Receptor tyrosine kinase gene copy numbers and protein expression in astrocytic brain tumors
- With special reference to KIT, PDGFRA, VEGFR2 and EGFR

MARJUT PUPUTTI

Department of Oncology, Helsinki University
Helsinki Biomedical Graduate Program
University of Helsinki
Helsinki, Finland

ACADEMIC DISSERTATION
To be publicly discussed with the permission of the Medical Faculty of the University of Helsinki, in the lecture hall of the Department of Oncology, 23th of March 2012

HELSINGIN YLIOPISTO
2012
SUPERVISED BY:

Professor Heikki Joensuu, M.D., Ph.D.
Department of Oncology
Helsinki University Central Hospital
University of Helsinki

REVIEWED BY:

Professor Matias Röyttä, M.D., Ph.D.
Department of Pathology
University Hospital of Turku

Docent Outi Monni Ph.D., Academy Research Fellow
Oncogenomics
Genome-Scale Biology Research Program
Institute of Biomedicine
Biomedicum Helsinki

OPPONENT:

Professor Olli Carpén, M.D., Ph.D.
Department of Pathology
University of Turku

ISBN 978-952-10-7737-1 (PDF)
ISSN 1457-8433
http://ethesis.helsinki.fi

Printing: Helsinki University Print
Helsinki 2012
To my family,
Olavi, “Aarni” and Ilkka
CONTENTS

RECEPTOR TYROSINE KINASE GENE COPY NUMBERS AND PROTEIN EXPRESSION IN ASTROCYTIC BRAIN TUMORS
WITH SPECIAL REFERENCE TO KIT, PDGFRA, VEGFR2 AND EGFR ... 1

ABBREVIATIONS ... 6

LIST OF ORIGINAL PUBLICATIONS ... 8

ABSTRACT .. 9

INTRODUCTION .. 11

REVIEW OF THE LITERATURE ... 13

1. RECEPTOR TYROSINE KINASES ... 13
 1.1 RTK signalling pathways .. 14
 1.2 Epidermal Growth Factor Receptor–family (RTK Subclass I) .. 15
 1.3 Platelet Derived Growth Factor Receptor Alpha-family (RTK subclass III) 16
 1.3.1 Stem Cell Growth Factor Receptor (KIT) .. 17
 1.3.2 Platelet Derived Growth Factor Alpha (PDGFRA) .. 19
 1.4 The Vascular Endothelial Growth Factor Receptor-family (RTK subclass V) 20

2. CELLS AND TUMORS OF THE CENTRAL NERVOUS SYSTEM .. 21
 2.1 Astrocytic tumors ... 23
 2.1.1 Molecular pathogenesis of glioblastomas and grade 2 and 3 astrocytomas 24
 2.1.1.1 Isocitrate dehydrogenase-1 mutations .. 25
 2.1.1.2 Intratumoral heterogeneity of EGFR amplification in glioblastomas 26
 2.2 Paediatric CNS tumors ... 26
 2.2.1 Pilocytic astrocytoma .. 27
 2.2.1.1 Genetic aberrations in pilocytic astrocytoma ... 27
 2.2.2. Ependymoma .. 28
 2.2.3 Medulloblastoma .. 29

3. GENE AMPLIFICATIONS IN CANCER .. 29
 3.1 Gene amplifications at the locus 4q12 ... 31

4. ANgiOGENESIS IN GliOMAS ... 31

5. RTK ACTIVATION AND TARGETED THERAPIES ... 33

AIMS OF THE STUDY ... 35

MATERIALS AND METHODS ... 35

1. PATIENTS AND TUMOUR SAMPLES .. 35
2. TISSUE MICROARRAY (III) ... 36
3. POLYMERASE CHAIN REACTION (I-III) .. 36
4. DENATURED HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (I-III) 37
5. DNA SEQUENCING (I-III) ... 38
6. FLUORESCENCE IN SITU HYBRIDIZATION (I-III) .. 38
7. CHROMOGENIC IN SITU HYBRIDIZATION (III-V) ... 39
8. IMMUNOHISTOCHEMICAL STAINING (II-V) ... 39
9. LOCKED NUCLEIC ACID mRNA IN SITU HYBRIDIZATION FOR KIT (IV) 41
10. Statistical analyses (I-V) ... 41
11. ETHICAL ASPECTS (I-V) .. 41

RESULTS ... 42

1. KIT, PDGFRA, VEGFR2 AND EGFR AMPLIFICATIONS IN PRIMARY AND SECONDARY GliOBlastomas (II) 42
2. KIT, PDGFRA, VEGFR2 AND EGFR AMPLIFICATIONS IN DIFFUSE GRADE 2 AND 3 GliOMAS AND THEIR RECURRENTS (III) ... 42
3. COPY NUMBER ANALYSIS OF KIT IN PAEDIATRIC BRAIN TUMORS (IV) 43
4. Heterogeneity of EGFR AND KIT AMPLIFICATIONS IN GliOMAS AND GliOBlastOMAS (V) 43
5. KIT, PDGFRA AND EGFR MUTATIONS IN PRIMARY AND SECONDARY GliOMAS AND THEIR RECURRENTS (III) ... 44
6. TP53 MUTATIONS IN DIFFUSE GliOMAS AND THEIR RECURRENTS (III) 44
7. PROTEIN EXPRESSION IN PRIMARY AND SECONDARY GliOBlastOMAS (II) 44
8. Expressions of KIT, PDGFRA, VEGFR2 and EGFR PROTEIN IN DIFFUSE GRADE 2 OR 3 GliOMAS AND THEIR RECURRENTS (III) ... 44
9. Nestin and Prominin-1 expression in diffuse grade 2 or 3 gliomas and their recurrences (III) 45
10. KIT, PHOSPHORYLATED KIT, SCF, VEGFR2 AND HIF-1-ALPHA EXPRESSION IN ENDOTHELIAL CELLS OF PAEDIATRIC BRAIN TUMORS, AND IN NON-MALIGNANT FETAL AND POSTNATAL TISSUES (IV) 46
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>AKT</td>
<td>v-akt murine thymoma viral oncogene homolog</td>
</tr>
<tr>
<td>ANG (-1 and -2)</td>
<td>angiopoietin (-1 and -2)</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>BAD</td>
<td>BCL2-antagonist of cell death</td>
</tr>
<tr>
<td>BBB</td>
<td>blood brain barrier</td>
</tr>
<tr>
<td>BCR-ABL</td>
<td>breakpoint cluster region for Abelson murine leukemia viral (v-abl) oncogene homolog 1</td>
</tr>
<tr>
<td>BFB</td>
<td>breakage-fusion-bridge</td>
</tr>
<tr>
<td>BRAF</td>
<td>Serine/threonine-protein kinase B-Raf</td>
</tr>
<tr>
<td>CaCl2</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CD113</td>
<td>cluster of differentiation 34</td>
</tr>
<tr>
<td>CD34</td>
<td>cyclin-dependent kinase inhibitor</td>
</tr>
<tr>
<td>CEP4</td>
<td>centromere-specific probe for chromosome 4</td>
</tr>
<tr>
<td>CEP7</td>
<td>centromere-specific probe for chromosome 7</td>
</tr>
<tr>
<td>CGH</td>
<td>comparative genomic hybridization</td>
</tr>
<tr>
<td>CISH</td>
<td>chromogenic in situ hybridization</td>
</tr>
<tr>
<td>CML</td>
<td>chronic myeloid leukemia</td>
</tr>
<tr>
<td>C-MYC/N-MYC</td>
<td>myc proto-oncogene / neuroblastoma MYC oncogene</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSF-1</td>
<td>colony stimulating factor-1</td>
</tr>
<tr>
<td>CSF1R/fms</td>
<td>colony stimulating factor-1 receptor</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3'-diaminobenzidine tetrahydrochloride</td>
</tr>
<tr>
<td>DCC</td>
<td>deleted in colorectal carcinoma</td>
</tr>
<tr>
<td>DHPLC</td>
<td>denaturizing high performance liquid chromatography</td>
</tr>
<tr>
<td>Dll4</td>
<td>Delta-like protein 4</td>
</tr>
<tr>
<td>Dmin</td>
<td>double minute</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EGFR/HER1/ErbB-1</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EGFRvIII</td>
<td>truncated variant of epidermal growth factor receptor</td>
</tr>
<tr>
<td>ErbB2/HER2/Neu</td>
<td>human epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal regulated kinase</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiosyanate</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-related tyrosine kinase 3</td>
</tr>
<tr>
<td>GIST</td>
<td>gastrointestinal stromal tumour</td>
</tr>
<tr>
<td>HIF</td>
<td>hypoxia inducible factor</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>HSR</td>
<td>homogeneously staining region</td>
</tr>
<tr>
<td>ICC</td>
<td>interstitial cells of Cajal</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>JAK</td>
<td>janus kinase</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>Ki67</td>
<td>proliferation-related Ki-67 antigen</td>
</tr>
<tr>
<td>KIT (SCFR)</td>
<td>stem cell growth factor receptor (KIT)</td>
</tr>
<tr>
<td>LOH</td>
<td>loss of heterozygosity</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MDM2</td>
<td>murine double minute-2 p53 binding protein homolog</td>
</tr>
<tr>
<td>MEK</td>
<td>MAP kinase kinase</td>
</tr>
<tr>
<td>MgCl2</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mTOR</td>
<td>mammalian target of rapamycin</td>
</tr>
<tr>
<td>NAM</td>
<td>National Authority for Medicolegal Affairs</td>
</tr>
<tr>
<td>NSCLC</td>
<td>non-small cell lung cancer</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered citrate</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDGF (A, B and C)</td>
<td>platelet derived growth factor (A, B and C)</td>
</tr>
<tr>
<td>PDGFR (A and B)</td>
<td>platelet derived growth factor receptor (A and B)</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLCγ</td>
<td>phospholipase C-gamma</td>
</tr>
<tr>
<td>PIGF</td>
<td>placental growth factor</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
</tr>
<tr>
<td>RAC</td>
<td>ras-related C3 botulinum toxin substrate-1</td>
</tr>
<tr>
<td>RAF</td>
<td>raf proto-oncogene serine/threonine protein kinase</td>
</tr>
<tr>
<td>RAS</td>
<td>mammalian ras gene family</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SMO</td>
<td>Smoothened, G protein-coupled receptor</td>
</tr>
<tr>
<td>SRC</td>
<td>sarcoma family of protein kinases</td>
</tr>
<tr>
<td>SSC</td>
<td>standard saline citrate</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TIE2</td>
<td>tyrosine kinase with immunoglobulin-like and EGF-like domains-1 (TEK)</td>
</tr>
<tr>
<td>TMA</td>
<td>tissue microarray</td>
</tr>
<tr>
<td>VEGF (A, C, D and E)</td>
<td>vascular endothelial growth factor (A, C, D and E)</td>
</tr>
<tr>
<td>VEGFR (1, 2 and 3)</td>
<td>vascular endothelial growth factor receptor (1, 2 and 3)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WNT</td>
<td>wingless and int-signalling pathway</td>
</tr>
<tr>
<td>χ²</td>
<td>chi square</td>
</tr>
</tbody>
</table>
LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following publications that are referred to in the text by their Roman numerals (I to IV):

(IV) Puputti M, Tynninen O; Pernilä P; Salmi; Jalkanen S; Paetau A; Sihto H, Joensuu H. Expression of KIT receptor tyrosine kinase in endothelial cells of juvenile brain tumors (2010). Brain Pathol 20(4):763-70.

ABSTRACT

The annual incidence rate of cancers of the central nervous system (CNS) is approximately 100 per million in the Northern European countries. CNS tumors are the most common solid tumors in the childhood. More than one half of malignant gliomas are eventually fatal. Gliomas, tumors of the glial cell origin, are the most common adult brain tumors. Gliomas are often divided into four malignancy grades, of which the grade four gliomas, glioblastomas, are the most aggressive ones. Glioblastomas are further divided into two categories, the primary and the secondary glioblastomas. Primary glioblastomas arise de novo without a pre-existing lesion, whereas secondary glioblastomas arise from a pre-existing lower grade astrocytic tumour. At present, there is no curative treatment available for glioblastoma.

Gene amplification, a gene copy number increase at a specific region of a chromosomal locus, is one of the molecular mechanisms associated with tumour progression. In general, gene amplifications are more common in advanced, widely metastatic cancers as compared to local ones. Receptor tyrosine kinase gene aberrations, such as amplifications of EGFR and PDGFRA, are also implicated in the genesis of gliomas, as are mutations of some genes.

The receptor tyrosine kinases KIT, PDGFRs and VEGFRs are currently important clinical targets for tyrosine kinase inhibitors. In the present study we investigated expression and amplification of KIT, PDGFRA, VEGFR2 and EGFR in glioblastomas and in lower grade gliomas, and analyzed the hot spot mutation sites of KIT, PDGFRA and EGFR genes for presence of mutations in glioblastoma. Furthermore, we evaluated expression of KIT, SCF and VEGFR2 in paediatric brain tumors and in tumour endothelial cells, and studied the intratumoral heterogeneity of EGFR and KIT amplifications in primary glioblastomas and astrocytomas.

Mutations turned out to be infrequent in these genes suggesting that neither primary nor secondary glioblastomas are usually driven by KIT or PDGFRA mutations, or by EGFR kinase domain mutations. No mutations were detected with denaturing high-performance liquid chromatography (DHLPC) in KIT exons 9, 11, 13 or 17, PDGFRA exons 12 or 18, or EGFR kinase domain exons 18, 19 or 21 in a series of 57 glioblastomas. Similarly, no mutations were found in exons coding for the extracellular domain II EGFR, and only one mutation was found in an exon coding EGFR domain IV among 57 glioblastomas (I).

Unlike gene mutations, amplifications of KIT, VEGFR2, PDGFRA and EGFR turned out to be frequent in glioblastoma. KIT was amplified in 47% and VEGFR2 in 39% out of the 43 primary glioblastomas investigated, and PDGFRA in 29% (II). As many as 35 (81%) out of the 43 glioblastomas had either KIT or EGFR amplification. Presence of KIT, PDGFRA and VEGFR2 amplifications were strongly associated (p < 0.0001 for each pair wise comparison) suggesting co-
amplification, whereas no significant associations were found between amplifications of these genes and *EGFR* amplification. All four secondary glioblastomas investigated had *KIT* amplification, whereas none harboured *EGFR* amplification (II).

We investigated presence of gene amplifications also in other types of gliomas, namely in astrocytomas (n = 55), anaplastic astrocytomas (n = 39), oligodendrogliomas (n = 37) and oligoastrocytomas (n = 27) either in tumour samples collected at the time of the diagnosis or in samples collected at the time of tumour recurrence (III). In tumour tissue samples collected at the time of the diagnosis *KIT* and *PDGFRA* amplifications turned out to be more frequent in anaplastic astrocytomas than in astrocytomas, oligodendrogliomas and oligoastrocytomas [28% versus 5% (p = 0.012) and 33% versus 2% (p = 0.0008), respectively]. *VEGFR2* amplifications occurred in 6% to 17% of the gliomas sampled at the time of the diagnosis, and *EGFR* amplifications in 0% to 12%.

Amplified *KIT* was more frequently present in recurrent gliomas than in newly diagnosed gliomas (19 out 71 vs. 8 out of 81, respectively; p = 0.0066). *KIT* amplification was associated with *KIT* protein expression and with presence of *PDGFRA* and *EGFR* amplifications both at the time of the first diagnosis of glioma and at the time of tumour recurrence, and with *VEGFR2* amplification at the time of tumour recurrence. Eighty-three samples taken at the first diagnosis of glioma and 74 samples collected at the time of tumour recurrence were available for assessment of coamplification of *KIT*, *PDGFRA* and *VEGFR2*. Amplification of at least two of the three genes was present more often in recurrent gliomas (ten out of 74, 14%) as compared to gliomas studied at the time of the diagnosis (three of 83, 4%; p = 0.025). The amplicon contained amplified *KIT* in all 13 cases (III).

None of the 9 paediatric pilocytic astrocytomas studied with *in situ* hybridization harboured amplification of *KIT* (IV). In contrast, *KIT* expression was common in tumour endothelial cells in pilocytic astrocytomas, and endothelial cell *KIT* was frequently activated (phosphorylated). Tumour endothelial cell *KIT* expression was associated with a young age at the time of the diagnosis. Ependymomas also frequently expressed *KIT* in endothelial cells, and its expression tended to be associated with a young age at the time of the diagnosis.

Finally, we investigated heterogeneity of *KIT* and *EGFR* amplification and their protein products in gliomas by studying several tissue blocks from each tumour using FISH and immunohistochemistry, respectively (V). *EGFR* amplification was found in ten (67%) out of the 15 glioblastomas studied when CISH analysis was carried out from only one tissue block, and in 11 (73%) cases when all available tissue blocks were analyzed. This finding suggests that *EGFR* amplification is not markedly heterogeneous in glioblastoma. In contrast, *KIT* was amplified in six (40%) out of the 15 index glioblastoma tissue blocks, but in 10 (67%) glioblastomas when all tissue blocks were analyzed. EGFR, EGFRvIII, KIT and phospho-KIT expression was heterogeneous in immunohistochemical staining of the tumors, and occurred at least in one part of tumour in 93%, 33%, 93% and 100% of glioblastomas, respectively. None of the seven astrocytomas contained amplified *EGFR* and only one
harboured amplified \textit{KIT} even when all blocks were examined. These findings suggest that that glioblastomas show marked heterogeneity in \textit{KIT} amplifications and \textit{KIT} and phospho-\textit{KIT} expression, and that heterogeneity is less for \textit{EGFR} amplifications and for \textit{EGFR} and \textit{EGFRvIII} expression. The proportion of glioblastomas with \textit{EGFR} or \textit{KIT} amplification may thus be larger than reported in the literature when tumour heterogeneity is accounted for.

\textbf{INTRODUCTION}

Tumors of the CNS range from benign neoplasms, such as meningioma, to almost invariably lethal cancer, glioblastoma multiforme. Approximately 900 CNS neoplasms are diagnosed in Finland annually, and the annual incidence rate of CNS tumors has slowly increased (http://www.cancerregistry.fi/). In the Nordic countries, the annual incidence rate of gliomas is approximately 10 cases per 100,000 in the age-group of over 40 years (Deltour \textit{et al.} 2009). Malignant gliomas account for approximately 70\% of new cases of malignant primary brain tumors (Wen and Kesari 2008), and the CNS tumors are the most common solid tumors diagnosed in children.

The CNS consists mainly of neurons and glial cells. Neurons conduct electrical signals within the neural system, and glial cells, such as astrocytes, provide nutrition, insulation and structural support to neurons and their axons to facilitate signal conduction (DeAngelis 2001, Kleihues \textit{et al.} 2002). Gliomas are often classified into four malignancy grades depending on histological findings that include cell mitotic activity, presence of tumour necrosis accompanied by areas of palisading cells, cell atypia and endothelial proliferation. High mitotic activity, presence of tumour necrosis, marked cell atypia and angiogenesis are characteristic features of the most malignant (grade IV) glioma, glioblastoma, whereas pilocytic astrocytomas (grade I), astrocytomas (grade II) and anaplastic astrocytomas (grade III) do not have all of these features. Most glioblastomas are considered to arise \textit{de novo} without presence of a pre-existing lesion (primary glioblastomas), but they can arise also from pre-existing lower grade astrocytoma (secondary glioblastomas).

The median age of patients at the time of the diagnosis glioblastoma is approximately 60 years, and 45 years at the time when secondary glioblastoma is diagnosed (Fisher \textit{et al.} 2007; Wen and Kesari 2008). Patients diagnosed with glioblastoma have a median survival time barely exceeding one year following the diagnosis (Kleihues \textit{et al.} 2002, Ohgaki and Kleihues 2005a), and at present no curative treatment is available. In contrast, pilocytic astrocytomas that occur predominantly in children are tumors of low malignancy potential can usually be removed completely by surgery and are associated with approximately 95\% 5-year survival (Fisher \textit{et al.} 2008).

The factors that cause genesis of gliomas are incompletely understood. The only established risk factor is ionizing radiation (Fisher \textit{et al.} 2007). Suggested risk factors for glioma include exposure to
electromagnetic fields, use of cellular telephones, some food ingredients, immunological factors, viral infections and occupational risk factors, but none is currently supported by firm evidence. A small proportion (approximately 5%) of patients diagnosed with malignant glioma has a family history of gliomas, but most of the glioma patients have no known genetic cause. Gliomas may rarely be associated with a genetic syndrome, such as neurofibromatosis type 1 or type 2, Turcot's syndrome (intestinal polyposis and a brain tumour) or the Li–Fraumeni syndrome (a germ-line TP53 mutation) (Farrell et al. 2007).

Cancers often harbour many genetic aberrations that eventually lead to tumour invasiveness, unlimited growth and metastasis (Hanahan and Weinberg 2000). In gliomas, several genetic and epigenetic errors leading to tumour development have been characterized. The involved molecular networks include receptor tyrosine kinase (RTK) signalling through the Ras–MAPK and PI3K–AKT–mTOR pathways, and Wnt and sonic hedgehog (SHH) signalling, along with the cell cycle-regulating RB and p53 pathways (reviewed in Huse and Holand, 2010). Recently, mutations in isocitrate dehydrogenase 1 (IDH1) were found to occur in the majority of grade II and grade III gliomas and secondary glioblastomas (Dang et al. 2009, Smeitink 2010).

Gene amplifications are frequent in cancer. Amplifications and activating mutations of the genes encoding RTKs are of particular interest, since these can now be selectively targeted by monoclonal antibodies and small molecule tyrosine kinase inhibitors. Activated RTKs pass cell survival promoting signals to the nucleus, and they may direct cells to invasion and metastasis. Primary glioblastomas often harbour amplification of the gene encoding for the epidermal growth factor receptor (EGFR; Albertson 2006, Collins 2004), but amplification of this gene likely presents only one of the many genetic aberrations involved in glioma progression (Behin et al. 2003, Collins 2004, Huse and Holand, 2010).

The aim of the present study was to investigate human gliomas, glioblastomas in particular, for genetic aberrations in KIT (encodes the receptor of the stem cell factor, SCF), the gene encoding the platelet-derived growth factor receptor-alpha protein (PDGFRα), VEGFR2 (encodes vascular endothelial growth factor receptor-2) and EGFR. A common nominator of these four genes is that the proteins encoded by them are now important therapeutic targets for small molecule tyrosine kinase inhibitors in the treatment of several types of human cancer.
1. Receptor tyrosine kinases
Receptor tyrosine kinases (RTKs) are a class of proteins that are important in the development, maintenance and function of the normal tissues, but they may also play a key role in the genesis of some cancers. RTKs are transmembrane growth factor receptors that mediate signals from the cell environment into the cell. They regulate fundamental cellular processes, such as the cell cycle, migration, metabolism, survival, proliferation and differentiation. During evolution, the first RTK likely arose from a fusion of an epidermal growth factor (EGF)–like domain and a cytoplasmic tyrosine kinase, which took place before appearance of animals (King and Carroll 2001, Robinson et al. 2000a). RTKs share two major functional domains: an extracellular ligand-binding domain and an intracellular domain that has tyrosine kinase function (Grassot et al. 2006).

Figure 1. A schematic illustration of receptor tyrosine kinases of the VEGFR, PDGFR and EGFR-families. These families share a common overall structure consisting of an extracellular domain, a transmembrane region and an intracellular domain, but the ligand-binding extracellular domain, in particular, shows structural differences.

RTKs are activated (phosphorylated) following binding of a specific soluble ligand. Phosphorylation of tyrosine residues increases kinase enzymatic activity and activates downstream signalling pathways (Grassot et al. 2006, Hubbard and Till 2000, Kostich et al. 2002, Robinson et al. 2000). Since RTKs are involved in the regulation of the cell, an imbalance in the RTK signalling homeostasis may give rise to neoplastic transformation, and dysregulation of RTK signalling occurs in various types of human cancer. Several molecular mechanisms may influence this homeostasis.
These mechanisms include an increased dose of RTK-specific ligands; an increased number of RTKs on the cell membrane; gene amplification, mutation or aberrant regulation of the gene that encodes the RTK; abnormal post-translational regulation of messenger-RNAs transcribed to an RTK; defective down regulation of RTKs; and abnormal interaction between RTKs and the proteins that bind to them including proteinases that cleave of the extracellular portion of the RTK; and intracellular phosphatase activity.

1.1 RTK signalling pathways
Intracellular cell signalling is mediated by various proteins, micro-RNA and short interfering RNA (siRNA) that interact with each other and the DNA within a cell (Feero WG et al. 2010). RTK signal is conducted downstream via a cascade of proteins, and eventually the signal is delivered into the nucleus where it induces transcription of the target genes. Ligand binding to the cognate RTK causes receptor dimerization, autophosphorylation of the adjacent intracellular kinase domains, and subsequently activation of one or more signalling pathways, such as the RAS-RAF-MEK-ERK, PI3K-AKT, PLCγ-PKC, SRC/JNK or JAK/STAT pathways (Blume-Jensen et al. 1998, Jiang & Liu 2008, Reber et al. 2006, Roberts & Der 2007, Roskoski 2005a, Wong et al. 2007).

Figure 2. Schematic presentation of basic signalling pathways downstream of an RTK. Upon ligand binding and dimerization of the RTK, PI3K/AKT, RAS/RAF/ERK, SRC/JNK, JAK/STAT and/or PLCγ/PKC signalling pathways are activated resulting eventually in alteration of gene expression and cell function.
1.2 Epidermal Growth Factor Receptor–family (RTK Subclass I)

The epidermal growth factor receptor (EGFR, also known as ErbB-1 or HER-1) is the cell-surface receptor for the members of the EGF-family of extracellular protein ligands. The gene encoding this protein is located at the chromosomal locus 7p12. EGFR is a member of the ErbB family of receptors (www.genome.ad.jp) (Grassot et al. 2006). It resides on the plasma membrane and is activated following binding of one of its 11 known ligands, which can be classified into three groups (a) ligands that specifically bind to EGFR (EGF, transforming growth factor-a, amphiregulin and epigen); (b) those that bind to EGFR and ERBB4 (betacellulin, heparin-binding EGF and epiregulin); and (c) neuregulin (NRG) that binds to ERBB3 and ERBB4. NRG1 and NRG2 bind to both ERBB3 and ERBB4, whereas NRG3 and NRG4 only to ERBB4 (Mitsudomi and Yatabe 2010). In the absence of a bound ligand EGFR is a monomer, but ligand binding leads to formation of a receptor homodimer. EGFR may dimerize with another member of the ErbB receptor family, such as ErbB2/HER2/neu, to create a heterodimer. Ligand-induced EGFR dimerization leads to autophosphorylation of several tyrosine residues in the cytoplasm domain of each receptor monomer. The best characterized downstream signalling pathways include the RAS-RAF-MEK-ERK, PI3K-AKT and PLCγ-PKC pathways, which upon activation stimulate cell proliferation, motility and survival (Boonstra et al. 1995, Citri & Yarden 2006, Jiang & Liu. 2008, Roberts & Der 2007, Wong et al. 2007, Zandi et al. 2007).

Elevated tumour EGFR content is associated with unfavourable survival in several human types of human cancer, such as carcinomas of the head and neck, bladder, ovary, uterine cervix and oesophagus (Nicholson et al. 2001). Amplification of EGFR, often resulting in increased tumour EGFR levels, has been detected in several types of human cancer, such as breast carcinoma, non-small-cell lung cancer (NSCLC), oesophageal squamous cell carcinoma and in primary glioblastoma (Bhargava et al. 2005, Hanawa et al. 2006, Suzuki et al. 2005, Wong et al. 1992). In primary glioblastoma, EGFR amplification is present in approximately 30 to 50 percent of the tumors (Ekstrand et al. 1991, Frederick et al. 2000, Hui et al. 2001). In the absence of gene amplification EGFR overexpression may result from a variety of molecular mechanisms that include increased activity of the EGFR promoter or dysregulation at the translational or the post-translational level.

Mutations of EGFR are frequent in human cancers. These can be divided into three main groups based on location of the mutation: mutations in the part of the gene that encodes for the RTK extracellular domain, those found in the intracellular tyrosine kinase domain, and mutations found in the gene sequences that encode the rest of the protein (Zandi et al. 2007). EGFR kinase domain mutations are relatively rare; small deletions and point mutations have been detected in NSCLC (Huang et al. 2004, Mitsudomi et al. 2005, Paez et al. 2004). In contrast, deletions in the extracellular domain involving exons 2 to 7 of EGFR are frequent in glioblastoma, but can be found also in other types of cancer, such as prostate cancer, breast cancer, NSCLC, ovarian cancer, and head and neck cancer (Fenstermaker & Ciesielski 2000, Frederick et al. 2000, Moscatello et al. 1995, Olapade-
Olaopa et al. 2000, Okamoto et al. 2003, Sok et al. 2006, Wong et al. 1992). Such a partially deleted gene gives rise to truncated, constitutively activated receptors that do not bind ligands and are thus not under normal regulation (Zandi et al. 2007).

In glioblastoma, expression of the truncated form of EGFR (EGFRvIII) occurs in approximately 20% to 30% of the cases (Gan et al. 2009). EGFRvIII activates not only the same downstream effectors pathways as EGFR, but also the c-Jun N-terminal kinase (JNK) via PI3K (Antonyak et al. 1998, Chu et al. 1997, Pedersen et al. 2005).

Figure 3. EGFR: A schematic presentation indicating the exons that code for the extracellular domains II and IV, and the tyrosine kinase domain.

1.3 Platelet Derived Growth Factor Receptor Alpha-family (RTK subclass III)

Type III receptor protein-tyrosine kinases include the stem cell factor (SCF) receptor (SCFR/KIT), the platelet-derived growth factor (PDGF) receptor (alpha and beta), the macrophage colony-stimulating-factor receptor-1 (CSF1R) and the fms-related tyrosine kinase-3 (FLT3). These receptor protein tyrosine kinases all share similar features: an extracellular immunoglobulin-like ligand-binding domain, a single transmembrane segment and a split cytoplasmic kinase domain. The class III receptors are characterized by presence of five immunoglobulin-like domains in their extracellular portion. KIT and PDGFRA genes are located adjacent at the chromosomal locus 4q12 next to the vascular endothelial growth factor receptor-2 (VEGFR2) gene, which belongs to the RTK subclass V (Grassot et al. 2006).
1.3.1 Stem Cell Growth Factor Receptor (KIT)
SCF is the ligand of the KIT receptor tyrosine kinase. KIT binds the SCF with the first three of the five immunoglobulin-like loops in the extracellular domain of the receptor. Physiologically SFC may exist as a membrane-bound form or as a soluble form. Interaction of the SCF with KIT rapidly induces KIT dimerization and increases its autophosphorylation activity. SCF and KIT are critical for survival and development of stem cells involved in haematopoiesis, skin pigmentation and reproduction, as well as in mast cell development. KIT is also expressed in epithelial cells of the breast and in basal cells of the skin. SCF and KIT play a role in the development of the interstitial cells of Cajal (ICC) in the intestine, and in the learning functions in the hippocampus region of the brain.

Upon KIT dimerization, downstream of KIT multiple signal transduction components are activated. These components include PI3K, the SRC family members, the JAK/STAT pathway and the RAS-RAF-MAP kinase cascade (Grassot et al. 2006, Linnekin. 1999, Reber et al. 2006, Roskoski. 2005b,
Tsuura et al. 1994). In addition, the KIT receptor promotes cell survival via activation of PI3K/AKT-mediated phosphorylation of BAD that regulates cell apoptosis (Blume-Jensen et al. 1998).

Deficiency in the KIT function impairs erythropoiesis, pigmentation of the skin, fertility and gastrointestinal peristalsis. KIT may be activated through a gain-of-function mutation that may result in a malignant phenotype in cells dependent on KIT function. Abundant KIT expression has been reported to occur in some sarcomas (notably in GIST), small cell carcinoma of the lung, adenoid cystic carcinoma of the head and neck, renal chromophobe carcinoma, as well as in some thymic, ovarian and breast carcinomas and in glioblastoma (Miettinen & Lasota 2005, Sihto et al. 2007).

KIT is often mutated and constitutively activated in gastrointestinal stromal tumors (GISTs), systemic mastocytosis and mast cell leukemia. KIT amplifications are rare in GISTs, but high levels of KIT protein are detected in most (95%) of these tumors. Approximately 80% of GISTs have activating KIT mutations that are most commonly located in exons 11 and 9 of the gene. Rarely, KIT exon 13 and 17 mutations are found in GISTs that have not been exposed to imatinib or other tyrosine kinase inhibitors (Hornick & Fletcher 2002, Joensuu et al. 2002, Miettinen & Lasota 2005, Sihto et al. 2005, Tabone et al. 2005). Most GISTs are probably either KIT or PDGFRA driven tumors. They probably originate from a precursor cell of the ICC based on their phenotypic resemblance with this cell phenotype (Corless et al. 2004, Hirota et al. 1998, Kindblom et al. 1998, Sarlomo-Rikala et al. 1998). The ICCs are located in the gastrointestinal tract, where they regulate peristalsis and mediate autonomic nervous system functions (Hirota et al. 1998, Huizinga et al. 1995, Kindblom et al. 1998, Maeda et al. 1992, Miettinen & Lasota 2005, Sarlomo-Rikala et al. 1998, Torihashi et al. 1999).

GIST may rarely arise also in children and young adults. In paediatric GISTs KIT and PDGFRA mutations are far less common than in adult tumors, and imatinib is generally less effective than in the treatment of adult GISTs. Despite lack of KIT mutations, these tumors have often activated KIT, but their molecular pathogenesis is likely heterogeneous (Janeway et al. 2007).

Epidermal melanocytes and mast cells express KIT constitutionally, and KIT is likely important in their development and function. Primary malignant melanomas and their metastasis show variable KIT expression. Imatinib has recently been found to be effective in a proportion of patients who have either mucosal melanoma, acral melanoma or melanoma arising in sun exposed skin. In one study, KIT mutations were found in 38% of mucosal and in 6% of acral melanomas, and their presence may likely be used as a guide for treatment selection (Handolias et al. 2010). KIT activating mutations have been detected in human mast cell neoplasms, most of them in exon 17. Of germ cell tumors KIT may be expressed in seminomas, and a majority of classic testicular seminomas express KIT. One third of seminomas and their extra testicular analogs harbour KIT mutations. The reported point mutations are located in exon 17. In addition, a few point mutations and deletions of exon 11 have been reported in testicular tumors (Hawkins E et al. 1997, Kemmer K et al. 2004, Looijenga LH et al. 2005).
A gain in the copy number of KIT and KIT overexpression may be associated with progression of carcinoma in situ to an invasive testicular germ cell tumour (McIntyre et al. 2005).

KIT is expressed in a subset of hematopoietic stem cells, and it likely has an important role in erythropoiesis. KIT-deficient mice develop hypoplastic bone marrow and macrocytic anaemia (Waskow et al. 2004). Approximately 70% of acute myeloid leukemias (AMLs) express KIT (Bene et al. 1998, Escribano et al. 1998, Kanakura et al. 1993, Schwartz et al. 1999, Valverde et al. 1996). Some adult sarcomas, including angiosarcomas, are also occasionally KIT-positive in immunostaining, although mutations in KIT exons 11 or 17 are lacking (Miettinen et al. 2000; Hornick & Fletcher 2002). Hemangioendotheliomas and hemangiomas are usually KIT-negative, but KIT may be expressed in juvenile hemangiomas of the immature phenotype (Miettinen et al. 2000, Miettinen & Lasota 2005).

In the normal kidney, KIT is expressed in distal nephrons, and it is expressed in normal fetal and adult renal tubules (Kato et al. 2005, Miliaras et al. 2004). KIT is expressed in some malignant renal tissues, such as renal chromophobe cell carcinomas and very frequently in oncocyotomas, but mutations of KIT or PDGFRA have not been found (Kato et al. 2005, Miliaras et al. 2004). KIT may be expressed in paediatric renal tumors, but KIT mutations or amplifications are not present. KIT expression may be associated with unfavourable outcome in a subset of Wilm’s tumors and clear cell sarcomas of the kidney, and it is expressed in a proportion of paediatric synovial sarcomas, osteosarcomas and Ewing sarcomas (Jones et al. 2007, Smithey et al. 2002).

1.3.2 Platelet Derived Growth Factor Alpha (PDGFRA)

PDGFRαs and their ligands, platelet derived growth factors (PDGFs), are important in mesenchymal cell migration and proliferation. During embryogenesis the PDGF/PDGFR system is essential e.g. in the development of the cardiovascular system, the brain and the lungs. In adults, PDGF/PDGFR signalling is involved in angiogenesis, wound healing and inflammation.

The PDGF family consists of PDGF-A, -B, -C and -D ligands. The PDGFs bind to the protein tyrosine kinase receptors PDGFR-alpha and -beta (PDGFRA and PDGFRB, respectively). These two receptors dimerize upon binding of the PDGF dimer, leading to three possible receptor combinations (AA, BB or AB) (Heidaran et al. 1990, Matsui et al. 1989).

Abnormalities in PDGF/PDGFR signalling contribute to several human diseases and malignancies (Jones & Cross 2004). Constitutive activation of PDGFRA is present in some myeloid malignancies as a consequence of formation of a fusion gene. Activating mutations of PDGFRA are present in a subset of GISTs.
The structure of PDGFRA is very similar to KIT: five immunoglobulin–like extracellular domains, a transmembrane domain, an intracellular juxtamembrane domain, a split tyrosine kinase domain with a kinase insert and a C-terminal tail. Activating mutations of PDGFRA occur most commonly in the activation loop (exon 18) and in the juxtamembrane region coding exon 12 (Blume-Jensen & Hunter 2001, Heinrich et al. 2003, Jones & Cross 2004, Kawagishi et al. 1995, Sihto et al. 2005).

In low grade astrocytomas, one of the earliest molecular alterations includes overexpression of PDGFA/PDGFRα, which creates an autocrine growth-factor stimulation loop. Amplification of PDGFRA is a common molecular genetic aberration associated with diffusely infiltrating astrocytic gliomas and secondary glioblastomas (Behin et al. 2003, Reifenberger & Collins. 2004).

1.4 The Vascular Endothelial Growth Factor Receptor-family (RTK subclass V)
Vascular endothelial growth factors (VEGFs) mediate angiogenic signals to the vascular endothelium. They are classified as class V receptor tyrosine kinases, and show structural similarities to the subclass III RTKs except that they have seven immunoglobulin-like loops in the extracellular domain (Figure 1). Three receptors have been identified that specifically bind VEGF. These receptors have been named VEGFR1, VEGFR2 and VEGFR3. In the adult, VEGFR1 and VEGFR2 are expressed mainly in the blood vascular endothelium, whereas expression of VEGFR3 is restricted largely to the lymphatic endothelial cells (Grassot et al. 2006, Veikkola et al. 2000). VEGFR2 is a high-affinity receptor for the potent angiogenic ligands VEGF-A and VEGF-B, and the processed forms of VEGF-C and VEGF-D.

VEGFs and their endothelial receptors are key regulators of angiogenesis, vasculogenesis and lymphangiogenesis. VEGFR-1 may act as a stimulator of pathological angiogenesis when activated by its ligands VEGF-B and PI GF (placental growth factor). PI GF recruits angiogenic macrophages to tumors. VEGF-C and VEGF-D induce lymphangiogenesis via VEGFR-3, but VEGFR-3 is important also for angiogenesis acting together with VEGF/VEGFR-2 and Dll4 (Delta-like protein 4)/Notch signalling to control angiogenic sprouting (Lohela et al. 2009). Angiopoietin-2 and the Tie2-receptor (tyrosine kinase with immunoglobulin-like and EGF-like domains-1) are also involved in tumour angiogenesis, where Tie2 utilizes a unique signalling mechanism at the endothelial cell-cell junctions (Saharinen et al. 2010).
2. Cells and tumors of the central nervous system

Tumors of the nervous system account for less than 2% of all human malignancies. Yet, approximately 175,000 new cases are diagnosed worldwide annually, probably without a large variance in the incidence between geographic regions or populations. Gliomas are the most common brain tumors, with an annual incidence of 5 to 10 cases per 100,000 persons. Gliomas are believed to arise from the glial cells of the CNS that provide nutrition, insulation and structural support for neurons and neuronal axons, and thus facilitate signal conduction (DeAngelis, 2001, Kleihues et al. 2002).

Glial cells or neuroglia consists of ependymal cells, oligodendrocytes and astrocytes; the latter are also known collectively as astroglia. Radial glial cells, Schwann cells and satellite cells have various functions ranging from insulation and to microenvironmental control within the brain. Microglia are glial cells that act in active immune defence of the brain. Ependymal cells form the lining of the ventricular system, and ependymal cells are believed to contribute to the cerebrospinal fluid flow and homeostasis (Meiniel 2007). Oligodendrocytes are myelin-forming glial cells. The neurons are dependent on the myelin sheath provided by the oligodendroglial cells, since myelin provides insulation and allows fast neurotransmission. The Schwann cells are responsible for the myelin production in the peripheral nervous system.

The most abundant type of glial cells are astrocytes, star-shaped cells that give support to the endothelial cells at the blood-brain-barrier (BBB), provide nutrition to the nervous tissue and participate in repair of the brain tissue. Astrocytoma is a tumour likely derived from these cells, and the tumour cells in astrocytoma resemble morphologically normal astrocytes. Similarly, oligodendrogliomas are defined by the presence a major oligodendrocyte population in the tumour. Mixed forms of these tumour types exist, and the most malignant glial tumors rarely consist of one homogeneous cell population. Based on histological classification, astrocytomas, oligodendrogliomas and ependymomas belong to tumors of neuroepithelial origin (Bene et al. 1998, Cavaliere et al. 2005, Collins. 2004, DeAngelis 2001, Kleihues et al. 2002, Louis et al. 2007).

Tumour stem cells have been implicated in formation of glial tumors. Oligodendrocytes and astrocytes may have a common progenitor cell in the subventricular zone (Carmen et al. 2007), and neuroglial precursors are thought to emigrate from this spatially restricted germinal zone to colonize the hemispheres (Levison et al. 1993). In case of ependymal tumors, the radial glial cells are thought to be candidate stem cells that give rise to this tumour type (Taylor et al. 2005, Poppleton & Gilbertson 2007, Vescovi et al. 2006). Neural stem cells have been identified in the mature CNS, and new neurons and glial cells are produced throughout life from these neural stem cell niches (Galli et al. 2004, Galli et al. 2008).
Glial tumors are often composed of heterogeneous cell populations containing also small subpopulations of highly proliferative immature precursor cells that may or may not be neural CD133-positive stem cells, which may contribute to tumour initiation (Chen et al. 2010). The etiology and causes of gliomas are still unclear. Variable environmental factors have been suggested as risk factors for glioma, but the data are mostly contradictory or inconclusive. Few studies suggest an increase in the incidence of malignant gliomas over time, but these findings may be confounded by prolonged life expectancy and increased use of brain imaging. High-dose ionizing radiation, some genetic syndromes (such as neurofibromatosis, tuberous sclerosis and Li-Fraumeni syndrome) and old age are the only generally accepted risk factor for glial neoplasms, and some hereditary syndromes for meningeomas (Bondy et al. 2008). Gliomas hardly ever spread outside of the CNS or give rise to metastases in other internal organs. However, gliomas often have a diffuse growth pattern within the tissue, and, hence, their surgical removal usually remains partial (Cavaliere et al. 2007, DeAngelis 2001)

Table 1A. Histological classification of selected CNS tumors: location, age at clinical manifestation and 5-year survival.*

<table>
<thead>
<tr>
<th>Tumors of neuroepithelial tissue</th>
<th>Typical location</th>
<th>Age at manifestation (% of cases)</th>
<th>5-year survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-20 years</td>
<td>20-45 years</td>
</tr>
<tr>
<td>Astrocytic tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilocytic astrocytoma (grade 1)</td>
<td>Cerebellum, optic nerve</td>
<td>74</td>
<td>20</td>
</tr>
<tr>
<td>Astrocytoma (grade 2)</td>
<td>Cerebral hemispheres</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>Anaplastic astrocytoma (grade 3)</td>
<td>Cerebral hemispheres</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Glioblastoma multiforme (grade 4)</td>
<td>Cerebral hemispheres</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Oligodendroglial tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligodendroglioma/Anaplastic oligodendroglioma</td>
<td>Cerebral hemispheres</td>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>Ependymal tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma (grade 2)</td>
<td>Ventrices, spinal cord</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Medulloblastoma (grade 4)</td>
<td>Cerebellum</td>
<td>74</td>
<td>23</td>
</tr>
</tbody>
</table>
Table 1B. Other histological types of CNS tumors.*

<table>
<thead>
<tr>
<th>Astrocytic tumors</th>
<th>Pineal parenchymal tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleomorphic xanthoastrocytoma</td>
<td>Pineocytoma</td>
</tr>
<tr>
<td>Subependymal giant-cell astrocytoma</td>
<td>Pineoblastoma</td>
</tr>
<tr>
<td>Oligodendroglial tumors</td>
<td>Embryonal tumors</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>Primitive neuroectodermal tumour</td>
</tr>
<tr>
<td>Anaplastic oligoastrocytoma</td>
<td></td>
</tr>
<tr>
<td>Mixed gliomas</td>
<td>Meningeal tumors</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>Meningioma</td>
</tr>
<tr>
<td>Anaplastic oligoastrocytoma</td>
<td>Hemangiopericytoma</td>
</tr>
<tr>
<td>Ependymal tumors</td>
<td>Primary central nervous system lymphomas</td>
</tr>
<tr>
<td>Anaplastic ependymoma</td>
<td>Melanocytic tumour</td>
</tr>
<tr>
<td>Myxopapillary ependymoma</td>
<td>Hemangioblastoma</td>
</tr>
<tr>
<td>Subependymoma</td>
<td>Germ-cell tumors</td>
</tr>
<tr>
<td>Choroid-plexus tumors</td>
<td>Germinoma</td>
</tr>
<tr>
<td>Choroid-plexus papilloma</td>
<td>Embryonal carcinoma</td>
</tr>
<tr>
<td>Choroid-plexus carcinoma</td>
<td>Yolk-sac tumour (endodermal-sinus tumour)</td>
</tr>
<tr>
<td>Neuronal and mixed neuronal–glial tumors</td>
<td>Choriocarcinoma</td>
</tr>
<tr>
<td>Gangliocytoma</td>
<td>Teratoma</td>
</tr>
<tr>
<td>Dysembryoplastic neuroepithelial tumour</td>
<td>Mixed-germ-cell tumors</td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td>Tumors of the sellar region</td>
</tr>
<tr>
<td>Anaplastic ganglioglioma</td>
<td>Pituitary adenoma</td>
</tr>
<tr>
<td>Central neurocytoma</td>
<td>Pituitary carcinoma</td>
</tr>
<tr>
<td>Metastatic tumors</td>
<td>Craniopharyngioma</td>
</tr>
</tbody>
</table>

2.1 Astrocytic tumors

Astrocytomas are usually found in the cerebral hemispheres. Adult gliomas may show histological variations that may make their classification demanding. The WHO classification grading is based on the number of mitoses, presence of nuclear atypia, microvascular proliferation and tumour necrosis (DeAngelis 2001, Kleihues et al. 2002). Diffuse low grade astrocytomas (WHO grade 2) are well differentiated tumors with a low density of tumour cells that infiltrate diffusely into the brain parenchyma. The mitotic activity is low, and necrosis and microvascular proliferation are absent. Diffuse low-grade astrocytomas tend to progress into anaplastic astrocytomas (WHO grade 3) and eventually to glioblastoma (WHO grade 4) (Behin et al. 2003). The grade 4 gliomas are also called “glioblastoma multiforme” reflecting the heterogeneity of these tumors. Glioblastomas may present with varying cell morphology within the tumour, where high grade malignant areas with atypical tumour cells may be adjacent to morphologically less anaplastic tumour cells or endothelial proliferations.
Primary glioblastomas are usually diagnosed among older patients, whereas the lower grade gliomas tend to affect younger adults, although the age distribution at presentation is wide. The mean age of adult glioma patients is 40 to 45 years at the time of the diagnosis and that of glioblastoma patients 55 to 60 years (DeAngelis 2001, Kleihues et al. 2000, Ohgaki & Kleihues 2005a). Patients diagnosed with anaplastic astrocytoma have a median survival time of approximately 3 years after the diagnosis, but the median survival time is only approximately 1 year following the diagnosis of glioblastoma (DeAngelis 2001).

The current treatment of malignant gliomas is surgical resection, radiation therapy and in selected cases chemotherapy, notably temozolomide in glioblastoma. Unfortunately, none of these treatments is curative. Small tyrosine kinase inhibitors such as imatinib, gefitinib and erlotinib have limited activity in the treatment of gliomas (Behin et al. 2003, DeAngelis. 2001, Dresemann. 2005, Reardon et al. 2005, Rich et al. 2004).

2.1.1 Molecular pathogenesis of glioblastomas and grade 2 and 3 astrocytomas

EGFR amplifications, mutations and re-arrangements are frequently present in glioblastoma. Amplification of EGFR and subsequent over-expression of the EGFR protein are probably the most common genetic alterations in primary glioblastoma, and occur at a frequency of about 40% (Gan HK et al. 2009). Approximately 70% of the glioblastomas that over-express EGFR have re-arrangement of EGFR (Ekstrand et al. 1991). The most common of EGFR mutations is the deletion variant EGFRvIII, where 267 amino acid residues have been deleted from the extracellular domain of EGFR as a result from deletion of exons 2 to 7 from the gene. This results in inability of the truncated protein to bind any known growth factor, but the truncated receptor remains constitutively active and signals for a prolonged time as a result from impaired protein endocytosis and degradation due to deficient ubiquitination (Huang et al. 1997). Most glioblastomas (50% to 60%) that show amplification of EGFR express EGFRvIII (20% to 30% of all unselected glioblastomas). EGFRvIII can signal through homodimers or through heterodimers with e.g. EGFR or HER2. Glioma cells have been found also to secrete microvesicles expressing EGFRvIII that are released into cellular surroundings and the blood of tumour-bearing mice, and can merge with the plasma membranes of cancer cells lacking EGFRvIII. These events lead to the transfer of oncogenic activity via the microvesicles (Al-Nedawi et al. 2008).

EGFR is located on chromosome 7. Yet, the most frequent genetic alteration in primary glioblastomas (occurs up to 80% of cases) is LOH on chromosome 10 (Ohgaki & Kleihues 2009), which finding underlines presence of many genetic rearrangements in glioblastoma. Several genetic alterations may occur when diffuse astrocytoma is transformed to anaplastic astrocytoma, and eventually to secondary glioblastoma. EGFRvIII is less prevalent in secondary glioblastomas compared to primary glioblastomas (Gan et al. 2009). At a population level, one of the early genetic rearrangements in
secondary glioblastoma includes mutation of *TP53*, which is found in over 60% of the tumors. *TP53* mutations exist in primary glioblastomas, but not as frequently as in secondary glioblastomas (28% vs. 65%) (Ohgaki & Kleihues 2009). Amplification *MDM2* is not frequent in glioblastoma (<15%), and occurs exclusively in primary glioblastomas that lack *TP53* mutation (Ohgaki & Kleihues 2009, Rao et al. 2010). In secondary glioblastomas *DCC* (Deleted in Colorectal Carcinoma) tumour suppressor gene expression is frequently lost, and tumors often have amplified *PDGFR* (Reifenberger & Collins 2004).

![Figure 5. Genetic pathways to secondary and primary glioblastoma.](image)

Figure 5. Genetic pathways to secondary and primary glioblastoma. Glioblastoma may develop *de novo* without a pre-existing lower grade tumour. These tumors are called primary glioblastomas, and they frequently contain *ERGR* amplification and express EGFR. The alternative pathway entails gradual glioma development from a pre-existing lower grade lesion. Such glioblastomas are called secondary, and are characterized by presence of the PDGFA growth factor and its receptor (PDGFRA), and IDH1 and IDH2 mutations. These two pathways are distinct but not mutually exclusive (Behin et al. 2003, Ohgaki & Kleihues 2007, Reifenberger & Collins 2004).

2.1.1.1 Isocitrate dehydrogenase-1 mutations

Isocitrate dehydrogenase-1 (*IDH1*) mutations were recently discovered as a frequent and early alteration in human brain tumors (Dang et al. 2009). Interestingly, these data suggest for the first time that the molecular pathway to low grade astrocytomas, oligodendroglial tumors and secondary glioblastomas may have a common origin. Primary glioblastomas rarely harbour *IDH1* mutations, suggesting that primary and secondary glioblastomas originate from a different cell. The histological criteria for the differential diagnosis between low-grade astrocytomas, oligodendrogliomas and oligoastrocytomas are subjective, and since most of these low-grade gliomas are can now be genetically characterized either by the presence of *IDH1* mutation and *TP53* mutation (secondary glioblastomas, low grade astrocytomas) or an *IDH1* mutation and 1p/19q loss (oligodendrogliomas...
and anaplastic oligodendrogliomas). The molecular classification may augment or even eventually replace the histological classification of diffuse gliomas (Ohgaki & Kleihues 2009).

Isocitrate dehydrogenase-1 (encoded by IDH1 at 2q33) is normally in the cytosol and peroxisomes, and catalyzes oxidative carboxylation of isocitrate to α-ketoglutarate, generating NADPH from NADP⁺ (Smeitink 2010). Forced expression of mutant IDH1 reduces formation of α-ketoglutarate in cultured cells and increases HIF1α levels. This may facilitate tumour growth (Zhao et al. 2009).

IDH1 mutations were first identified by Parsons et al. in glioblastoma multiforme (Parsons et al. 2008), and they were subsequently found in over 80% of anaplastic astrocytomas, low-grade astrocytomas, anaplastic oligodendrogliomas, oligoastrocytomas, anaplastic oligoastrocytomas and secondary glioblastomas (Yan et al. 2008, Blass et al. 2009, Watanabe et al. 2009). Of note, IDH1 mutations are infrequent (<5%) or absent in primary glioblastomas, pilocytic astrocytomas, ependymomas and other CNS tumors. The IDH1 mutation frequency mapping thus suggests that low grade astrocytomas, secondary glioblastomas, oligodendrogliomas and oligoastrocytomas may share the same cell of origin. Since IDH1 mutations occur predominantly in younger patients and are associated with a better prognosis than is the case with tumors that do not carry the IDH1 mutation, D-2-hydroxyglutarate may become a biomarker serving diagnostic, prognostic and therapeutic purposes (Smeitink 2010).

2.1.1.2 Intratumoral heterogeneity of EGFR amplification in glioblastomas
Glioblastomas frequently display morphological, cytological and genetic heterogeneity (Furnari et al. 2007, Jung et al. 1999, Kleihues et al. 2002, Maher et al. 2001), and genetic intratumoral heterogeneity has long been known to occur in glioblastomas (Harada et al. 1998, Ren et al. 2007). EGFR amplification has been found in approximately 40% of glioblastomas when studied usually by in situ hybridization techniques and from one tissue block, but the observed frequency varies substantially in single studies ranging from 24% to 73% Fischer et al. 2008, Guillaudeau et al. 2009, Kramar et al. 2007, Layfield et al. 2006, Lopez-Gines et al. 2005, Miyanaga et al. 2008, Necesalová et al. 2007). A Systematic study on intratumoral heterogeneity of EGFR, PDGFRA and MET amplification reveal that in glioblastomas, subpopulations with different RTK amplifications exist but cells with different amplifications are actually subclones with common CDKN2A homozygous deletions and TP53 mutations, and thus cells with different RTK amplifications do not originate independently but are derived from the same precursor (Snuderl et al. 2011).

2.2 Paediatric CNS tumors
Tumors of the brain or the spinal cord are the most common solid tumors of the childhood. The most common histological tumour type is astrocytoma that accounts for approximately one third of all paediatric brain tumors (Larouche et al. 2007, Rickert et al. 1997). Most of the astrocytic tumors are low grade (Rickert et al. 1997). Medulloblastomas and ependymomas each comprise approximately
10% of the paediatric brain tumors. The most important prognostic factors are tumour histology (whether classified malignant or not) and completeness of resection (Larouche et al. 2007).

2.2.1 Pilocytic astrocytoma
Pilocytic astrocytomas (WHO grade 1) account for more than 20% of all CNS tumors in children aged less than 15, and they mainly occur in children and in young adults (Jones et al. 2006). Pilocytic astrocytomas are highly angiogenic showing endothelial-cell proliferation and haemorrhages, but still usually slow-growing, and are considered benign tumors (Gesundheit et al. 2003, Reifenberger & Collins. 2004). These tumors are typically well-circumscribed and occur in the cerebellum or at the optic tract (Reifenberger & Collins. 2004). Histologically, they exhibit a biphasic pattern with bipolar, highly fibrillated astrocytes accompanied by Rosenthal fibers adjacent to microcystic regions. The astrocytes frequently show granular bodies. Cell atypia, mitoses and necrotic areas that are characteristic to high grade gliomas are lacking, reflecting their benign nature (Reifenberger & Collins. 2004).

Pilocytic astrocytomas usually do not contain the molecular genetic alterations involved in the progression of diffuse astrocytomas, such as TP53 mutations (Haapasalo et al. 1999, James & Collins 1992, Ohgaki et al. 1993 Ransom et al. 1992 von Deimling et al. 1994). In classic pilocytic astrocytomas wild type TP53 most likely drives apoptosis, which is compatible with their generally indolent clinical course. Patients diagnosed with pilocytic astrocytoma with classic features have usually better survival than patients whose pilocytic astrocytoma has mixed tumour components (Haapasalo et al. 1999). Pilocytic astrocytoma can be cured by resection, but they recur if surgical extirpation remains partial (Haapasalo et al. 1999).

2.2.1.1 Genetic aberrations in pilocytic astrocytoma
Pilocytic astrocytomas have a generally favourable outcome, and the genetic rearrangements that promote aggressive tumour growth and behaviour are thus expected to be relatively scarce. There is some evidence suggesting that adult and juvenile pilocytic astrocytomas differ genetically. Gains of chromosomes 5 and 7, and gain of 9q have been detected more frequently in pilocytic astrocytomas of patients older than 15 at the time of the diagnosis (Jones et al. 2006, Sanoudou et al. 2000). Intratumoral analysis of pilocytic astrocytomas has revealed chromosomal heterogeneity associated with variations in histological morphology, e.g. gains of chromosomal material in 4q and 6q in tumour regions consisting of the classic biphasic pattern (Wemmert et al. 2006). Overall, chromosomal polyplody of pilocytic astrocytomas is rare, and usually detected in those tumors that have undergone transformation into a more malignant direction (Mathew et al. 1996, Tomlinson et al. 1994b).

However, pilocytic astrocytomas have some distinctive genetic features compared to diffusely growing astrocytic tumors. These features include relatively rare RTK overexpression on tumour cells and down regulation of EGFR. Gene expression profiles of pilocytic astrocytomas have revealed few
genes that are distinct from higher grade gliomas and also from the normal brain tissue. When pilocytic astrocytomas were compared to the normal brain tissue and grade 2 astrocytomas, a strong overexpression of TIMP4 (tissue inhibitor of metalloproteinases 4) gene was detected. TIMP4 is able to inhibit directly a group of matrix metalloproteinases that act as proteolytic enzymes. Similar findings were done with IGFBp2 (insulin-like growth factor binding protein 2) gene and with some genes involved in the maintenance of the extracellular environment and lipid metabolism. IGFBp2 is produced in various regions in the CNS and is thought to inhibit IGF (insuline-like growth factor)-stimulated events such as mitogenesis and cell migration. Comparison of gene expression between glioblastomas and pilocytic astrocytomas indicated upregulation of a subset of genes involved in invasion and angiogenesis in glioblastomas, whereas pilocytic astrocytomas were characterized by the expression of genes involved in metabolism, proteolysis, signal transduction and cell adhesion (Colin et al. 2006, Rorive et al. 2006).

2.2.2. Ependymoma
Ependymomas are tumors of the neuroectodermal origin, and are typically located in the spinal cord or adjacent to the ventricles. In addition, ependymomas can sometimes be found in the brain parenchyma (Centeno et al. 1986, Oppenheim et al. 1994). Although ependymomas occur in all age groups (Reni et al. 2007), the median age at presentation is approximately 4 years. Ependymomas are somewhat more common in males than females (McGuire et al. 2009). Surgery is the standard treatment for ependymoma. Postoperative radiotherapy is indicated in the treatment of high-grade ependymoma and in case where surgical resection is incomplete (Reni et al. 2007).

Prognosis of spinal ependymomas is more favourable than that of infratentorial or supratentorial ependymomas. 5-year survival of paediatric ependymomas generally improves with increasing age. In the U.S. Surveillance Epidemiology End Results (SEER) database, 45.5% of the patients diagnosed with ependymoma survived for 5 years after the diagnosis in the age group of 0-4, whereas the survival rate improved up to 77.0% when ependymoma was diagnosed at the age of 16 to 18 (McGuire et al. 2009) and the oldest age-group (over 45) and infants had the least favourable survival rates (Reni et al. 2007).

Ependymomal tumors are classified by the WHO into grades 1 to 3. The WHO grade 1 and 2 ependymomas have a low mitotic activity and regular nuclear morphology, whereas anaplastic ependymomas (the WHO grade 3) are highly cellular, show cell and nuclear pleomorphism and endothelial cell proliferation, have frequent mitoses and contain tumour necroses. Perivascular rosettes are a histological hallmark of ependymoma (Reni et al. 2007). Anaplastic ependymomas exhibit more rapid growth than grade 1 or 2 ependymomas (Kleihues et al. 2002, Schiffer et al. 1991).
Little is known about the risk factors or about the genetic basis of ependymomas. A possible relationship between polyomavirus SV40 infection and ependymoma has been suggested, but has not been confirmed (Bergsagel et al. 1992, Lednicky et al. 1995). Data about the cytogenetic features of ependymoma are also scarce. Frequent mutations or amplifications of receptor tyrosine kinases have not been described. TP53 has probably only a minor role in tumour progression (Bijlsma et al. 1995, Metzger et al. 1991, Sato et al. 1996). Amplification of MDM2 was detected in 35% of ependymomas, and MDM2 overexpression was present in as many as up to 96% of the tumors analyzed (Suzuki & Iwaki 2000).

2.2.3 Medulloblastoma
Medulloblastomas originate from embryonal or fetal precursor cells, and are typically diagnosed at the age of 3 to 6. These tumors are highly malignant, but they respond to radio- and chemotherapy (Kleihues et al. 2002). Long-term survival can be achieved in approximately 85% of the standard risk patients and 70% of the high risk patients with a combination of chemotherapy and irradiation (Dhall 2009). The late adverse effects of multimodality treatment (particularly those of radiation therapy) may be substantial, and, therefore, novel approaches such as proton therapy are under evaluation with promising early results (Yock et al. 2010).

The wingless (WNT) pathway coordinates several developmental processes, and mutations in proteins of the WNT pathway occur in approximately 15% of sporadic medulloblastomas (Gilbertson 2004, Wechsler-Reya & Scott 2001). Aberrant signalling of the sonic hedgehog pathway is implicated in causing medulloblastoma in approximately 20% of children with this disease, and orally active inhibitors that bind to the SMO receptor are currently being tested in the treatment of medulloblastoma (Gajjar et al. 2010). Approximately 30% of childhood medulloblastomas contain amplified N-MYC (Lengauer C et al. 1998).

3. Gene amplifications in cancer
Gene amplification is defined as a greater than the normal number of gene copy numbers at a specific chromosomal locus. In cancer, presence of gene amplification is one molecular mechanism that may enhance tumour growth and progression. The amplicon usually contains at least one gene that is strongly expressed abetting amplifications also in adjacent genes that may be irrelevant to tumour progression and that may not be expressed (Knuutila 2004).

Recent studies where the entire tumour genome was sequenced typically reveal presence of numerous genetic aberrations in a single tumour including gene amplifications and gene deletions (Stephens et al. 2009). Amplifications of growth promoting genes are frequent in late stage cancers. Some tumour types have characteristic gene amplifications that are associated with overexpression of the gene product. For instance, approximately 15 to 20% of breast cancers harbour amplification of HER2 oncogene, overexpress the protein and are associated with generally unfavourable outcome unless treated with anti-HER2 targeted therapy (Ross & Fletcher 1998, Slamon & Press 2009). Another
example is amplification of N-MYC (V-myc myelocytomatosis viral oncogene homolog) in neuroblastoma. This gene belongs to the MYC family of transcription factors and was one of the first tumour amplifications studied in detail. Amplification of N-MYC has been reported to occur in approximately 20% of neuroblastomas, where it is associated with aggressive clinical behaviour of the disease (Savelyeva & Schwab 2001).

The size of the amplified genetic material may range from only one gene or few genes to whole chromosomal arms, or may span even an entire chromosome. Gene amplification can present as a homogeneously staining region (HSR) that consists of DNA sequence repeats within a chromosome, or the amplified DNA can exist as extrachromosomal bodies called double minutes (Dmins). The double minutes are readily detectable by molecular biological methods (Albertson 2006).

Some chromosomal regions may be prone to undergo amplification. Genomic sequences that have received much attention are the chromosomal fragile sites, which are chromosomal regions that replicate late during the S-phase and are prone to breakage under conditions of replication stress. Gene amplifications are abundant in tumour cells with inactive TP53. Factors such as radiation, hypoxia and chemotherapy agents may also induce chromosomal breakage. There is a heterogeneous group of approximately 100 fragile sites in the human genome, identified by treating cells with agents that interfere with DNA replication (Glover et al. 2005, Wahl et al. 1984). Fragile sites can be divided into common and rare sites based on their prevalence in a population. Common fragile sites are present in all individuals, and they coincide with the amplification boundaries found in cell lines. The amplification hot spots occur at the same loci as many of the known amplification-activated oncogenes (Myllykangas & Knuutila 2006).

Amplification may be initiated by a DNA double strand break that is present at a frailty check point of the cell cycle. A double-strand DNA break in a replicating cell can be generated by collapse of the replication fork, which is unable to progress as a result of a rearrangement in the DNA. In addition to specific breakage-promoting sequences at the fragile sites, errors in DNA replication and telomerase dysfunction may also be involved in the genesis of DNA amplifications (Albertson. 2006, Chernova et al. 1998, Coquelle et al. 1997, Paulson et al. 1998, Pipiras et al. 1998). Amplification resulting from telomere dysfunction is thought to occur through breakage–fusion–bridge (BFB) events as originally proposed based on observations made in studies on maize (McClintock 1942, Murnane & Sabatier 2004).

Dmins are thought loop out from the chromosomes following breakage of replication bubbles. Dmins containing tandem repeats may also be formed in HSR breakdown, where DNA fragments are clipped out and fused into circular elements. Dmins may be integrated back into chromosomes and constitute a HSR. The HSR gene amplifications are not necessarily restricted to these chromosomal loci of amplified genes, but they can be present also elsewhere in the genome as distributed insertions
According to the BFB model suggested by Barbara McClintock (1942), the initiating event in formation of a HSR is uncapping of a DNA sequence by a double strand break or telomere erosion, and post-replication fusion of the two sister chromosomes probably by DNA repair proteins. The resulting dicentric fused chromosome forms an anaphase bridge when it is drawn by the two centromeres of the fusion chromosome to the opposite poles of the mitotic spindle. This stress can cause a secondary breakage of the chromatin and uneven segregation of the DNA material into the daughter cells, and a repeat of the BFB in every cell division eventually leads to gene amplification (Myllykangas & Knuutila 2006).

3.1 Gene amplifications at the locus 4q12

PDGFRA, *KIT* and *VEGFR2* genes are located at the chromosome locus 4q12. Amplification of *PDGFRA* has long been known to be present in some diffuse gliomas, but recently an adjacent gene, *KIT*, was found to be amplified in some glioblastomas and paediatric osteosarcomas, although no activating mutations of *KIT* were reported (Entz-Werle et al. 2007, Sihto et al. 2005). *PDGFRA* is thought to be amplified as Dmins (Muleris et al. 1994), and recent findings suggest that in glioblastomas the amplified region may include a number of adjacent genes at the 4q12 locus (Holtkamp et al. 2007). In adult and adolescent seminomas *KIT* amplification has been accompanied with mutations in *KIT* exon 17 (McIntyre et al. 2005), and *PDGFRA* and *VEGFR2* were also occasionally co-amplified. Based on genome-wide mapping of genetic alternations in human gliomas, the glioma phenotype may in part reflect its gene amplification and expression profiles (Bredel et al. 2005).

Figure 6. Chromosome 4 showing the location of *PDGFRA*, *KIT* and *VEGFR2*.

4. Angiogenesis in gliomas

Tumors may produce pro-angiogenic proteins to overcome hypoxia, which results in activation of the transcription factor HIF-1-α (hypoxia inducible transcription factor-1-alpha). This induces expression

ANG-1 (angiopoietin-1) is a ligand of the TIE-2 RTK that is expressed on endothelial cells. It interacts with other angiogenic molecules to stabilize the vascular structures by promoting survival of differentiated endothelial cells (Audero et al. 2001, Hanahan 1997, Oliner et al. 2004, Papapetropoulos et al. 1999, Yancopoulos et al. 2000, Saharinen et al. 2010). ANG-2 is an antagonist ligand for TIE-2 in endothelial cells, and like VEGF-A, it is produced under hypoxic conditions trough induction by HIFα (Maisonpierre et al 1997, Pouyssegur et al. 2006). Initiation of vascular sprouting requires destabilization of capillaries, an action mediated by ANG-2 and ANG-1/TIE-2 signalling, which allows VEGF-A-induced cell migration and division (Pouyssegur et al. 2006). Hypoxic stress also leads to attenuation of protein synthesis by regulating the mTOR and other pathways (Pouyssegur et al. 2006).

Some diffuse astrocytic tumors, especially primary glioblastomas, may grow fast, which may lead to tissue hypoxia and tumour necrosis. VEGF is an important angiogenic factor also in gliomas. Glioblastomas are typically highly vascular, and VEGF-A, VEGFR-1 and VEGFR-2 are upregulated and phosphorylated in the tumour vasculature (Carroll et al. 1999). VEGF is expressed in the palisading tumour cells around necrotic areas and around tumour vessels that express VEGFR-1 and VEGFR-2 (Berkman et al. 1993, Hatva et al. 1995, Plate et al. 1994a, Plate et al. 1994b, Plate & Mennel 1995, Plate & Risau 1995, Samoto et al. 1995, Shweiki et al. 1992, Takano et al. 1996). VEGFR-2 is expressed not only in the vascular endothelia of glioblastoma, but sometimes on the glioblastoma cells as well (Steiner et al. 2004). Astrocytomas first depend on the existing normal brain blood vessels, but with further tumour growth hypoxia induce angiogenesis via HIFs, VEGFs, VEGFR-2 and ANG-2 (Bergers & Benjamin 2003).

Although pilocytic astrocytomas differ greatly from their malignant counterparts, they also have a high blood vessel density. Pilocytic astrocytomas show features of more mature, stable, thick and multi-layered vessels compared to anaplastic astrocytomas. In pilocytic astrocytomas VEGFR-2 and VEGFR-1 are expressed in the tumour vasculature in coiled young proliferating vessels together with VEGF. This suggests presence of a paracrine loop. Unlike diffuse gliomas, progressing pilocytic astrocytomas do not develop the characteristic necroses with palisading tumour cells (Gesundheit et al. 2003, Haapasalo et al. 1999, Leung et al. 1997, Takeuchi et al. 2004).

PDGF and its receptors are also important for angiogenesis. PDGFRs are expressed in several cell types, and PDGFRA, for example, in the vascular smooth muscle cells and megakaryocytes. PDGF has some angiogenic effect, and its role in wound healing is evident (Heldin & Westermark 1999).
Angiogenesis may be assisted by homing of bone marrow-derived cells on the developing vessels. Cells of hematopoietic origin have been reported to navigate to the sites where new blood vessels are formed and contribute to neovascularization, and express endothelial cell markers such as E-cadherin, VEGFR-1, VEGFR-2 and TIE-2 (Bertolini et al. 2006, Conejo-Garcia et al. 2005, De Palma et al. 2005, Grunewald et al. 2006, Okazaki et al. 2006, Venneri et al. 2007). The putative cancer stem cells of brain tumors might localize close to an adjacent blood vessel (Asahara et al. 1997, Calabrese et al. 2007). However, the mechanisms by which bone marrow-derived stem cells might contribute to angiogenesis are incompletely understood, the origin of neovascular endothelial cells are controversial and some recent results suggest that bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumour growth (Purhonen et al. 2008).

KIT may have a role in angiogenesis as well. SCF-KIT signalling enhances tube formation of developing capillary vessels (Matsui et al. 2004). KIT is expressed during ontogenesis in the alveolar capillaries and in capillary endothelia of the placenta (Miettinen et al. 2000). KIT may be expressed in tumour endothelial cells, and endothelial cells of primary glioblastomas were recently found to express KIT frequently (Sihto et al. 2007). The functional role of endothelial cell KIT remains speculative, but in pathological angiogenesis activated KIT may recruit endothelial progenitors to the inflamed endothelium (Dentelli et al. 2007). Little is known about endothelial cell KIT expression in lower grade gliomas and other CNS tumors.

5. RTK activation and targeted therapies
RTKs are activated upon ligand binding and formation of homo- or heterodimers, and consecutive trans-autophosphorylation (Blume-Jensen & Hunter 2001). Certain tyrosine amino acid residues in the RTK kinase domain serve as phosphoacceptors activating the receptor by a conformational change. Autophosphorylation of one or two homologous juxtamembrane tyrosine residues is required for full kinase activation in RTKs, and a mutation of a critical codon encoding a tyrosine residue to, for example, a phenylalanine encoding residue may significantly reduce the kinase activation (Blume-Jensen & Hunter 2001, Hashimoto et al. 2003, Pawson & Scott. 2005, Ueda et al. 2002).

Several ATP-mimetic drugs are currently being used in cancer therapy, and many more are being developed. Imatinib mesylate was the first small molecule RTK inhibitor that was approved for cancer treatment, first for CML and later for GIST. Imatinib is a selective inhibitor of KIT, PDGFRA,

KIT is activated notably in GISTs due to mutations as discussed above (1.3.1). Most GISTs are highly responsive to imatinib, in particular those that harbour mutation in KIT exon 11 (Heinrich et al. 2003). Imatinib is now the standard treatment of advanced GIST (Joensuu 2006), and it is now approved also for adjuvant treatment of high-to-moderate risk GIST patients (DeMatteo et al. 2009). KIT mutations (D816V) are found also in mastocytosis, some cases of acute myeloid leukemia (Fritsche-Polanz et al. 2010) and seminomas (McIntyre et al. 2005). Recently, KIT mutations and amplifications were found also in 10 to 40% of mucosal and acral melanomas, and in some melanomas located in sun-exposed sites. Interestingly, many of these melanomas respond to imatinib and other RTK inhibitors (Handolias et al. 2010). However, many human tumour types that express KIT in immunohistochemistry do not contain activated or mutated KIT, and KIT immunohistochemistry is inadequate in selection of patients for targeted therapy (Sihto et al. 2005).

Small molecule oral tyrosine kinase inhibitors have recently been studied in the treatment of glioblastoma, but the success has remained limited. The agents tested include inhibitors of the EGFR, such as gefitinib (Franceschi et al. 2007, Uhm et al. 2010), and inhibitors of the PDGFrs and KIT, such as imatinib (Dresemann et al. 2010). Factors that limit efficacy of tyrosine kinase inhibitors may include pharmacological factors, such as poor drug penetration into the CNS, and early development of drug resistance (Mellinghoff et al. 2005), but tumour heterogeneity might also have a role.
AIMS OF THE STUDY

To study EGFR mutations and their association with EGFR amplification in various histological types of human cancer, including brain tumors (I).

To investigate amplifications of KIT, PDGFRA, VEGFR2 and EGFR genes and their mutations in glioblastoma (II).

To investigate amplifications of KIT, PDGFRA, VEGFR2 and EGFR genes in low grade glioma, anaplastic astrocytoma and their recurrences (III).

To evaluate KIT and VEGFR2 expression in endothelial and tumour cells in paediatric brain tumors, and to investigate KIT gene copy numbers in these tumors (IV).

To study the heterogeneity of EGFR and KIT gene amplification and their protein products in gliomas and glioblastoma (V).

MATERIALS AND METHODS

1. Patients and tumour samples

The tissue diagnoses in the current studies were made by a professional pathologist, who also selected the tumour samples and ascertained their representativeness from hematoxylin and eosin stained slides. The following series were studied:

(I) Tumour tissues from a series of 560 neoplasms consisting of several histological types of tumors were selected at random from the archives of the Departments of Pathology, Helsinki University Central Hospital, Tampere University Central Hospital, and the Institute of Medical Technology, University of Tampere. In addition, tumour samples from six NSCLC patients treated with gefitinib were analyzed.

(II) Formalin-fixed paraffin-embedded tumour tissue from 48 patients who underwent craniotomy for a brain tumour and who were subsequently diagnosed with glioblastoma multiforme at the Department of Pathology, Helsinki University Central Hospital, between October 2000 and December 2003.

(III) Formalin-fixed paraffin-embedded tumour tissue from 119 patients who had craniotomy for a primary glioma in 1979 to 2000, and who had brain tumour tissue available for analysis both from the primary tumour and its recurrence, were retrieved from the
archives of the Department of Pathology, Helsinki University Central Hospital. The tumors were originally diagnosed as diffuse astrocytoma (grade 2, 3 or 4), oligodendroglioma (grade 2 or 3) or oligoastrocytoma (grade 2 or 3).

(IV) Formalin-fixed, paraffin-embedded tissue was retrieved from 35 patients with juvenile pilocytic astrocytoma diagnosed at the age of 18 or younger, and from 49 paediatric brain tumors consisting of various histological types diagnosed at the Helsinki University Central Hospital, Helsinki, Finland, in 1985 to 2007. Samples containing histologically normal tissue of several organs (n=16) were collected from aborted fetuses, from autopsies and from surgical operations. Fetal samples from fetuses younger than 20 weeks were obtained from spontaneous or induced abortions performed by the treating obstetricians according to the Finnish law at the Turku University Central Hospital. Other fetal samples were from stillbirths. The non-neoplastic and dysplastic cortical and subcortical tissues from brain resection for epileptogenic lesions were retrieved at random from the archives of the Department of Pathology, Helsinki University Central Hospital, Finland.

(V) Brain tumour tissue from 22 patients who underwent craniotomy and extensive resection at the Helsinki University Central Hospital (HUCH), Helsinki, Finland, in 1998 to 2006 was used as the starting material in the study. Since we investigated tumour heterogeneity, we required that five or more tumour tissue blocks were available for analysis at a computerized search of the files of the Department of Pathology, HUCH. Otherwise, the tumors were selected at random for the study.

2. Tissue microarray (III)
Routinely fixed paraffin-embedded tumour samples of representative tumour regions were used for construction of tumour tissue microarray (TMA) blocks, each containing approximately 100 tumour samples. Five µm sections were cut from the TMAs and processed for immunohistochemistry.

3. Polymerase chain reaction (I-III)
Fifty nanograms of the genomic DNA was amplified in a polymerase chain reaction (PCR) reaction containing 0.6 x Platinium PCR Buffer (Invitrogen), 1.4 to 2.4 µM of MgCl₂, 160 µM of dNTPs (Clontech), 0.3 µM of forward and reverse primers, and DNA polymerases AmpliTaq Gold (Applied Biosystems), and Platinium Taq (Invitrogen) in a volume of 50µL. The PCR cycling conditions consisted of an initial denaturation step at 94°C for 14 minutes, after 35 cycles at 94°C for 30 seconds, annealing (annealing temperatures in Table 2) for 45 seconds and 2 minutes at 72°C, and final extension for 10 minutes at 72°C. Heteroduplex formation was created by denaturing the PCR products for 5 minutes at 95°C and then allowing the samples to reanneal by decreasing the temperature 1°C per minute from 95°C to 40°C.
4. Denaturing high-performance liquid chromatography (I-III)

Denaturing high-performance liquid chromatography (DHPLC) is a high-throughput mutation-screening method (Xiao & Oefner 2001). In this technique, a PCR amplicon from the target gene is denatured in order to separate the existing homoduplexes and then allowed slowly to cool (reanneal). This results in formation of both homo- and heteroduplexes. The DHPLC running temperature is carefully selected so that partial denaturation begins to occur in the area around the polymorphic mismatch. Heteroduplexes elute before the homoduplexes in a specifically designed dsDNA HPLC column. DHPLC has the sensitivity for detecting genetic changes in heterogeneous cell populations, e.g. mutant cells within their normal cell background/contamination. Five to 10 µL of the PCR product was injected on the HPLC Column and eluted at a flow rate of 0.45 mL/min within a linear acetonitrile gradient consisting a mixture of buffer A (100mmol/L triethyl ammonium acetate and 0.1 mmol/L EDTA; Varian), and buffer B (100 mmol/L triethyl ammonium acetate, 0.1 mmol/L EDTA and 25% acetonitrile; Varian). PCR products from normal DNA were used as controls. The elution temperatures for each amplicon were obtained from the DHPLC Melt Program (http://insertion.stanford.edu/melt.html) and then optimized by studying alterations in the elution profiles of the samples within a temperature range of 2°C under and above the suggested melting temperature. The temperature that best separated homoduplexes was used for DHPLC analysis.

<table>
<thead>
<tr>
<th>GENE</th>
<th>Forward</th>
<th>Reverse</th>
<th>Annealing</th>
<th>Elution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study (I)</td>
<td>Exons</td>
<td>Primer sequences (5’-3’)</td>
<td>Temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>4</td>
<td>GCTTAAATTGCGGAGACTCTTGTT</td>
<td>TGAAGCTGTCCCCCATAGGA</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>4.2</td>
<td>AAAGAGGTGCTACACCAGTTT</td>
<td>CATAGGAGCTGGAGCAGAG</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>5</td>
<td>AGCCAGCCAACAATCAGAG</td>
<td>CCACCCTGGAATATCAGCAT</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>5.2</td>
<td>GAAAGGGGCTCATGATGTTC</td>
<td>TTTGGAAGCTTCGAGGAAAA</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>6</td>
<td>CCCTGGGAAATGATCTCTACC</td>
<td>AAGCTTCTGCTCTGAGTGG</td>
<td>56</td>
</tr>
<tr>
<td>EGFR</td>
<td>6.2</td>
<td>CAGGGACCATTTTGCTCTTCTT</td>
<td>CAGCCTGCTCCAGGAGAG</td>
<td>59</td>
</tr>
<tr>
<td>EGFR</td>
<td>7</td>
<td>GCTGATGATGTTACCTACCTCAC</td>
<td>GGACAAAGGATGCTGACCAC</td>
<td>61</td>
</tr>
<tr>
<td>EGFR</td>
<td>7.2</td>
<td>CCAGCGTGTTCCCTCTCCCT</td>
<td>CAGTCTTGGCTCTGGTGG</td>
<td>59</td>
</tr>
<tr>
<td>EGFR</td>
<td>8</td>
<td>CTTTCCATCATCCCTCAAGA</td>
<td>CTCAGCAGCGGAGAACAGA</td>
<td>59</td>
</tr>
<tr>
<td>EGFR</td>
<td>8.2</td>
<td>CACGGTCATCCACCTCCTTCTT</td>
<td>CCGAGAAACAGCTGTGTC</td>
<td>60</td>
</tr>
<tr>
<td>EGFR</td>
<td>12</td>
<td>TCAATCAAAAGGCTGCTGGA</td>
<td>GGACACCTTTAGAACCATCCTC</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>12.2</td>
<td>TCTGGAGAACAAGAATTTTCAGG</td>
<td>AACAGAAAGCGGGTGACTTACT</td>
<td>61</td>
</tr>
<tr>
<td>EGFR</td>
<td>13</td>
<td>CATGCTGTGGTGCACCAAGG</td>
<td>CAGAAAAACCAACACTCCA</td>
<td>61</td>
</tr>
<tr>
<td>EGFR</td>
<td>14</td>
<td>GCTGATTCGGTGTCTGGCAA</td>
<td>TCACGCTTTGTTGGCTTCTG</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>14.2</td>
<td>CAGCGCGTGGTTTCTCCCTCTT</td>
<td>CACCTCCTGAAATTGGAC</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>15</td>
<td>ATCTATTGTTCCCTCCACT</td>
<td>ATTTGTGGCCCGAAACTTG</td>
<td>59</td>
</tr>
<tr>
<td>EGFR</td>
<td>15.2</td>
<td>GCATGAAACTTTTCTTCCCT</td>
<td>TGAATTTGCAAGAGGAATG</td>
<td>59</td>
</tr>
<tr>
<td>EGFR</td>
<td>17</td>
<td>CATGGAACTTCTGCAAGAACC</td>
<td>ACATACAAACTGCTAATGG</td>
<td>56</td>
</tr>
<tr>
<td>EGFR</td>
<td>18</td>
<td>CAAATGAGTGCGCAATGCGCTG</td>
<td>GAGTTTCCCAACACTACTGGA</td>
<td>61</td>
</tr>
<tr>
<td>EGFR</td>
<td>18.2</td>
<td>CAAGTTGCCGTCAGCGACACACAG</td>
<td>CCACACACGGTGGAACAGA</td>
<td>52</td>
</tr>
<tr>
<td>EGFR</td>
<td>19</td>
<td>GCCACCATCTCACAATTTGCC</td>
<td>CCCACACAGCAAGAGCAGA</td>
<td>57</td>
</tr>
<tr>
<td>EGFR</td>
<td>19.2</td>
<td>TGCCAGTAAACGCTCTCTTTC</td>
<td>CCCACACAGCAAGAGCAGA</td>
<td>60</td>
</tr>
</tbody>
</table>
5. DNA sequencing (I-III)

Samples with an abnormal elution profile (elution peak shape or shift in elution time deviating from normal control sample) in DHPLC compared with a control consisting of lymphocyte DNA were subjected to automated sequencing located at Biomedicum Helsinki. The PCR products were first purified, using a QiAquick PCR purification kit (Qiagen). Direct sequencing of the PCR products was performed using BigDye3 termination chemistry (Applied Biosystems) and an ABI 3100 Genetic Analyser (Applied Biosystems).

6. Fluorescence in situ hybridization (I-III)

Centromere-specific probes for chromosomes 4 and 7 (CEP4 and CEP7, Spectrum Green, Vysis) were purchased, and the gene copy numbers were determined using BAC (bacterial artificial clones) probes for KIT (clone RP11-586A2), PDGFRA (clone RP11-231C18), VEGFR2 (clone RP11-662M13) and EGFR (clone RP11-815K24) (Invitrogen). The correct probe identity was confirmed using specific PCR-primers for each gene. The BAC DNA was isolated using standard techniques, and labeled with the digoxigen-nick and biotin-nick translation mix (Roche). Interphase nuclei were prepared using standard techniques and viewed under a fluorescence microscopy equipped with an ISIS digital image analysis system (MetaSystems). Dual-color hybridizations were performed. After hybridization the probes were detected immunochemically with avidin-fluorescein isothiocyanate and anti-digoxigenin rhodamine, and the slides were counterstained with 0.1 µmol/L 4,6-diaminido-2-
phehylindole in an antifade solution. Signal copy numbers were counted approximately from 50 randomly chosen non-overlapping nuclei.

7. Chromogenic in situ hybridization (III-V)

Whole tissue sections of 3µm mounted on glass slides were deparaffinized and incubated in 0.05M Tris-HCl/ 0.001M EDTA solution (pH 9) in a temperature controlled microwave oven (at +92°C for 10 minutes), followed by cooling down for 20 minutes at room temperature. After wash with H₂O, enzymatic digestion was carried out by applying 100µL of 10µg/µL proteinase K (Roche) in 2mM CaCl₂/ 20mM TRIS solution on to tissue sections for 10 to 20 minutes at room temperature or +37°C following with wash with H₂O and dehydration with an ascending gradient of ethanol. Digoxigenin-labelled BAC probes were prepared as described above and applied onto slides. Sections were denatured in the presence of BAC probes on a heat plate (+75°C to +85°C). Hybridization was expected to occur during over night incubation at +37°C. After incubation the slides were washed with 0.5xSSC for 5 minutes at +75°C followed by PBS wash. The probes were detected by FITC-sheep anti-digoxigen, HRP-goat anti-FITC and DAB chromogen according to the manufacturer’s protocol (Spot-Light CISH detection kit, Zymed). Alternatively, the enzymatic digestion was carried out by applying 100 µL of digestion enzyme onto the slides for 10 to 15 min at room temperature (Digest-All III solution, Zymed), and the probes were detected with a mouse anti-digoxigenin antibody (diluted 1:300; Roche Biochemicals, Mannheim, Germany), an antimouse-peroxidase polymer (Powervision+, ImmunoVision Technologies), and diaminobenzidine chromogen according to the manufacturer’s protocol. Tissue sections were counterstained with hematoxylin. Gene amplification was considered to be present when six or more signals or clusters of signals in one nucleus were detected in more than 10% of the counted nuclei. Cases with three to five signals per nucleus were considered as aneuploid and those with 2 signals as diploid (normal).

8. Immunohistochemical staining (II-V)

Five µm tissue sections were cut and mounted on glass slides. Tissue sections were deparaffinized and examined for KIT (CD117), phosphorylated KIT, SCF, PDGFRα, VEGFR2, HIF-1-alpha, EGFR, EGFRvII, phosphorylated EGFR, TP53, Ki67, CD34, nestin and prominin 1 (CD133). The primary antibodies were diluted in PowerVision pre-antibody blocking solution and incubated overnight at 4 °C. Binding of the primary antibody was detected with a Powervision+ Poly-HRP histostaining kit (Immunovision Technologies), using an Envision Detection KIT (Dako) or with the Ultravision Immunohistochemical Detection System (Lab Vision). The antibodies used, their dilution concentrations, pre-treatment buffers and the heat pre-treatments given are listed in Table 3. Tissue samples with known expression of the studied protein were used as positive controls. The immunostainings were graded as negative (-), faintly positive (+), moderately positive (++), or markedly positive (+++), when viewed under a consultation microscope (Nikon Eclipse E600).
Table 3. A list of antibodies and their dilution concentrations, pre-treatment buffers and heat pre-treatments used.

<table>
<thead>
<tr>
<th>Target protein (study)</th>
<th>Antibody used</th>
<th>Dilution</th>
<th>Pre-treatment buffer</th>
<th>Heat pre-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR (II, III, IV)</td>
<td>Mouse monoclonal NCL-EGFR (Novocastra)</td>
<td>1:150</td>
<td>(II) and (III) Reveal buffer (Biocare Medical); (IV) 10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>EGFRvIII (IIIV)</td>
<td>Mouse monoclonal NCL-EGFRT (Novocastra)</td>
<td>1:200</td>
<td>Reveal buffer (Biocare Medical)</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>Phosphorylated EGFR (II)</td>
<td>Monoclonal mouse anti-EGFR (My10; BD Biosciences)</td>
<td>1:100</td>
<td>TRIS-EDTA, pH 9</td>
<td>Microwave oven 7 min and 3x5 min, 850W; (III) 98°C waterbath, 15 min</td>
</tr>
<tr>
<td>KIT (CD117) (II-IV)</td>
<td>Polyclonal rabbit anti-CD117 (A 4502; DAKO)</td>
<td>1:300</td>
<td>(II) and (III) TRIS-EDTA, pH 9; (IV) 10mmol/L Sodium-citrate buffer, pH 6</td>
<td>98°C waterbath, 15 min</td>
</tr>
<tr>
<td>Phosphorylated KIT (IV)</td>
<td>Phospho-c-KIT (Tyr719) (#3391, Cell Signaling)</td>
<td>1:35</td>
<td>10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Microwave oven 2x4min, 850W</td>
</tr>
<tr>
<td>SCF (IV)</td>
<td>Rabbit polyclonal SCF (#2273 Cell Signaling)</td>
<td>1:200</td>
<td>10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>PDGFRA (II)</td>
<td>Polyclonal rabbit anti-PDGFRalpha Ab-1 (RB-1691; NeoMarker)</td>
<td>1:150</td>
<td>Citrate buffer, pH 6</td>
<td>Microwave oven 7 min and 3x5 min, 850W</td>
</tr>
<tr>
<td>VEGFR2 (IIIV)</td>
<td>An epitope specific rabbit anti-VEGFR2 (Flk-1 Ab-1, Neomarkers)</td>
<td>1:100</td>
<td>10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>Nestin (III)</td>
<td>Mouse monoclonal anti-nestin antibody (clone 10C2, Chemicon International)</td>
<td>1:500</td>
<td>10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>Prominin-1 (CD133)(III)</td>
<td>Mouse anti-human CD133 antibody (AC133 pure, Miltenyi Biotec)</td>
<td>1:10</td>
<td>10mmol/L Sodium-citrate buffer, pH 6</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>CD34 (II)</td>
<td>Monoclonal mouse anti-CD34 (BD Biosciences)</td>
<td>1:50</td>
<td>TRIS-EDTA, pH 9</td>
<td>Microwave oven 7 min and 3x5 min, 850W</td>
</tr>
<tr>
<td>Ki67 (II)</td>
<td>Mouse monoclonal NCL-Ki67-MM-1 (Novocastra)</td>
<td>1:1000</td>
<td>Reveal buffer (Biocare Medical, Walnut Creek, CA)</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
<tr>
<td>HIF-1-alpha (IV)</td>
<td>Monoclonal mouse anti-HIF-1α antibody (Neomarkers)</td>
<td>1:100</td>
<td>10 mmol/L Sodium-citrate buffer, pH 6</td>
<td>98°C waterbath, 20 min</td>
</tr>
<tr>
<td>TP53 (IIILIII)</td>
<td>Mouse monoclonal NCL-P53-DO7 (Novocastra)</td>
<td>1:500</td>
<td>Reveal buffer (Biocare Medical, Walnut Creek, CA)</td>
<td>Autoclave at 120 °C, 2 min</td>
</tr>
</tbody>
</table>
9. Locked nucleic acid mRNA in situ hybridization for KIT (IV)

Digoxigenin-labeled locked nucleic acid probes (LNATM mRNA, Exiqon, Inc., Woburn, MA. USA) were designed against the KIT extracellular domain coding sequence 5’-gttgagaagagctgtctggac-3’. Efficacy of hybridization was controlled with a polyT(25)VN probe (LNATM, Exiqon) against a poly(A) tail. In situ hybridization was carried out as described earlier with minor modifications (Parikka et al. 2001). All reagents and instruments were treated either with diethyl pyrocarbonate (DEPC) or were RNAse-free. The sections were counterstained with 0.1% Nuclear Fast Red (Sigma-Aldrich Inc., Saints Louis, Missouri, USA). The hybridization results were graded as negative (-) or positive (+). Glioblastomas with known endothelial cell KIT expression in the tumour vasculature served as a positive control.

10. Statistical analyses (I-V)

Frequency tables were analyzed using the χ2 test or Fisher’s exact test, and non-normal distributions between groups were compared using the Kruskal–Wallis or Mann-Whitney tests. Life-tables were computed using the Kaplan–Meier method. The log-rank test was used to compare time-to-event distributions. Overall survival was computed from the date of the diagnosis to death, and the patients alive were censored on the last date of follow-up. All p-values are two-sided. Statistical analyses were computed with either a Statview or an SPSS computer program.

11. Ethical aspects (I-V)

The tissue samples analyzed were originally collected for diagnostic or therapeutic purposes, and leftover tissue was used for the current studies after obtaining permission from the National Authority for Medicolegal Affairs (NAM) and an Institutional Ethics Committee. All clinical data were processed anonymously using a unique study identity code number for each sample and/or patient.
RESULTS

The main findings of the thesis are summarized below (a more detailed description of the results are available in the attached Studies I to V).

1. *KIT, PDGFRA, VEGFR2 and EGFR* amplifications in primary and secondary glioblastomas (II)

Forty-three primary glioblastomas were analyzed for *KIT, VEGFR2, PDGFRA* and *EGFR* amplification using fluorescence *in situ* hybridization. *KIT* was amplified in 47% and *VEGFR2* in 39% of the glioblastomas, respectively, and *PDGFRA* in 29%. Thirty-five (81%) of the tumors had either *KIT* or *EGFR* amplification. *KIT, PDGFRA* and *VEGFR2* amplifications were strongly associated (*p* < 0.0001 for each pairwise comparison) suggesting co-amplification, whereas no significant association was found with presence of *EGFR* amplification. Glioblastomas with *KIT, PDGFRA* or *VEGFR2* amplification were associated with similar outcome as other glioblastomas.

The four secondary glioblastomas arising from pre-existing lower grade astrocytic tumors investigated had each *KIT* amplification. None of the four analyzed secondary glioblastomas had amplified *EGFR* as compared with 30 (70%) out of the 43 primary glioblastomas (*p* = 0.013). Three out of the four secondary glioblastomas harboured *PDGFRA* amplification, and one had *VEGFR2* amplification.

2. *KIT, PDGFRA, VEGFR2 and EGFR* amplifications in diffuse grade 2 and 3 gliomas and their recurrences (III)

KIT and *PDGFRA* amplifications were more frequent in anaplastic astrocytomas as compared to astrocytomas, oligodendrogliomas and oligoastrocytomas [28% versus 5% (*p* = 0.012) and 33% versus 2% (*p* = 0.0008), respectively]. *VEGFR2* amplifications occurred in 6% to 17% of the grade 2 or 3 gliomas at diagnosis, and *EGFR* amplification in 0% to 12%. Amplified *KIT* was more frequently present in recurrent gliomas than in newly diagnosed gliomas (*p* = 0.0066).

KIT amplification was associated with *KIT* protein expression and with presence of *PDGFRA* and *EGFR* amplifications both at the time of the first glioma diagnosis and at tumour recurrence, and with *VEGFR2* amplification at tumour recurrence. Three (4%) primary gliomas and 10 (14%) recurrent gliomas that were evaluable for co-amplification of *KIT, PDGFRA* and *VEGFR2* showed amplification of at least two of these genes; the amplicon contained amplified *KIT* in all 13 cases. In addition to astrocytomas, amplification of *KIT, PDGFRA* and *VEGFR2* was found frequently in recurrent oligoastrocytic tumors (in 23-33% of the cases).

The effect of gene amplifications on survival was investigated. Since gene amplifications tended to be associated with a low grade of glioma differentiation, *KIT, PDGFRA, VEGFR2* and *EGFR* amplifications were added as cofactors in a multivariate model that contained the histologic type of
glioma as another cofactor. Presence of KIT amplification tended to be associated with unfavourable survival based on this multivariate model that accounted for the histologic type of glioma (hazard ratio, 2.0; 95% confidence interval, 0.9-4.4; p = 0.075), whereas presence of PDGFR and VEGFR2 amplification was not associated with outcome in the model (p = 0.58 and p = 0.11, respectively).

3. Copy number analysis of KIT in paediatric brain tumors (IV)
KIT copy number was assessed using CISH in 9 pilocytic astrocytomas. None of the tumors had amplification of the gene. Two tumors showed KIT aneuploidy (three to five copies of KIT were present per one cell).

4. Heterogeneity of EGFR and KIT amplifications in gliomas and glioblastomas (V).
EGFR was amplified in 10 (67%) out of the 15 glioblastomas when only one (index) tissue block from each tumour was studied, whereas 11 (73%) glioblastomas were classified EGFR-amplified and the rest EGFR aneuploid when all blocks available were considered. KIT was amplified in six (40%) index glioblastoma tissue blocks, but in 10 (67%) when all blocks were analyzed. None of the seven astrocytomas contained amplified EGFR and only one harbouring amplified KIT even when all blocks were examined.

Table 4. A summary of copy number analysis of astrocytic tumors (II, III, IV, V)

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Studied samples (n)</th>
<th>PDGFR</th>
<th>KIT</th>
<th>VEGFR2</th>
<th>EGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocytoma grade II (III)</td>
<td>38</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Astrocytoma grade II (V)</td>
<td>5</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Anaplastic Astrocytoma (III)</td>
<td>18</td>
<td>33</td>
<td>28</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Anaplastic Astrocytoma (V)</td>
<td>2</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Secondary Glioblastoma (III)</td>
<td>16</td>
<td>31</td>
<td>36</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Primary Glioblastoma (II)</td>
<td>43</td>
<td>29</td>
<td>47</td>
<td>39</td>
<td>70</td>
</tr>
<tr>
<td>Primary Glioblastoma (V)</td>
<td>15</td>
<td>NA</td>
<td>67</td>
<td>NA</td>
<td>73</td>
</tr>
<tr>
<td>Pilocytic astrocytoma (IV)</td>
<td>9</td>
<td>NA</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Figure 7. Glioma nuclei that present aneuploid copy numbers of the genes KIT and PDGFR detected by fluorescence in situ hybridization. Red signals are for KIT gene and green signals are for PDGFR gene.
5. KIT, PDGFRA and EGFR mutations in primary and secondary glioblastomas (I, II)

Among the primary (n=43) and secondary (n=4) glioblastomas subjected to mutation screening, no mutations were detected with denaturing high-performance liquid chromatography in KIT exons 9, 11, 13 or 17, PDGFRA exons 12 or 18, or EGFR exons 18, 19 or 21 (II).

One mutation in an exon coding domain IV of EGFR was found in one out of the 57 glioblastomas in study I. This was a missense mutation C624F (substitution of cysteine by phenylalanine at the nucleotide position 1,871) in EGFR exon 15 (I).

Brain tumors are the topic of the present thesis, but we investigated in Study I also other tumors than brain tumors for presence of EGFR mutations. In brief, we found no EGFR kinase domain mutations in glioblastomas, but EGFR kinase domain mutations were found in lung adenocarcinomas and bronchioloalveolar carcinomas, of which 8 (11%) out of 73 tumors had a mutation. Six out of the eight mutations detected were in-frame deletions in exon 19, and two were leucine to arginine substitutions (L858R) at amino acid position 858 in exon 21. The deletions were clustered, and in each case, the amino acid residues LREA (leucine, arginine, glutamic acid and alanine) located at 747–750 were deleted. No EGFR kinase domain mutations occurred among the 493 tumors consisting of other histological cancer types than lung cancer, suggesting that EGFR kinase domain mutations are more common in lung adenocarcinomas and bronchioloalveolar carcinomas than in other types of human cancer.

6. TP53 mutations in diffuse gliomas and their recurrences (III)

Mutation of TP53 was present at the time of the diagnosis in 11 (29%) of the 38 astrocytomas, five (28%) out of the 18 anaplastic astrocytomas, four (20%) out of the 20 oligodendrogliomas and in three (27%) out of the 11 oligoastrocytomas studied. TP53 mutations were not detected more frequently in recurrent tumors compared to newly detected tumors (p = 0.25); they were present in five (29%) out of the 17 recurrent astrocytomas, eight (38%) out of the 21 recurrent anaplastic astrocytomas, four (24%) out of the 17 recurrent oligodendrogliomas, seven (44%) out of the 16 recurrent oligoastrocytomas, and in six (38%) out of 16 secondary glioblastomas studied. We did not find any statistically significant associations between presence of TP53 mutations and KIT, PDGFRA, VEGFR2 or EGFR amplifications either in the subset of newly diagnosed gliomas or among recurrent tumors (p > 0.10 for all comparisons), although TP53 mutations tended to be associated with EGFR amplifications in the subset of recurrent gliomas (p = 0.075).

7. Protein expression in primary and secondary glioblastomas (II)

EGFR protein was expressed more commonly in primary glioblastomas that harboured a high-level EGFR amplification (91%) than in glioblastomas that lacked such an amplification (91% vs. 60%).
respectively, p = 0.019). *EGFR* amplification was strongly associated with expression of phosphorylated *EGFR*. Fourteen (64%) of the 22 primary glioblastomas with high-level *EGFR* amplification expressed phosphorylated *EGFR* as compared with only one (5%) out of the 21 tumors that lacked high level amplification (p < 0.0001).

EGFRvIII expression was present in six (27%) out of the 22 primary glioblastomas with high-level *EGFR* amplification as compared to none of the rest of the tumors (n=21; p = 0.022). Marked *KIT* protein expression was rare, and occurred in only one out of the 43 primary and one out of 4 secondary glioblastomas, both of which had high-level *KIT* amplification. *KIT* protein expression tended to be more common in glioblastomas that had *KIT* amplification or aneuploidy than in tumors with a normal *KIT* copy number (p = 0.079). *KIT, PDGFRα* or *VEGFR2* amplifications were not associated with expression of *EGFR*, phosphorylated *EGFR* or truncated *EGFR* (p > 0.10 for all comparisons). Primary glioblastomas that had either *KIT, PDGFRα* or *VEGFR2* amplification tended to express Ki67 more often than tumors that lacked the gene amplification (p = 0.098, 0.060 and 0.097, respectively), whereas no such tendency was found for *EGFR* amplification (p = 0.49).

All 47 glioblastomas examined expressed the PDGFRα protein. TP53 expression was not associated with amplification of any of the four genes (*EGFR, KIT, PDGFRα* or *VEGFR2*) in primary glioblastomas (p > 0.10 for all comparisons). None of the four secondary glioblastomas expressed *EGFR* as compared to 33 (76%) out of the 43 primary glioblastomas (p = 0.0061), and none expressed phosphorylated *EGFR* or *EGFRvIII*. Three (75%) out of four secondary glioblastomas, but only four (9%) out of 43 primary glioblastomas, expressed TP53 (p = 0.0092).

8. Expressions of KIT, PDGFRα, VEGFR2 and EGFR protein in diffuse grade 2 or 3 gliomas and their recurrences (III)

KIT protein expression was rare in grade 2 or 3 gliomas. Moderate KIT expression was present in only one (1%) out of the 87 gliomas at the time of the diagnosis. This was a case of anaplastic astrocytoma that harboured KIT gene amplification. Strong KIT protein expression was detected in three (3%) recurrent gliomas (n=87); in two (13%) out of 16 secondary glioblastomas and in one (6%) out of 18 anaplastic astrocytomas. All recurrent gliomas with strong KIT expression had KIT gene amplification, and KIT protein expression was significantly associated with KIT amplification in the subset of recurred gliomas (p = 0.018). No associations were found between VEGFR2 protein expression and presence of VEGFR2 amplification (p = 0.18), or with EGFR protein expression and *EGFR* amplification (p = 1.00).

9. Nestin and prominin-1 expression in diffuse grade 2 or 3 gliomas and their recurrences (III)

No association was found between *KIT* amplification, *TP53* mutation and prominin-1 expression (a suggested marker for brain stem cells) in the subset of newly diagnosed gliomas (n = 87), and, similarly, no association was present between prominin-1 expression and *PDGFRα, VEGFR2* or
EGFR gene amplifications (p > 0.1 for all comparisons). Nestin expression (another protein marker of neural stem cells) was associated with presence of TP53 mutations in the subset of recurred gliomas. Twenty-five out of the 28 (89%) recurred gliomas that harboured TP53 mutation expressed nestin compared with 30 of the 45 (67%) recurred gliomas that did not contain TP53 mutation (p = 0.029). Nestin expression was not associated with TP53 mutations in the subset of newly diagnosed gliomas, and no significant associations were detected between presence of EGFR, KIT, PDGFRA or VEGFR2 amplifications and nestin expression.

10. KIT, phosphorylated KIT, SCF, VEGFR2 and HIF-1-alpha expression in endothelial cells of paediatric brain tumors, and in non-malignant fetal and postnatal tissues (IV)

KIT, phosphorylated KIT, SCF and VEGFR-2 expression was studied in 35 juvenile pilocytic astrocytomas and 49 other paediatric brain tumors using immunohistochemistry. KIT and phospho-KIT were moderately or strongly expressed in tumour endothelia of 37% and 35% of pilocytic astrocytomas, respectively, whereas marked SCF and VEGFR-2 expression was uncommon. KIT mRNA was detected in tumour endothelial cells. Tumour endothelial cell KIT expression was strongly (p < 0.01) associated with endothelial cell phospho-KIT and SCF expression, and with tumour KIT (p = 0.0011) and VEGFR-2 expression (p = 0.022). KIT and phospho-KIT were frequently present in the endothelia of ependymomas (six [55%] out of 11 tumors, and five [45%] out of 11 tumors, respectively). Endothelial cell KIT expression was associated with a young age at diagnosis of pilocytic astrocytoma or ependymoma, and it was occasionally present in histologically normal tissue of the foetus and young children.

11. Heterogeneity of EGFR EGFRvIII, KIT and phospho-KIT protein expression in gliomas and glioblastomas (V).

In addition to gene copy number heterogeneity, we studied the gene product (protein) heterogeneity in 15 glioblastomas by examining several tissue blocks from each tumour using immunohistochemistry. EGFR, EGFRvIII, KIT and phospho-KIT expression was frequently heterogeneous, and occurred at least in a part of the tumour in 93%, 33%, 93% and 100% of the tumors, respectively. Five (70%) out of the seven astrocytomas examined in a similar manner for protein expression heterogeneity expressed EGFR in a part of the tumour, and three (43%) out of the seven astrocytomas expressed KIT suggesting substantial heterogeneity in EGFR and KIT expression in astrocytomas.
DISCUSSION

Clinically, gene amplifications have diagnostic and prognostic usefulness, and amplification of genomic regions in cancer cells often represent selection of genes that promote tumour growth (Albertson 2006). *EGFR* gene amplification and EGFR protein overexpression have long been considered as hallmarks of primary glioblastoma (Reifenberger & Collins 2004).

Glioblastomas often display morphological heterogeneity, where tumour areas that show high histological grade of differentiation with well-differentiated cells are commonly found adjacent to poorly differentiated areas (Reifenberger & Collins 2004). Such heterogeneity likely exists also at the molecular level. Amplification of *EGFR* is reported to be present in 40-50% of primary glioblastomas, where its presence is generally associated with a poor patient outcome (Hurtt MR *et al.* 1992, Schlegel J *et al.* 1994, Riemenschneider MJ *et al.* 2010).

The present findings are generally in line with a hypothesis that *EGFR* plays an important role in the molecular pathogenesis of primary glioblastoma. *EGFR* amplification was very frequent and occurred in as many as in 70% of the primary glioblastomas studied (II). In addition to *EGFR* amplification, expression of the truncated form of the EGFR protein (EGFRvIII) was common in glioblastoma (II), whereas other *EGFR* mutations turned out to be infrequent (I). Heterogeneity in *EGFR* amplification was more limited as compared to that of *KIT* amplification in primary glioblastoma (V). EGFR protein was commonly expressed in primary glioblastoma, and the protein was frequently activated (phosphorylated) (II). Expression of phosphorylated EGFR was strongly associated with *EGFR* amplification (II). Taken together, these findings suggest that *EGFR* is of importance for the development of primary glioblastoma. In contrast, in lower grade gliomas (astrocytoma grade II and III) and secondary glioblastomas *EGFR* amplification was relatively rare and occurred in less than 15% of the tumors examined (III), suggesting that *EGFR* is less important in the molecular pathogenesis of low grade gliomas and secondary glioblastomas than of primary glioblastomas, and that the molecular pathogenesis of these tumors differs from that of primary glioblastoma.

We found the rate of *EGFR* amplification may be even higher than previously described in primary glioblastomas. The variation in the reported frequency of *EGFR* amplifications in glioblastoma may in part be explained by tumour heterogeneity, and it likely depends also on the proportion of classical glioblastomas in the series. We found *KIT* amplification, and to a lesser extent *EGFR* amplification, to be heterogeneous in glioblastomas (V).

Genes other than *KIT* or *EGFR* might be variably amplified at specific sites of a single tumour, and their functional activity might also vary within the tumour. More tumour regions with gene amplification may thus be identified when the entire tumour tissue is subjected to analysis as
compared to analysis of a single tumour biopsy. It may not be possible to assess reliably the frequency of gene amplifications from a single tissue biopsy particularly in glioblastomas due to the substantial intratumoral heterogeneity. The degree of intratumoral heterogeneity may vary between genes and their protein expression in a way that is difficult to predict without careful assessment of the entire tumour, which may complicate optimal selection of modern targeted treatments for a glioma patient.

The role of KIT, PDGFRA and VEGFR2 in the molecular pathogenesis of primary glioblastomas remains less well understood than that of EGFR. The results obtained in this thesis are compatible with a hypothesis that amplification of KIT, PDGFRA and VEGFR2 might rather be secondary events in tumour progression than a primary cause of glioma. KIT, PDGFRA and VEGFR2 are located adjacent on chromosome 4q, and they were frequently coamplified (II). The amplicon frequently contained KIT (III). Although amplification of KIT, PDGFRA and VEGFR2 were frequent in primary glioblastoma (in particular amplification of KIT, which was found in 47% of the primary glioblastomas studied)(II), KIT protein was infrequently expressed in primary glioblastoma, and KIT, PDGFRA and VEGFR2 amplifications were not associated with patient survival. KIT expression was often heterogeneous in primary glioblastoma (V), which is also compatible with the hypothesis that KIT amplification is a secondary event. KIT, PDGFRA and VEGFR2 amplifications tended to be associated with a high tumour Ki-67 expression and thus with a high cell proliferation rate.

The hypothesis that primary glioblastomas have a different molecular pathogenesis from secondary gliomas and lower grade astrocytomas has recently gained much support following the detection of isocitrate dehydrogenase-1 (IDH1) gene mutations (Balss J et al. 2008) in gliomas, and characterization of the clinical significance of IDH1 and its related gene IDH2 mutations (Yan et al. 2009). Presence of IDH1 and IDH2 mutations may now became the key criteria when classifying glioblastomas into the primary and the secondary types.

IDH1 and IDH2 encode critical proteins (R132 and R172, respectively) that function in the NADP+-dependent cellular processes. Mutations of IDH1 are found in more than 70% of WHO grade II and grade III astrocytomas and oligodendrogliomas, and in secondary glioblastomas that develop from these tumors. Of note, gliomas that lacked IDH1 mutation often harboured a mutation in the IDH2 gene. Patients with a tumour with either IDH1 or IDH2 mutation had better outcome than patients whose glioma harboured wild-type IDH gene (Yan et al. 2009) and mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival (Parsons et al. 2008).

Importantly, IDH1 and IDH2 mutations are very rare in primary glioblastoma, medulloblastoma, pilocytic astrocytoma and ependymoblastoma, and they were not found in any of the 494 non-CNS tumors investigated (Yan et al. 2009). These findings suggest that IDH1 and IDH2 mutations are
important in the molecular pathogenesis of WHO grade II and grade III astrocytomas, oligodendrogliomas and secondary glioblastomas. Mutations IDH1 and IDH2 may occur early in the molecular pathogenesis that leads to genesis of these tumour types.

A recent large scale study analyzing DNA copy number, gene expression and DNA methylation study provides new insights into the roles of NF1 and TP53 in glioblastomas (Cancer Genomic Atlas network 2008). Mutations of TP53 gene, once thought to predominate in secondary glioblastoma, have been found at a high frequency also from primary glioblastomas, and NF-1 somatic mutations showed new relevance in sporadic glioblastomas. In addition, A recent genomic analysis of glioblastomas identified four clinically relevant glioblastoma subtypes based on aberrations of EGFR, NF1 and PDGFRA/IDH1 and their gene expression, which resulted in subclassification of glioblastomas into the classical, mesenchymal and proneural subtypes (Verhaak et al. 2010). The classical glioblastoma subtype was associated with EGFR amplification in as many as 95% of the tumors with no alterations in TP53, NF1, PDGFRA or IDH1, whereas the mesenchymal subtype was associated with a high frequency of NF1 mutations and deletions, and expression of Schwann cell markers such as S100 and microglial markers. The proneural subtype was associated with young age, PDGFRA abnormalities, and IDH1 and TP53 mutations, which are features of secondary glioblastomas. Moreover, most secondary glioblastomas were classified as proneural. These findings suggest that some of the primary glioblastomas might arise from a clinically silent and undetected lower grade astrocytoma, or perhaps more likely, from a neural progenitor cell that can give rise either to a lower grade astrocytoma or the proneural type of primary glioblastoma. These data may be important in future trials when testing novel treatments for glioblastoma, and they may also aid at developing of multigene predictors for assessing the outcome of patients diagnosed with glioblastoma (Colman et al. 2010).

Although IDH mutations may be one of the initiating events in the molecular pathogenesis of many secondary glioblastomas and lower grade astrocytomas, the subsequent molecular events that lead to the development of either astrocytic or oligodendrocytic tumors likely require activation of distinct cell signalling pathways. This thesis presents a hypothesis that amplifications of KIT, PDGFRA and VEGFR2 are more common in secondary glioblastoma and anaplastic astrocytoma than in astrocytoma, oligoastrocytoma and oligodendroglioma (III). KIT expression is rare in lower grade gliomas, but was it was associated with KIT amplification in recurred gliomas (III). The probability of a tumour to acquire amplification of PDGFRA, KIT and VEGFR2 may increase with tumour progression, and an amplicon containing these genes may thus be found more frequently at the time of tumour recurrence as compared to the first diagnosis of glioma, and more frequently in higher grade tumors than in lower grade tumors. These data are in line with the general hypothesis that gene amplifications are frequent molecular alterations of later stage tumors (Lengauer et al. 1998). Presence of gene amplifications in lower grade diffuse gliomas might suggest that these tumors are more malignant than the mere histopathology implies (Riemenschneider et al. 2010).
KIT, PDGFRA and VEGFR2 have all been linked with angiogenesis. VEGFR2 is a key proangiogenic receptor tyrosine kinase (as discussed in 1.4 above) and PDGFR is involved with pericyte recruitment (Pietras et al. 2003). SCF may be produced in glioblastoma as a response to hypoxic conditions, possibly by hypoxic perinecrotic glioblastoma cells (Sihto et al. 2009). SCF may enhance endothelial cell survival, cell migration and tube formation, and SCF and KIT may thus have a role in tumour angiogenesis (Matsui J et al. 2004, Sihto et al. 2007, Sun L et al. 2004). Endothelial proliferation is a hallmark of glioblastoma, and a number of clinical trials addressing a variety of anti-angiogenic agents are currently underway in the treatment of both newly diagnosed and recurrent glioblastoma (Ahluwalia et al. 2010). KIT, PDGFRA and VEGFR2 expression was not significantly associated with the neural stem cell markers nestin and prominin, and they were not associated with TP53 mutations (III) or p53 expression (II).

Pilocytic astrocytomas lack many of the molecular alterations that are frequently present in adult gliomas such as IDH1 and IDH2 mutations (IV, Haapasalo et al. 1999, James & Collins 1992, Ohgaki et al. 1993 Ransom et al. 1992 von Deimling et al. 1994, Yan et al. 2009). Tandem duplications at 7q34 resulting in a BRAF fusion gene with constitutive BRAF kinase activity are frequent in pilocytic astrocytoma, whereas this alteration does not occur in higher-grade gliomas (Jones DT et al. 2008). In line with these findings, we found that pilocytic astrocytomas do not usually have amplifications of KIT. We found instead that in pilocytic astrocytomas tumour endothelial cells frequently express KIT and SCF and that endothelial KIT was often phosphorylated (IV). In pilocytic astrocytomas, and possibly in ependymomas, endothelial cell KIT expression was associated with a young age at the time of the diagnosis (IV). Yet, juvenile pilocytic astrocytomas are usually associated with good prognosis (Ohgaki H & Kleihues P 2005a) and are not necrotic, and data from glioblastoma patient series suggest that glioblastomas with moderate to strong KIT expression in the tumour endothelial cells may be associated with favourable outcome as compared to tumors with little KIT expression (Sihto et al. 2009). Therefore, other factors, such as the degree of maturation of the vascular system might be associated with endothelial cell KIT expression in young individuals with pilocytic astrocytoma.

Further studies on the topic of this thesis should address the relationships between EGFR, KIT, PDGFRA and VEGFR2 alterations and the newly discovered IDH mutations and NF1 mutations. Very recently in sonic hedgehog medulloblastomas a phenomena of massive chromosome rearrangements in a one-step, catastrophic event termed chromothripsis has been characterized. Chromothripsis can lead to gene amplifications and, the association of chromothripsis with TP53 mutations links the phenomena to more complex caryotype form of acute myeloid leukemia and poor survival (Rausch et al 2012). In higher grade gliomas with gene amplifications, it would be interesting to see if all RTK gene amplifications are equal and if more complex caryotypes with poorer outcomes can be identified.
Endothelial cell KIT expression also requires further study, since this might be a potential treatment target. The emerging new molecular classification of astrocytic brain tumors may provide a new basis for future clinical trials, since this may allow improved patient selection for targeted agents, although the marked heterogeneity of glioblastoma, in particular, may turn out to be a difficult obstacle to overcome. Diffusively growing glial tumors are difficult to cure by surgery, they are only moderately sensitive to irradiation and conventional chemotherapy, and targeted therapies have thus far not resulted in impressive results in the treatment of these tumour types. Therefore, further studies on the molecular pathogenesis of gliomas continue to be of critical importance.

CONCLUSIONS

The aims of the present thesis was to study EGFR mutations and their association with EGFR amplifications in various histological types of human cancer, including brain tumors (I); to investigate the amplifications of KIT, PDGFRA, VEGFR2 and EGFR genes and their mutations in glioblastoma (II); to investigate amplifications of KIT, PDGFRA, VEGFR2 and EGFR genes in low grade glioma, anaplastic astrocytoma and their recurrences (III); to evaluate KIT and VEGFR2 expression in endothelial and tumour cells in paediatric brain tumors and to investigate KIT gene copy numbers in these tumors (IV); and finally to study the heterogeneity of EGFR and KIT gene amplification and their protein products in gliomas and glioblastoma (V). We conclude that

1. Apart from the deletion mutant EGFRvIII in glioblastoma, EGFR mutations appear rare in human brain tumors. No mutations were found in EGFR exons 18, 19 and 21 that encode the kinase part of the EGFR receptor tyrosine kinase in brain tumors. Mutations in EGFR resulting in an aberrant kinase domain occur, however, in adenocarcinomas and bronchioloalveolar carcinomas of the lung.

2. EGFR gene amplification is common in primary glioblastoma, and was present in 70% of the glioblastomas investigated. EGFR protein is commonly expressed in glioblastoma and it is frequently activated (phosphorylated). Presence of EGFR amplification is strongly associated with expression of phosphorylated EGFR. KIT, PDGFRA and VEGFR2 genes are also frequently amplified in primary glioblastoma (KIT in approximately 50% of the cases, and PDGFRA and VEGFR2 in approximately one third of the cases).

3. Amplifications of KIT, PDGFRA, VEGFR2 and EGFR genes occur occasionally in lower grade gliomas (astrocytomas, oligodendroglialomas, oligoastrocytomas and anaplastic astrocytomas), but generally at a lower frequency than in glioblastoma. KIT and PDGFRA amplifications are more common in anaplastic astrocytomas than in astrocytomas, oligodendrogliomas and oligoastrocytomas.
KIT amplification is more frequent in recurrent lower grade gliomas and secondary glioblastomas as compared to newly diagnosed lower grade gliomas.

4. Paediatric pilocytic astrocytomas usually neither harbour amplifications of **KIT** nor express the KIT protein. Instead, KIT expression is common in the tumour endothelial cells, and endothelial cell KIT was frequently phosphorylated. Expression of endothelial cell KIT in pilocytic astrocytoma is associated with a young age at the time of the diagnosis. Ependymomas also frequently express KIT in endothelial cells, and endothelial cell KIT expression tends to be associated with young age at the time of the diagnosis.

5. Glioblastomas may show heterogeneity with respect of **EGFR** and **KIT** amplifications. The degree of heterogeneity in tumour KIT amplification may be greater than that of **EGFR**, which showed only limited heterogeneity between several tissue samples analyzed from one tumour. Expression KIT and phospho-KIT proteins were also markedly heterogeneous in glioblastomas, and heterogeneous expression of KIT and EGFR proteins was found also in astrocytomas and anaplastic astrocytomas.

Taken together, these findings support an important role for **EGFR** in the molecular pathogenesis of many primary glioblastomas. The importance of **KIT**, **PDGFR** and **VEGFR2** amplifications in glioma molecular pathogenesis seems less evident, and these alterations might often be secondary events related to glioma progression. The role of **KIT** may be multifunctional, and one of the roles may be associated with glioma angiogenesis. None of these receptor tyrosine kinases has thus far turned out to be a viable therapeutic target in clinical trials.
ACKNOWLEDGEMENTS

This study was carried out at the Department of Oncology, Helsinki University Central Hospital and laboratory of molecular oncology, Biomedicum Helsinki, Finland during the years 2004-2010. I wish to express my sincere gratitude to all those who made this study possible.

Especially, I wish to thank my supervisor Professor Heikki Joensuu for his inspiring and motivating guidance throughout my work. Thesis committee members Professor Päivi Peltomäki and Professor Jorma Keski-Oja I thank for their friendly support at the thesis committee meetings.

Docent Outi Monni and Professor Matias Röyttä are greatly acknowledged for careful review of the thesis manuscript. Their valuable and constructive comments helped me to improve my thesis.

I wish to thank all the collaborators and co-authors that have contributed to this thesis work. Anders Paetau, Olli Tynninen, Tom Böhling and Ralf Bützow from the Department of Pathology Helsinki University Central Hospital, Petri Bono Department of Oncology, Helsinki University Central Hospital, and Professor Sirpa Jalkanen and Professor Marko Salmi from the Finnish Programme for Centers of Excellence in Research, Host Defence Research, Turku, are greatly thanked for their invaluable expertise and collaboration. I thank Docent Nina Nupponen for hiring me to the best team in Biomedicum where I have had the greatest opportunity to work among talented people.

I wish to thank each and all, either previous or present member of the research group, especially Harri, Marja, Laura, Veli-Matti, Paula, Onerva, Maija, Marika, Tea, Maria and Susanna, and not forgetting the extensions to our team at the 5th floor and Skin and Allergy Hospital.

This study was financially supported by the Helsinki Biomedical Graduate School, the Satakunta Regional Fund of the Finnish Cultural Foundation, Helsinki University funds, Ida Montin Foundation, the Biomedicum Foundation, Orion-Farmos Research Foundation, and Emil Aaltonen Foundation.

63

