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Abstract

Background: The aim of this study was to investigate the feasibility of ischemic stroke detection from computed
tomography angiography source images (CTA-SI) using three-dimensional convolutional neural networks.
Methods: CTA-SI of 60 patients with a suspected acute ischemic stroke of the middle cerebral artery were
randomly selected for this study; 30 patients were used in the neural network training, and the subsequent testing
was performed using the remaining 30 patients. The training and testing were based on manually segmented
lesions. Cerebral hemispheric comparison CTA and non-contrast computed tomography (NCCT) were studied as
additional input features.
Results: All ischemic lesions in the testing data were correctly lateralized, and a high correspondence to manual
segmentations was achieved. Patients with a diagnosed stroke had clinically relevant regions labeled infarcted with a
0.93 sensitivity and 0.82 specificity. The highest achieved voxel-wise area under receiver operating characteristic curve
was 0.93, and the highest Dice similarity coefficient was 0.61. When cerebral hemispheric comparison was used as an
input feature, the algorithm performance improved. Only a slight effect was seen when NCCT was included.
Conclusion: The results support the hypothesis that an acute ischemic stroke lesion can be detected with 3D
convolutional neural network-based software from CTA-SI. Utilizing information from the contralateral hemisphere
appears to be beneficial for reducing false positive findings.
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Key points

� This is the first study applying three-dimensional
convolutional neural networks (3D CNN) to
computed tomography angiography (CTA) source
images for ischemic stroke detection

� Stroke detection was improved when cerebral
hemispheric comparison and non-contrast
computed tomography (NCCT) were included in
the CNN analysis.

� High sensitivity and specificity in the detection of
stroke lesions was achieved

Background
An acute ischemic stroke is caused by thrombotic or
embolic occlusion of a cerebral artery. Occlusion of
the proximal cerebral artery causes a deep ischemia
resulting in a collapse of cellular energetics. This is
followed by a necrotic cell death in few minutes. The
infarct core is surrounded by a partial area of ische-
mia, penumbra, where neurons will die within hours.
Accurate identification of this “tissue at risk” could be
used to identify patients who would benefit most
from treatment [1]. In a large ischemic stroke, the ex-
tent of damage will increase during the following
days. In an extreme case, the mass effect coupled
with the tissue damage leads to an increased intracra-
nial pressure and a loss of cerebral blood circulation.
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The restoration of blood flow to the tissue can be
achieved by opening the embolic artery. An essential
aim of acute treatment of brain infarction is to restrict
the size of the infarct by a rapid and permanent recanali-
zation of the obstructed artery. Primary imaging
methods for the acute ischemic stroke are non-contrast
computed tomography (NCCT), CT perfusion (CTP),
and CT angiography (CTA). The advantage of CT-based
methods is that they are rapid and more widely available
than MRI in the emergency setting.

The NCCT imaging must be performed as soon as
possible after the stroke code has been activated [2].
NCCT is highly sensitive for the depiction of
hemorrhagic lesions [3] or other NCCT visible mimics
of the stroke. The crucial role of NCCT is also the de-
tection of ischemic signs of established ischemic lesion.
The main NCCT finding is a cortical-subcortical hypoat-
tenuating area within a vascular territory. It is, however,
well-known that NCCT has a relatively low sensitivity in
the first 24 h, especially within the limited (3–6 h) time
window for thrombolytic treatment [4].

The extension of the acute infarct is typically esti-
mated from CT perfusion parameters (mean transit
time, cerebral blood volume, and cerebral blood flow).
In CTP, alterations in cerebral blood flow and volume
can be seen in the acute stroke patients. However, many
multi-detector scanners still offer limited coverage for
CTP of the brain which is often stated as a drawback of
CTP. Newer 256-slice scanners can provide whole-brain
coverage, and in the next few years this coverage will
most likely be widely available [4]. CTP implies a rela-
tively high radiation exposure and coarser resolution
and thicker slices when compared, for example, to CTA.

Using CTA, it is possible to demonstrate the anatomy
of the aortic arch, carotid, and cerebral arteries, the
presence of stenosis or thrombus of carotid or cerebral
arteries. In addition, an impression of the functioning
collateral network is obtained. Hypoattenuation in CTA
source images (CTA-SI) showing a lack of enhancement
provides an estimate of the cerebral blood flow reduc-
tion, whereas the NCCT allows to assess changes in
brain tissue water content. In comparison, CTP is per-
formed by monitoring only the first pass of an iodin-
ated contrast agent bolus through the cerebral
circulation [5]. Interestingly, CTA-SI can provide an-
other way, complementary to CTP, to evaluate the size
of acute infarct [6, 7], even though this method is not
typically used in clinical practice. CTA detects the re-
gions of the brain with hypoattenuation due to long de-
lays in contrast arrival to the ischemic brain tissue. It
has been discussed in several studies (e.g., [8]) about
CTA correlating more with a CTP cerebral blood flow
map (penumbra and core) than with the corresponding
cerebral blood volume map [8].

Among the CT techniques, CTA has multiple advan-
tages. It is highly specific and more sensitive than NCCT
in the detection of early irreversible ischemia [9]. In
addition, it provides the possibility to evaluate the whole
brain vasculature which is not available with CT perfu-
sion. The clinical outcome following the recanalization
has been discussed in other studies, and it is believed to
be strongly dependent on the extent of the pretreatment
infarct lesion volume [10]. The total stroke lesion vol-
ume can be used as a predictor of treatment efficacy. A
pre-treatment infarct volume lower than 70 cm3 can be
set as threshold for predicting a good clinical response
to reperfusion [11].

Applying artificial intelligence to stroke sign detection
can potentially aid in diagnosis or predicting prognosis
[12]. One of the motivations in applying machine learning
and deep learning methods to medical images is the auto-
matic extraction of non-trivial and non-linear features
from the imaging data. These features can then be applied
for example in tissue classification or lesion volumetry. If
the imaging data are inherently three-dimensional (3D), it
is natural to use methods based on 3D features. One such
AI algorithm family is 3D convolutional neural networks
(CNNs). They increase computational costs and hardware
requirements compared to their two-dimensional counter-
parts. However, parallel processing, especially utilization
of graphics processing units, as well as the recent advance-
ment in deep learning algorithms, have allowed 3D
CNN-based software tools to take further steps toward
clinical deployment.

CNNs and their application in medical imaging have
been discussed in length by other researchers [13–15]. A
review of AI application areas in stroke imaging have
been written by Lee et al. [12]. Recently, Lisowska et al.
[16] studied the detection of dense vessels and of ische-
mia from NCCT images using CNNs.

An automatic tool to detect infarcted regions from
brain CTA-SI could aid in diagnosis and evaluate the in-
farct extent or volume.

This study had two aims: (1) to investigate if using a 3D
CNN is feasible for detecting and segmenting hypoattenu-
ated regions in CTA-SI of stroke patients; and (2) to inves-
tigate if analysis performance can be improved by
including NCCT and information from contralateral
hemisphere as inputs to the neural network. The training
and evaluation of the networks were based on manual seg-
mentations of the hypoattenuated regions. This is the first
study investigating the application of 3D CNN on CTA-SI
for acute ischemic stroke lesion detection.

Methods
Subjects and imaging parameters
The clinical and imaging findings of the consecutive
stroke suspected cases of the middle cerebral artery or/
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and internal carotid artery occlusion presented to
Helsinki University Hospital between November 2016
and December 2016 were retrospectively reviewed, and
60 randomly selected patients were included in the
study. All of them had undergone an identical CT proto-
col. Thirty patients had been diagnosed by neurologists
with an acute ischemic stroke (group A). The CTA and
CTP of the other 30 patients showed no signs of a stroke
(group B). Both groups were randomly selected from the
corresponding patient populations (the group A was lim-
ited to the patients with unilateral ischemic strokes of
the middle cerebral artery). Inclusion criteria were (1)
stroke code activated; (2) admission stroke protocol im-
aging performed using fast CTA-SI acquisition protocol;
and (3) documented middle cerebral artery or/and in-
ternal carotid artery occlusion on CTA-SI.

In the group A, the median (range) National Health
Stroke Scale (NIHSS) was 17 (3–27). Disease burden in
the group A consisted of total of 15 patients which were
earlier diagnosed with a cardiovascular disease (atrial fib-
rillation and/or coronary artery disease), four had a type
2 diabetes, four had a diagnosis of breast cancer, and
two had a diagnosis of chronic obstructive pulmonary diag-
nosis. The rest of the group A were disease-free before the
acute stroke. In the group B, the patients presented with
symptoms suggestive of stroke (focal neurological symp-
toms with sudden onset). The group B was randomly se-
lected from patients imaged with the stroke protocol who
did not have a diagnosis of stroke. Seventeen patients in the
group B underwent a follow-up brain MRI in the following
48 h from stroke code activation without stroke diagnosis.
The rest of the stroke-negative group B were domiciliated
by the neurologists during the next 24 h without the
follow-up scan and without diagnosis of stroke.

In the group A, the number of patients with occluded
middle cerebral artery segments (M1–4) and internal
carotid artery (ICA) were M1 (n = 16); M2 (n = 5); M3
(n = 1); M4 (n = 1); ICA (n = 4); ICA + M1 (n = 1); and
ICA + M2: (n = 2). The symptoms had begun � 1 h (n = 8),
1–2 h (n = 7), 2-3 h (n = 2), and � 3 h (n = 12) prior to the
CT in the group A. The group A consisted of 15 males
and 15 females while the group B consisted of 14 male

and 16 female patients. The median (min-max) ages were
73 (47–82) years and 63 (26–91) years in the groups A
and B, respectively. All the patients were imaged using a
Somatom Definition Edge (Siemens Healthineers,
Erlangen, Germany) 128-slice CT scanner, with the same
protocol described in Table 1. CTA scanning range in-
cluded the carotid arteries. NCCT and CTP were lim-
ited to the intracranial range. Due to the retrospective
nature of the study, only transversal reconstructions
with slice thicknesses/increments of 0.75/0.5 mm
(CTA) and 4/4 mm (NCCT) were available for the ana-
lysis described below. Due to the manually adjusted
field-of-views, nominal in-plane resolutions were from
0.32 × 0.32 mm2 to 0.55 × 0.55 mm2 (fixed 512 × 512
matrix). All data were anonymized and stored on a ser-
ver running the Extensible Neuroimaging Archive
Toolkit, or XNAT, version 1.1.6 [17].

Preprocessing
A senior neuroradiologist and a radiologist, with over 20
and over 5 years of experience, respectively, segmented
the infarct regions on the CTA-SI for the 30 stroke-posi-
tive patients (group A), in consensus, only including the
visible hypoattenuated regions. No manual delineation
was done for the group B. The overview of image pro-
cessing workflow is presented in Fig. 1.

The CNN implementation had three requirements for
the input data. Firstly, patient’s CT and CTA image
series were cropped to equal image volume dimensions.
Secondly, all the data over all the patients needed to
have the same image resolution. Thirdly, the data was
recommended to be zero mean, and unit variance nor-
malized to aid the CNN to converge.

The CTA volumes (which included carotid arteries
and neck region) were cropped to include only the brain
region. This was done to decrease memory require-
ments. To include information from the contralateral
hemisphere, an additional set of images was created by
flipping the left and right sides of the original CTA-SI,
hereafter called hemispheric comparison volume. This
allowed for the inclusion of the information from the ap-
proximate contralateral anatomical regions for the CNN

Table 1 Stroke scan protocol. Scout images and test bolus details are not reported
Non-contrast CT CT perfusion CT angiography

Tube voltage (kVp) 120 80 120

Reference current time (Qref mAs) 273 120 150

Reconstruction kernel J45 s H20f I30f

Pitch 0.55 0.5 1.3

Contrast agent administration – 45 mL (6 mL/s) 50 mL (5 mL/s)

Contrast agent timing – 6 s delay Test bolus time to peak + 12 s

Dose length product (mGy · cm) 540 1430 370

CT computed tomography, Qref quality reference effective tube current-time product (used by Siemens Healthineers)
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training and evaluation. The flipped images and the
NCCT images were then matched to the original images
using rigid registration. The image co-registrations were
done using BRAINSFit tool [18]. Approximate intracranial
spaces were identified using an in-house MATLAB (Math-
Works, Inc., Natick, MA, USA) script. Then, the data were
scaled to zero mean and unit variance in the brain regions.
Finally, all the volumes across the data set were resampled
to 0.5 × 0.5 × 0.5 mm isotropic resolution. Convert 3D
(part of ITK-SNAP toolkit [19]) command-line tool was
used for rescaling and resampling. The consistent voxel
size across the data and the intensity shift and rescaling
were required for the CNN framework in use. Within each
subject, the volumes, including the manual lesion delinea-
tions via the nearest neighbor resampling, were in the
same image space. All the pre-processing tools had
command-line interfaces allowing easy automation and
preprocessing multiple subjects in parallel.

All images were eventually verified visually to confirm
the successful registrations. 3D Slicer image processing
and visualization platform [20] was used in the manual

segmentation and the visual verification of the prepro-
cessing outcomes.

Convolutional neural network
DeepMedic [21], an efficient 3D CNN available as a free
open-source implementation based on Theano library
[22], was used in the machine learning of the infarct fea-
tures. The multi-scale network was 11-layers deep with a
batch size of 10, L1 regularization 10�6 and L2
regularization 10�4. Root mean square propagation
optimizer (� = 0.9, � = 10� 4) was used with Nesterov mo-
mentum value 0.6. Training was done over 35 epochs with
15 sub-epochs each. Initial learning rate was set to 0.001
and halved at eight predefined epochs. To remove
left-right directional dependence from the trained model,
during CNN training, the data were augmented by reflect-
ing all the images along sagittal axis. This step mirrors all
the images in unison and is therefore not related to the
hemispheric difference volume mentioned above.

The patient groups (A and B) were partitioned ran-
domly into two sets: training set (15 from A + 15 from B)
and testing set (15 + 15). The testing set was separate from
the training phase and was used only in the reporting of
the results. An intracranial mask was used to limit the in-
vestigative volume. The manually drawn stroke volumes
were considered as ground truths. The output consisted
of a single label, i.e., the estimated infarct lesion.

Without changing the data set partitioning or network
parameters, three different training runs were per-
formed: (1) CTA as a single input; (2) CTA and left-right
flipped CTA for cerebral hemispheric comparison as two
inputs; and (3) CTA, flipped CTA for cerebral hemi-
spheric comparison, and NCCT as three inputs. All three
CNN outputs were evaluated with the same testing data.
The CNNs produced confidence estimates (or probabil-
ity maps) valued from zero to one for the infarcted re-
gions. In addition to voxel-wise segmentation, clinically
relevant anatomical regions were recorded as
stroke-positive or stroke-negative. Standard anatomical
regions used by the Alberta stroke program early CT
scoring system (ASPECTS) were chosen as these re-
gions. If a CNN produced even a single positive voxel in
the ASPECTS anatomical region, the region was defined
as stroke-positive.

All preprocessing, training, and testing were done on a
Linux (Debian 8.5) workstation with Intel Xeon E5-2687
W v4 3.00 GHz processor, 64GB RAM and NVIDIA
Quadro M6000 24GB graphics processing unit.

Evaluation methods
The CNN performance was evaluated against the expert
segmentation by two approaches, i.e., by anatomical re-
gions visually and in a volumetric voxel-wise manner. The
predefined anatomical regions according to the ASPECTS

Fig. 1 The data processing workflow. CT, computed tomography;
NCCT, non-contrast CT; CTA, CT angiography; CTP, CT perfusion; NN,
neural network
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[23] were six segments of middle cerebral artery (M1–
M6); insular ribbon (I); nucleus lentiform (L); caudate (C);
and internal capsule (IC). These were visually marked as
stroke-positive or stroke-negative in the ground truth data
and in the three CNN outputs. This approach was chosen
to emphasize clinically relevant brain subregions in the
evaluation. Secondly, full-brain voxel-wise overlaps be-
tween the outcomes and ground truth were compared by
calculating Dice similarity coefficients (DSC) and infarct
volumes. On all CNN outputs, a conservative threshold
probability value of 0.5 was used for labeling voxels as
positive. Receiver operating characteristic (ROC) curves
were calculated for the voxel-wise overlap by varying the
threshold value, and the areas under the curves (AUC)
were calculated. The extent and location of the false posi-
tive outputs of the CNNs were re-investigated visually by
both radiologists. This was done to estimate the possible
reasons for false positives. ASPECTS scorings for manual
and CNN segmentations of the CTA-SI were calculated
for the 30 group A test patients, to concretize the individ-
ual differences between the three CNN options.

CNN training is a computationally demanding process,
whereas creating ground truths by expert segmentation is
often expensive, tedious, and time consuming. To give an
oversight of these expenses, CNN training durations were
recorded, and one subject was chosen from the group A

for which the manual segmentation, automatic prepro-
cessing run, and CNN execution times were recorded.

Results
Representative CTA-SI slices with manual and one of
the CNN segmentations are shown in Fig. 2 for nine pa-
tients of group A. The CNN false positives are shown in
Fig. 3 for nine patients of group B. Ten individual ana-
tomical regions (according to the ASPECTS, left and
right hemisphere) were manually labeled as positive or
negative in the three CNN outputs (Table 2). The man-
ual segmentations were considered as the ground truths.
The Dice similarity coefficient (DSC) was calculated
from the regions’ true or false labeling (see Table 2).

As explained in the “Methods” section, three separ-
ate CNNs were trained: (1) with CTA-only; (2) with
CTA + cerebral hemispheric comparison; and (3) with
CTA + cerebral hemispheric comparison + NCCT as
inputs. Using a 0.5 threshold on probability maps
voxel-wise, sensitivity was 0.67, 0.74, and 0.71; specifi-
city 0.93, 0.96, and 0.96; and DSC 0.40, 0.55, and 0.55
for the three CNNs, respectively. The threshold was
varied, showing the resulting ROC curves in Fig. 4.
The ROC-AUC was 0.91, 0.93, and 0.93, respectively.
These included all the voxels from the group A and
B testing data. Variability between stroke patients was

Fig. 2 Representative slices of nine (a-i) of the infarct positive test cases. 3D CNN output with CTA + cerebral hemispheric comparison + NCCT
features are shown in white, and the infarcted lesion drawn manually is indicated with black perimeters
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estimated from the group A testing data. The respective
means ± standard deviation of the patient-wise ROC AUC
was 0.89 ± 0.04, 0.92 ± 0.06, and 0.91 ± 0.05. A small im-
provement (e.g., combined voxel-wise sensitivity increased
by 0.07 and DSC by 0.15) was seen when the cerebral
hemispheric comparison CTA was included, but there was
practically no effect when the NCCT was added as a third
input. The combination of CTA and NCCT was not in-
vestigated. The largest voxel-wise DSC value (0.61) was
obtained with CTA + cerebral hemispheric comparison
CTA inputs at 0.7 threshold.

During the retrospective visual investigation of the
false positives, the appearance of unilateral and bilateral
false positives in the CNN outputs (Table 2, Figs. 2 and
3) was linked with the age-related periventricular white

matter hypoattenuation (see Fig. 3b, c). Cortical false
positives were related to the widening of the cortical
sulci due to cortical atrophy (see Fig. 3d). As a conse-
quence, most of the false positives were located in the
periventricular white matter and near to cortical cere-
brospinal fluid spaces, to be associated with the normal
aging effects on the brain.

Lesion volume comparisons between the manual de-
lineations and CNN outputs (probability threshold 0.5)
were calculated from the largest continuous lesion seg-
ments. The infarct lesion volumes in the manual seg-
mentations varied from 11 to 293 cm3. The comparisons
are shown in Fig. 5.

Neither manual interventions nor modifications had to
be made for any of the volumes when visually verifying

Fig. 3 Representative slices of nine (a-i) of the infarct negative test cases. 3D CNN (false positive) output with CTA + cerebral hemispheric
comparison + NCCT features are shown in white

Table 2 Total number of infarct positive brain regions in 15 test subjects in group A and 15 non-infarcted test subjects in group B
compared with radiologist evaluation
CNN features Group A Group B Group A + group B

TN TP FN FP DSC Sensitivity Specificity FP DSC

CTA 78 99 6 117 0.62 0.94 0.40 92 0.48

CTA + hemispheric comparison 158 98 7 37 0.82 0.93 0.81 46 0.69

CTA + hemispheric comparison + non-contrast CT 159 98 7 36 0.82 0.93 0.82 34 0.72

The number of true negative (TN), true positive (TP), false negative (FN), and false positive (FP) regions were used to calculate sensitivity specificity and Dice
similarity coefficient (DSC). Convolution neural networks CNNs were evaluated for computed tomography angiography (CTA) alone, for CTA plus hemispheric
comparison, and for CTA plus hemispheric comparison plus non-contrast CT. For the regions (M1–6, I, L, C, IC on both hemispheres), see text
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