Editorial

Seize the day and seize seizures after cardiac arrest

 Upon admission to the ICU after cardiac arrest, second hit of the cardiac standstill-related hypoxic brain injury evolves, an important contributor to both mortality and poor neurologic outcome [1,2]. There are few effective treatment interventions [3]. The pathophysiology is highly complex but studies have suggested the contribution of decreased cerebral blood flow, cerebral vasoconstriction, inadequate oxygen delivery, and decreased oxygen utilization [4,5]. Known determinants of oxygen delivery to the brain include cerebral perfusion pressure as well as the oxygen and carbon dioxide content of arterial blood [6]. Targeting mild hypercapnia is one promising option that has been shown to improve oxygen delivery to the brain after cardiac arrest and has been shown to be associated with better long-term outcome [7,8].

One ominous sign of most types of brain injury are the presence of seizures and epileptic activity seen on the EEG [9]. There are limited data in cardiac arrest patients but a recent observational study on patients with subarachnoid hemorrhage by Witsch and colleagues showed a clear temporal association between epileptic periodic discharges and reduction in brain tissue oxygen [10]. Whilst this does not provide clear evidence of causality, it raises the possibility that epileptic discharges might result in a hypermetabolic state with even further hypoxia. This would ultimately result in a vicious circle increasing the occurrence of epileptic discharges.

A logical question that follows is whether an increase in oxygen delivery to the brain could decrease the likelihood of epileptic activity? This was the hypothesis of Moonen and colleagues, a group that has done some important work in this area [11,12]. In a retrospective two-centre study they evaluated associations between epileptic activity seen on the EEG with global hemodynamics, oxygen and carbon dioxide levels during the first 48 h of ICU care [13]. The authors could not confirm any association between time-weighted estimations of relative hypoxia, hyperoxia, hypocapnia, hypercapnia, hypotension or hypertension with the occurrence of epileptic activity. It needs to be stated that a clear limitation of this study was that EEGs were not performed systematically but on clinician request instead, and they were performed at various times even up to five days from the cardiac arrest. As rightfully acknowledged by the authors, given the highly temporal association between epileptic discharges and decreases in brain tissue oxygen, an EEG obtained between day three and day five may not accurately reflect brain oxygenation on day one and two.

Interestingly, the incidence of epileptic activity in the study by Moonen and colleagues was similar to what was seen in a post-hoc study of the TTM trial and occurred in almost 30% of the patients [9]. Noteworthy is also that the true incidence may be higher during if monitored with continuous EEG. The main predictors of the presence of seizure activity were initial rhythm and no-flow time, which also are well known determinants of the severity of hypoxic brain damage [14]. This study also shows that even though patients with epileptic discharges have a much worse outcome than those without epileptic activity, the outcome is not always futile. Despite the lack of high class evidence on how to treat seizures after cardiac arrest, short treatment efforts with generally accepted antiepileptic agents appear motivated in selected cases [15].

The authors also rightfully suggest the imminent need for further trials in the area. The Neuroprotect post CA trial is underway, comparing whether hemodynamic optimization with higher MAP reduces cerebral ischaemia after cardiac arrest [16]. We have recently finished the recruitment of patients with bystander witnessed ventricular fibrillation into the factorial COMACARE study. We have enrolled 120 patients undergoing TTM, to compare the effect of high and low oxygen, carbon dioxide and MAP targets with oxygen delivery, epileptic activity on continuous EEG, laboratory markers of brain injury and long-term functional outcome [17]. Both these trials are pilot trials and are not expected to provide definitive evidence regarding effects on patient centered long-term outcomes. The TAME study, on the other hand, is a large phase three randomized controlled trial that over the next few years aim to enroll 1700 cardiac arrest patients into treatment targeting mild therapeutic hypercapnia or normocapnia during the first 24 h of ICU care [18]. All these trials will give important evidence on how to modulate brain oxygen delivery after cardiac arrest and whether that can decrease the occurrence of epileptic activity and ultimately also improve patient outcomes.

Conflict of interest

None.

References


https://doi.org/10.1016/j.resuscitation.2017.12.009
0300-9572/© 2017 Elsevier B.V. All rights reserved.


Markus B. Skrifvars *
Johanna Hästbacka

Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland

* Corresponding author.

E-mail address: markus.skrifvars@hus.fi (M.B. Skrifvars)

5 December 2017