVEC is highly associated with AF recurrence after catheter ablation [9–11] indicating that SVEC may be an important trigger of recurrent AF.

Furthermore, little knowledge exists about the prevalence of SVEC after treatment with antiarrhythmic medication. Kirchhof et al. demonstrated that flecainide prolongs the atrial post-repolarization refractoriness which hypothetically could suppress the prevalence of SVEC during treatment with flecainide [12]. However, it is unclear whether antiarrhythmic medication as compared to catheter ablation suppresses the prevalence of SVEC during long-term follow-up and whether SVEC burden is associated with long-term AF burden. Improving our knowledge of long-term SVEC burden may contribute to identify possible underlying mechanisms responsible for AF recurrence after treatment and add important prognostic evidence following treatment with antiarrhythmic medication or catheter ablation of paroxysmal AF. Thus, our aim was to investigate the long-term prevalence of SVEC after antiarrhythmic medication and catheter ablation, respectively and the association between baseline SVEC burden and long-term AF burden in patients with paroxysmal AF initially randomized to first-line treatment with antiarrhythmic medication or catheter ablation.

2. Methods

2.1. Population

The patients included in this study were enrolled in a randomized clinical trial The Medical Antiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA PAF) comparing antiarrhythmic medication and catheter ablation as first-line treatment of paroxysmal AF [13,14] (ClinicalTrials.gov number, NCT00133211). The study included 294 patients with symptomatic paroxysmal AF. Exclusion criteria were age >70 years, left atrial size >50 mm, left ventricular ejection fraction (LVEF)<40% and structural or valvular heart disease. The study was conducted according to the Helsinki Declaration and approved by regional ethics committees. All patients gave written consent before enrolment. No sex-based differences were present.

The patients were initially randomized to treatment with either antiarrhythmic medication or catheter ablation. In the current study patients who did not receive the initial assigned treatment or who did not undergo 7-day Holter monitoring at baseline were excluded, and a total of 260 patients were included in the study with 132 patients randomized and treated with antiarrhythmic medication and 128 patients undergoing catheter ablation.

2.2. Catheter ablation and antiarrhythmic medication

Wide antral ablation with encircling of ipsilateral veins combined with a posterior line was mandatory [14]. Additional ablation lines were on the operator’s discretion. The procedural endpoint was absence of high-frequency electrical activity (>0.2 mV) inside the encircled areas around the pulmonary veins. Antiarrhythmic medication was allowed during the blanking period of 3 months after the procedure, and 22 (17%) patients had amiodarone and 25 (20%) patients had flecainide within the blanking period. After the blanking period antiarrhythmic medication was discouraged. Patients in the catheter ablation group with symptomatic AF recurrence were offered re-ablation with re-pulmonary vein isolation and/or additional linear lines when clinically indicated (n = 53 (41%)).

First-line antiarrhythmic medication was flecainide at a dose of 200 mg per day or propafenone at a dose of 600 mg per day. In patients with contraindications for class IC antiarrhythmic drugs amiodarone at a dose of 200 mg per day or sotalol at a dose of 160 mg per day were used. In total, 123 (93%) were treated with flecainide, 4 (3%) with amiodarone, 2 (2%) with propafenone and 3 (2%) had sotalol as initial treatment. A β-blocker, calcium-channel blocker or digoxin was given supplementary to class IC agents according to institutional standards at the involved centers. Details of the recommended dosing have previously been reported [14].

2.3. Holter monitoring

Patients underwent 7-day Holter monitoring at baseline and after 3, 6, 12, 18, and 24 months follow-up. Patients randomized to catheter ablation underwent an additional 7-day Holter monitoring two days after the ablation. All Holter recordings were analysed at Aarhus University Hospital by the same experienced technician blinded with respect to randomization. All Holter recordings were scanned using Sentinel Pathfinder Digital (Spacelabs Healthcare) and interpreted using the interactive method. All episodes of AF and SVECs were recorded and summed during the entire recording period. SVEC were defined as supraventricular complexes occurring >30s earlier than expected compared to previous R-R interval.

In the present analysis, patients randomized to and treated with antiarrhythmic medication undergoing supplementary catheter ablation during follow-up as well as patients randomized to and treated with catheter ablation receiving supplementary antiarrhythmic medication during follow-up were censored at the time of non-adherence to the randomized treatment. Patients with 100% AF during Holter monitoring, who per definition do not have any supraventricular ectopics, were censored. No patients had AF 100% of the time during Holter monitoring at baseline. Patients with AF burden of <100% were included in the study. To account for AF episodes during Holter monitoring and slight variations in recording time we used median number of SVEC per day in sinus rhythm.

In order to estimate the change in SVEC burden during follow-up according to baseline SVEC burden, patients were allocated according to low, moderate and high SVEC burden defined as 0–25 SVEC/day, 25–100 SVEC/day and >100 SVEC/day. Further, high SVEC burden was defined as SVEC >100/day in correspondence to a report from Varoumis et al. [15] and AF burden was defined as the percentage of time in AF on each Holter monitoring.

2.4. Statistics

The long-term prevalence of SVEC after treatment with antiarrhythmic medication and catheter ablation of patients with paroxysmal AF was assessed. Continuous variables were presented as medians with 25th and 75th percentiles. Categorical variables were presented as frequencies and percentages of the specified group. Two-tailed P values <0.05 were pre-specified to indicate statistical significance.

Comparisons of baseline characteristics according to SVEC burden >100 SVEC/day were made with Student’s t-test for continuous variables and with χ² test or Fisher’s exact test for categorical variables. The distribution of continuous variables was assessed using visual inspection of the histogram.

Wilcoxon rank sum test was used to compare the difference in SVEC burden at follow-up visits between patients treated with antiarrhythmic medication and catheter ablation and to compare the changes in SVEC burden during follow-up as well as to compare median AF burden between patients with low, moderate and high SVEC burden at the same 7-day Holter monitoring during follow-up. Finally, in order to investigate SVEC burden and other patient characteristics associated with presence of AF on Holter monitoring we defined AF >0 on Holter monitoring at baseline and after 24 months of follow-up as endpoint and univariate and multivariate logistic regression models were used. Patient characteristics entered into the model were considered to be variables of interest or confounders and patient characteristics with a p < 0.10 remained in the final multivariate model. All analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, US).

3. Results

3.1. Study population

Baseline characteristics stratified by SVEC burden during baseline Holter monitoring are shown in Table 1. Patients with SVEC burden >100/day were older, fewer patients had previous cardiovascular, and they had more frequent AF episodes. Patients with >100 SVEC/day at baseline were equally distributed between patients treated with antiarrhythmic medication and catheter ablation, respectively.

3.2. Long-term SVEC burden

The long-term prevalence of SVEC per day from 7-day Holter monitoring at baseline and during 24 months of follow-up according to treatment is shown in Fig. 1. At baseline, SVEC burden was equally distributed in the two treatment groups (p = 0.8). In the catheter ablation group, an increase in the prevalence of SVEC was seen immediately after the ablation procedure. After 3 months, the SVEC burden decreased in patients treated with catheter ablation. Hereafter, SVEC burden stabilized through 24 months of follow-up. Patients treated with antiarrhythmic medication had a significantly lower prevalence of SVEC during follow-up compared to patients treated with catheter ablation throughout follow-up (p = 0.003). Furthermore, patients treated with antiarrhythmic medication showed a different pattern with an initial decrease followed by stabilization in SVEC burden 3 months after treatment initiation.

3.3. Change in SVEC burden

The average reduction in SVEC burden from baseline was 73% in patients treated with antiarrhythmic medication and 52% after catheter ablation at 24 months follow-up. In the antiarrhythmic medication
group, 26 (20%) patients experienced an increase in SVEC burden whereas this was the case for 46 (36%) patients in the catheter ablation group (p = 0.07).

We further assessed the average change in SVEC burden at 24 months follow-up according to baseline SVEC burden. Fig. 2 illustrates the reduction in the prevalence of SVEC in patients categorized with 0–25 SVEC/day, 25–100 SVEC/day or >100 SVEC/day at baseline after treatment with antiarrhythmic medication (Fig. 2A) and catheter ablation (Fig. 2B). Patients with SVEC burden of 0 SVEC/day experienced an insignificant reduction in SVEC burden after antiarrhythmic medication whereas patients treated with catheter ablation had a significant increase in SVEC burden.

3.4. AF burden according to SVEC burden

We further examined the association between AF burden and low, moderate and high SVEC burden measured from the same 7-day Holter monitoring during each follow-up visit in patients treated with antiarrhythmic medication [Fig. 3A] and catheter ablation [Fig. 3B], respectively. At each Holter monitoring, lower SVEC burden was associated with significantly lower AF burden during the same Holter monitoring in patients treated with antiarrhythmic medication. After catheter ablation, patients with lower SVEC burden also had significantly lower AF burden during follow-up than patients with higher SVEC burden. However, at 24 months of follow-up AF burden was very low in all three categories and we could not demonstrate a significant association between SVEC burden and AF burden.

Univariate and multivariate analyses of patient characteristics associated with presence of AF at baseline and 24 months of follow-up for patients treated with antiarrhythmic medication and catheter ablation, respectively, are illustrated in supplemental appendix (Tables 2–5). After multivariate adjustment, high SVEC burden measured at baseline and 24 months of follow-up, respectively, remained significantly associated with presence of AF at baseline (OR 9.0 [3.1–25.9], p < 0.0001) and after 24 months (OR 2.1 [6.4–20.0], p = 0.001) in patients treated with antiarrhythmic medication. After catheter ablation, high baseline SVEC burden were predictive of baseline presence of AF (OR 1.2 [3.4–9.8], p = 0.03) but SVEC burden measured at 24 months of follow-up was not associated with presence of AF on the same recording (OR 6.0 [0.6–70], p = 0.2). Finally, we performed sensitivity analyses with and without patients who changed treatment group and found no difference in the results.

4. Discussion

4.1. Major findings

In this study of patients with paroxysmal AF treated with antiarrhythmic medication or catheter ablation as first-line therapy, we found antiarrhythmic medication superior to catheter ablation in suppressing SVEC. Patients treated with catheter ablation demonstrated a different pattern during follow-up with an increase in SVEC burden immediately post-procedurally followed by a decrease and stabilization at 3 months of follow-up. In comparison, after antiarrhythmic medication, an early decrease and stabilization were observed. We further found that lower SVEC burden during follow-up were associated with lower long-term AF burden in both treatment groups albeit this was more pronounced in patients treated with catheter ablation. Our findings add to better understand the presence of supraventricular ectopic triggers after treatment of paroxysmal AF and the results indicate that SVEC burden is an important marker of AF burden after both antiarrhythmic medication and catheter ablation.

4.2. Long-term SVEC burden

Presence of non-pulmonary vein triggers may explain the higher SVEC burden in patients treated with catheter ablation. In a study by Takigawa, it was suggested that non-pulmonary vein triggers originating from other foci inside the left atrium are unmasked when the primary pulmonary vein triggers are removed [16]. Catheter ablation with pulmonary vein isolation primarily targets the ectopic complexes originating in the pulmonary veins [4,5,17,18] whereas flecainide-induced atrial post-repolarization refractoriness as demonstrated by Kirchhof et al targets both pulmonary and non-pulmonary triggers which may explain the lower SVEC burden in patients treated with antiarrhythmic medication [12]. Unfortunately, we could not study the origin of the ectopic complexes as we used a 3-lead set-up for Holter monitoring.

4.3. Ectopic activity post-procedural

The marked increase in SVEC burden immediately after catheter ablation may be attributed to acute inflammation caused by atrial tissue damage within the first 3 months after catheter ablation [19,20]. However, as previously demonstrated, because high SVEC burden immediately after catheter ablation predicts long-term AF recurrence it cannot be attributed to acute inflammation alone [11]. In comparison, we found an early decrease in SVEC burden in patients treated with antiarrhythmic medication. However, we could not compare SVEC burden immediately after initiation of antiarrhythmic medication because...
patients in the medication group did not undergo Holter monitoring immediately after initiation of treatment.

4.4. AF burden during follow-up

We found a lower AF burden in patients with lower SVEC burden during follow-up. This is in line with previous reports that demonstrated an increased risk of AF after catheter ablation with higher SVEC burden [9–11]. In the MANTRA PAF trial there was no difference in AF burden between the two treatments until 24 months where patients treated with catheter ablation had a slightly lower AF burden. This seems contradictory to our results where patients treated with catheter ablation had a higher SVEC burden during follow-up and higher SVEC burden was associated with higher AF burden. Due to the study design, we can only speculate on the cause of these findings. One explanation could be that only some patterns of SVEC may trigger AF depending on timing, prematurity, nature and origin rather than just the frequency of SVEC [21].

![Fig. 1. Long-term burden of supraventricular ectopic complexes after antiarrhythmic medication or catheter ablation. The burden of supraventricular ectopic complexes per day in sinus rhythm after antiarrhythmic medication and catheter ablation during 24 months of follow-up in patients with paroxysmal atrial fibrillation. Abbreviations: AAD indicates antiarrhythmic medication; CA, radiofrequency catheter ablation; SVEC, supraventricular ectopic complexes.](image1)

![Fig. 2. Change in the burden of supraventricular ectopic complexes after treatment with antiarrhythmic medication (A) and catheter ablation (B) Burden of supraventricular ectopic complexes at baseline and at 24 months of follow-up in patients treated with antiarrhythmic medication (A) or catheter ablation (B). Patients were categorized according to the baseline ectopy burden of 0–25 SVEC/day, 25–100 SVEC/day and >100 SVEC/day. Abbreviations: SVEC indicates supraventricular ectopic complexes.](image2)
24 months was very low in patients with the lowest SVEC burden whereas patients with low SVEC burden in the antiarrhythmic medication group had a higher AF burden. In this homogenous healthy study population with paroxysmal AF it is possible that most patients have pulmonary vein triggered AF and these patients benefit from catheter ablation if the SVECs originating in the pulmonary veins are removed. However, after antiarrhythmic medication SVECs seem to be removed but the patients may still have SVEC originating in the pulmonary vein that triggers recurrent AF which could explain the higher AF burden in these patients. In the MANTRA PAF trial a large proportion of patients in the antiarrhythmic medication group underwent additional catheter ablation and thus the results tend to overestimate the effect of antiarrhythmic medication which further complicates the interpretation.

Nevertheless, our results indicate that patients with high SVEC burden represent an interesting patient population and taken together, these data suggest that new opportunities exist to further understand the role of SVEC burden in predicting outcome or changing the management of patients undergoing treatment of paroxysmal AF.

4.5. Study limitations

This study was performed as a post hoc analysis of a previous clinical trial with all the statistical limitations implied therein.

A major limitation of our results is that presence of AF excludes presence of SVEC and this could have affected our results. In addition, there are some limitations in the detection of SVEC using Holter.
monitoring that should be addressed. First, due to the short coupling interval to the preceding sinus beat SVECs can be concealed in the T wave causing difficulty in detecting SVEC. Furthermore, atrial depolarization results in a deflection on the surface-ECG of approximately 0.1 mV, which can easily be obscured by electrostatic noise arising from movement, skeletal muscle myopotentials and impaired skin contact during long-term recordings. Noise interference is the major cause of computer inaccuracies and is a major limitation in this study [22].

Patients were censored at the time of non-adherence to the randomized treatment. However, the non-adherence was more pronounced in patients assigned to antiarrhythmic medication where a large proportion of patients underwent supplementary catheter ablation during follow-up, which could cause selection bias.

5. Conclusion

Our results demonstrate that antiarrhythmic medication is superior to catheter ablation in suppressing SVEC burden during treatment of paroxysmal AF. After catheter ablation SVEC burden increased immediately post-procedural followed by a decrease during follow-up whereas after antiarrhythmic medication an early decrease was observed. Finally, lower SVEC burden was highly associated with lower AF burden during follow-up especially after CA.

Funding

This study was supported by Hans and Nora Buchard’s Foundation, Aage and Gerda Hensch’s Foundation and Jens Anker Andersen’s Foundation.

Conflicts of interest

Christian Jons, MD CONSULTANT FEES/HONORARIA - Biotronik. Jens C. Nielsen, MD CONSULTANT FEES/HONORARIA - Biosense Webster,Biotronik.

No other conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ijijcard.2017.05.028.

References