Contents lists available at ScienceDirect

Journal of Neuroimmunology

journal homepage: www.elsevier.com/locate/jneuroim

Mice lacking interleukin-18 gene display behavioral changes in animal models of psychiatric disorders: Possible involvement of immunological mechanisms


Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRE-USP), Brazil

Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil

Dental School of Ribeirão Preto, University of São Paulo (FOR-USP), Brazil

Neuroscience Center, University of Helsinki, Finland

Department of General Pathology, Biological Sciences Center, Londrina State University (CCB/UEL), Brazil

Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP-USP), University of São Paulo, Brazil

Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark

ABSTRACT

Preclinical and clinical evidence suggests pro-inflammatory cytokines might play an important role in the neurobiology of schizophrenia and stress-related psychiatric disorders. Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines and it is widely expressed in brain regions involved in emotional regulation. Since IL-18 involvement in the neurobiology of mental illnesses, including schizophrenia, remains unknown, this work aimed at investigating the behavior of IL-18 null mice (KO) in different preclinical models: 1. the prepulse inhibition test (PPI), which provides an operational measure of sensorimotor gating and schizophrenic-like phenotypes; 2. amphetamine-induced hyperlocomotion, a model predictive of antipsychotic activity; 3. resident-intruder test, a model predictive of aggressive behavior. Furthermore, the animals were submitted to models used to assess depressive- and anxiety-like behavior. IL-18KO mice showed impaired baseline PPI response, which was attenuated by D-amphetamine at a dose that did not modify PPI response in wild-type (WT) mice, suggesting a hypodopaminergic prefrontal cortex function in those mice. D-Amphetamine, however, induced hyperlocomotion in IL-18KO mice compared to their WT counterparts, suggesting hyperdopaminergic activity in the midbrain. Moreover, IL-18KO mice presented increased basal levels of IL-1β and TNF-α in the hippocampus and prefrontal cortex, suggesting an overcompensation of IL-18 absence by increased levels of other proinflammatory cytokines. Although no alteration was observed in the forced swimming or in the elevated plus maze tests in naïve IL-18KO mice, these mice presented anxiogenic-like behavior after exposure to repeated forced swimming stress. In conclusion, deletion of the IL-18 gene resembling features similar to symptoms observed in schizophrenia (positive and cognitive symptoms, aggressive behavior), in addition to increased susceptibility to stress. The IL-18KO model, therefore, could provide new insights into how changes in brain immunological homeostasis induce behavioral changes related to psychiatric disorders, such as schizophrenia.

1. Introduction

Over the last two decades, several studies have suggested an important bidirectional interaction between psychological stress and the immune system (Glaser and Kiecolt-Glaser, 2005; Kusnecov and Rabin, 1994; Segerstrom and Miller, 2004). In fact, pro-inflammatory cytokines, such as interleukin 1 (IL-1), IL-6, IL-18 and tumor necrosis factor alpha (TNF-α) are constitutively expressed in different limbic brain regions of the rodent brain (Goshen and Yirmiya, 2009; Pickering et al., 2005; Stellwagen and Malenka, 2006; Tonelli and Postolache, 2005) and the administration of pro-inflammatory cytokines produces a core of endocrine, neurochemical, and behavioral changes that are...
similar to those produced by stress exposure (Goshen and Yirmiya, 2009; Kwon et al., 2008; Madrigal et al., 2002; O’Connor et al., 2003). On the other hand, inhibiting the activity of pro-inflammatory cytokines in animals often attenuates stress-induced consequences (Goshen et al., 2007), thus suggesting pro-inflammatory cytokines play a prominent role in the modulation of neuroendocrine, behavioral and emotional responses to stress (Goshen and Yirmiya, 2009).

Altered levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) are also found in the serum and in the brain of psychiatric patients (Anisman and Merali, 2002; Levine et al., 1999; Licinio and Wong, 1999; Maes, 1995, 1999; Penninx et al., 2003; Tuglu et al., 2003) and chronic treatment with psychotropic medication, specially antidepressants and antipsychotics, can correct such imbalances. Moreover, the use of interferon α (IFN-α) produce significant changes in brain metabolism as well as psychotic and depressive symptoms in humans (Capuron et al., 2007; Drozdz et al., 2007). Altogether, these studies highlight the possibility that cytokines could contribute to the development of stress-related mental illnesses, such as anxiety, depression, and schizophrenia (Papanicolaou et al., 1998; Schiepers et al., 2005; Yirmiya, 2000).

Interleukine-18 (IL-18) is a pleiotropic cytokine (Nakanishi et al., 2001) member of the IL-1 family. IL-18 shares with IL-1β the same converting enzyme (caspase 1) that cleaves its precursor pro-IL-18 to yield the active IL-18 (Okamura et al., 1995). This cytokine and its receptors are constitutively expressed in astrocytes, microglia, neurons and ependymal cells of different brain areas of the rodent brain, including limbic regions (Alboni et al., 2009; Culhan et al., 1998; Felderhoff-Mueser et al., 2005; Wheeler et al., 2000). Moreover, IL-18 can regulate neurotransmitter release (Kanno et al., 2004), modulate neuronal excitability (Kanno et al., 2004), stress-induced microglial activation (Sugama et al., 2007), and interfere with plastic events in the CNS (Curran and O’Connor, 2001). Despite that, IL-18 involvement in the neurobiology of psychiatric disorders remains poorly investigated.

Schizophrenic patients have increased levels of IL-18 in the serum (Monji et al., 2009; Tanaka et al., 2000; Zhang et al., 2013) and polymorphisms in IL-18 gene have been related to specific clinical manifestations of schizophrenia, such as perception disorder and aggression, but were not directly connected with the risk of disease (Liu et al., 2011). Higher plasma levels of IL-18 are observed in first-episode psychosis and are positively correlated with cognitive impairments in chronic schizophrenic patients (Orhan et al., 2017, Wu et al., 2016). Moreover, IL-18 increase in the chronic phase of schizophrenia is positively correlated with positive and negative symptoms (Xiu et al., 2012). Although these recent evidences suggest IL-18 may play an important role in schizophrenia neurobiology, it is not known how IL-18 absence would affect behaviors predictive of schizophrenic-like phenotype. Additionally, there is scarce information about IL-18 involvement in the neurobiology of other mental disorders, such as anxiety and depression (Eisener-Dorman et al., 2010; Too et al., 2014; Yaguchi et al., 2010; Yamamoto et al., 2010).

Based on the aforementioned evidence, the present study aimed at investigating the behavioral effects induced by IL-18 absence in mice submitted to preclinical models used to study schizophrenia and stress-related psychiatric disorders, including: prepulse inhibition (PPI) test; amphetamine-induced hyperlocomotion; social isolation induced aggression; elevated plus-maze and forced swimming test. Considering that prepulse inhibition (PPI) disruption possibly reflects the difficulty of suppressing or filtering excessive information in schizophrenic patients (Braff et al., 2001; Swerdlow et al., 2008), PPI deficits across species, has been considered to reflect a schizophrenic-like phenotype (Swerdlow et al., 2008) and evaluation of this behavior in rodents is relevant to schizophrenia studies. Moreover, since psychotic patients release more dopamine after stimulation with amphetamine than normal individuals, possibly due to increased midbrain dopaminergic activity (Abi-Dargham et al., 2009), the hyperlocomotion-induced by amphetamine can be used to investigated increased activity in this brain region. Aggression and antisocial behavior are often observed in schizophrenia and it can be induced by social isolation (Buckley et al., 2011; Buckley et al., 2004; Serper, 2011; Soyka, 2011). Therefore, we also investigated if social-isolation induced aggressive behavior would be altered in IL-18 KO mice. Last, considering the well-known involvement of proinflammatory cytokines in responses evoked by stress exposure, we also evaluated if IL-18 KO present different behaviors in the elevated plus maze and forced swimming stress, in addition to increased susceptibility to stress exposure. Finally, we also measured IL-1β, IL-33, and TNF-α in the medial prefrontal cortex (MPFC), striatum (ST) and hippocampus (HIP), brain regions that have been associated with those disorders.

2. Material and methods

2.1. Animals

210 mice were used in this study. This study was conducted in male recessive homozygous IL-18 deficient (KO) (Balb/c background) and Balb/c wild-type control mice (9–12 weeks). The IL-18KO mice, a donation from Dr. Foo Liew (University of Glasgow), were generated as previously described in C57 BL/6 mice and backcrossed to Balb/c for eight generations (Wei et al., 1999). They were provided by our local Animal farm facility, and their genetic status was confirmed by PCR (Wei et al., 1999). After arriving at the Animal Care Unit of the Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, animals were housed in groups of 8–10 animals per cage, in a temperature-controlled room (24 ± 1 °C) under standard laboratory conditions (12 h light/12 h dark, lights on at 06:30 h) with free access to food and water. Procedures were conducted in conformity with the Brazilian Society of Neuroscience and Behavior guidelines for the care and use of laboratory animals, which comply with international laws. All tests were conducted in the light phase.

2.2. Drugs

Powdered D-amphetamine (D-Amph; Sigma) was dissolved in saline (0.9%). The solutions were prepared immediately before use and injected via intraperitoneal (i.p.) in a volume of 10 ml/kg.

2.3. Experimental procedure

Each behavioral test was performed with independent groups of animals. WT and KO mice were randomly assigned to the different experimental groups.

2.4. Behavioral response of IL-18KO mice in Prepulse Inhibition (PPI) Test and Amphetamine effects

Mice were submitted to the PPI test as described below to record baseline responses. One week later, animals were re-submitted to the PPI test after pharmacological challenge with vehicle (10 ml/kg) or amphetamine (5 mg/kg/i.p.), injected 30 min before test.

PPI of the acoustic startle reflex refers to the reduction in the startle response magnitude to a startling acoustic ‘pulse’ stimulus when it is shortly preceded by a weaker non-startling ‘prepulse’ stimulus (Hoffman and Ison, 1980). Startle response amplitude recording and PPI were conducted simultaneously in two identical startle systems (Med Associates, Inc., USA), as previously described (Issy et al., 2009). The cages were calibrated before the test (adjusted to 150 units) to ensure equal sensitivity of both response platforms during the test period. Pulse (pulse alone) was a burst of white noise of 105 dB with a rise/decay of 5 ms and duration of 20 ms. Prew to pulse was a pure tone of 80, 85 or 90 dB intensity with frequency of 7 kHz and 10 ms of duration. The interval between the onset of the prepulse and the pulse was 100 ms and the inter-stimuli interval was of 30 s. Prew alone did not
induce startle responses. PPI test consisted of 64 trials pseudo randomly divided into eight different categories: pulse alone, prepulse plus pulse, prepulse alone and null, where no stimulus was presented. Each trial type was presented at least eight times. The level of PPI was determined by expressing the prepulse + pulse (PP + P) startle amplitude as a percentage of pulse-alone (P) startle amplitude [% PPI = 100 – (100 × PP + P/P)]. Using this formula, a 0% value denotes no difference between startle reflex response to the pulse alone and to the prepulse + pulse and, consequently, no PPI.

2.6. Resident-intruder test

This test was performed in an open field (OF), as previously described (Leite et al., 2008). Twenty minutes before the exposure to the OF, animals received an intraperitoneal injection of vehicle or D-Amphetamine (0.625, 1.25, 2.5, 5 or 7.5 mg/kg). The exploratory activity for 10 min. Behavior was videotaped and the latency to the first attack was evaluated.

2.7. Exploratory activity

Briefly, the animals were placed in a circular open field (OF) arena (40 cm in diameter with a 50 cm high Plexiglas wall) for 6 min, as previously described (Zanelati et al., 2009). The exploratory activity was videotaped and Any-Maze software (V. 4.5, Stoelting, IL, USA) was employed for behavioral analysis. It detects the position of the animal in the open field and calculates the distance moved and maximum speed.

2.8. Forced swimming test

 Forced Swimming Test (FST) was performed according to the method first described by Porsolt and colleagues (Porsolt et al., 1977), with minor modifications, to access antidepressant-like effects in mice. Animals were submitted, individually, to the forced swimming in glass cylinders (height 25 cm, diameter 17 cm) containing 10 cm of water for 6 min, during 5 consecutive days. The total duration of immobility (characterized by slow movements only to avoid drowning) was videotaped and measured during the last 4-min period by a trained observer that was blind to the mouse condition on the first, third and fifth day (Kumar et al., 2010). The water was changed after each trial to maintain the temperature at 23–25 °C and to prevent the influence of alarm substances (Abel and Blitzke, 1990).

2.9. Elevated plus-maze test

The elevated plus-maze (EPM) apparatus consisted of two opposite wood open arms (34 × 6.5 cm), crossed at right angle by two arms of the same dimensions enclosed by 15-cm high walls with no roof. The maze was located 50 cm above the floor. The animals were placed individually in the center of the maze for free exploration during 5 min. The behavior was videotaped and the percentages of entries and time spent in the open arms ([100 × open / (open + enclosed)] during the 5 min of test were evaluated by the Any-Maze software (V. 4.5, Stoelting, IL, USA). Exposure to the EPM was performed in naïve WT and KO mice or on the first day after 5 days of repeated submission to the FST and the data were represented as stated above.

2.10. Cytokines measure by ELISA sandwich

Cytokines measure was performed in the brain areas collected from WT and KO mice that did not undergo any experimental intervention (naïve). Levels of IL-1β, IL-33 and TNF-α were measured in the medial prefrontal cortex (MPCF), striatum (ST) and hippocampus (HIP) and given at pg/μg of total protein. IL-18KO and WT animals were anesthetized with 5% chloral hydrate (Sigma; 10 ml/kg), decapitated and had their brains removed. The structures were dissected and immediately immersed in lyses buffer solution (137 mM NaCl, 20 mM Tris-HCl, pH 8.0, 10% (v/v) glycerol) containing protease inhibitor cocktail (10% v/v; Sigma). The tissues were homogenized in this buffer and centrifuged (10 min, 10,000 rpm, 4 °C).

The supernatants were collected and storage at −70 °C until use. Briefly, 96 wells plates were incubated with primary antibodies against IL-1β, TNF-α or IL-33 overnight (kits Duo Set, R&D System). Then the plates were washed and incubated with BSA 1%, washed again and the samples or standard curve were added and incubated for 24 h at 4 °C. After that, the plates were washed and the secondary antibodies were added and incubated for 1 h at room temperature. Avidine-HRP OPD was added and the plates were kept in the dark in room temperature for 20 min. The enzymatic reaction was stopped with H2SO4 (1 M, 50 μl/well) and the absorbance was determined at 490 nm. The data were obtained comparing samples values of absorbance with the standard curve absorbance (Cunha et al., 2000).

2.11. Statistical analysis

Data were analyzed by IBM® SPSS® Statistics software (version 21). Unpaired t-tests were employed to analyze the aggressive behavior and data from OF, FST and EPM. Cytokine data did not achieve homogeneity of variances and were analyzed by non-parametric analysis (Mann-Whitney). One-way analysis of variance (ANOVA) was employed for analysis of the acoustic startle response to pulse alone. The percentage of PPI was analyzed by repeated measures ANOVA with prepulse intensity as the repeated measure and the genotype and treatment as the between-subject factors. Hyperlocomotion induced by D-Amph was analyzed by two-way ANOVA with the genotype (KO or WT) and doses of drug as independent factors. In case of significant interaction between the factors, one-way ANOVA was performed to compare the different groups, followed by Duncan post hoc test. The behavioral data were expressed as mean ± SEM. Difference was considered significant at p ≤ 0.05.

3. Results

3.1. Behavior of IL-18KO and WT mice in PPI test and effect of amphetamine

The statistical analysis showed a significant effect of prepulse intensity (F2,23 = 17.67, p < 0.0001), interaction between prepulse intensity, genotype and treatment and a tendency to a treatment effect (F1,24 = 3.2, p = 0.08). The baseline (pre-treatment) PPI at prepulse intensity of 90 dB of IL-18KO mice was lower, which was improved after D-Amph treatment (p < 0.05, Duncan). At prepulse intensity of 80 dB, although KO mice did not present lower PPI at baseline, the response was higher after D-Amph (p < 0.05, Duncan; n = 6–8 animals/group; Fig. 1A).
3.2. Behavior of IL-18KO and WT mice in the startle response and effect of amphetamine

There was no difference between baseline startle responses (pulse-alone, arbitrary units) or startle responses after treatment with amphetamine in WT and KO mice (p > 0.05; n = 6–8 animals/group; Fig. 1B).

3.3. Amphetamine induced hyperlocomotion in IL-18KO and WT mice

In the distance moved (Fig. 2A; n = 5–10 animals/group), there was a significant effect of genotype (F_{1,65} = 9.5, p < 0.05), treatment (F_{4,64} = 31.6, p < 0.0001) and interaction between factors (F_{4,64} = 6.8, p < 0.0001). In the maximum speed (Fig. 2B), there was only significant effect of treatment (F_{4,64} = 6.4, p < 0.0001).

D-Amph 5.0 and 7.5 mg/kg significantly increased the distance moved in WT and KO mice (F_{5,68} = 16.7, ANOVA p < 0.0001, Duncan, p < 0.05). Although 7.5 mg/kg induced a greater response than 5.0 mg/kg in WT mice (Duncan, p < 0.05), this latter dose promoted a higher response in the KO mice. Both D-Amph 5 and 7.5 mg/kg increased maximum speed in KO mice, whereas only 7.5 mg/kg increased this parameter in WT mice (F_{5,68} = 3.3, ANOVA between subjects p < 0.005, Duncan, p < 0.05).

3.4. Evaluation of aggressive and impulsive behavior in the resident-intruder test

IL-18KO (n = 7–9 animals/group) mice presented increased impulsive and aggressive behavior expressed by lower latency to the first bite (t_{14} = 2.6, p < 0.05; Fig. 3A) and increased total attack time (log transformation; t_{13} = 2.3, p < 0.05; Fig. 3C), respectively. There was also a tendency to increase the number of attacks (log transformation; t_{13} = 1.4, p = 0.1; Fig. 3B).

3.5. Behavioral phenotype in the locomotor activity, elevated plus maze (EPM) and forced swimming (FST) tests

IL-18 KO animals presented a significant reduction in the total distance moved in the open field test (n = 9/group; IL-18 KO: t_{16} = 4.796, p < 0.0005; Fig. 4A). IL-18 naïve KO mice neither present any significant difference in behavior evaluated in the EPM compared to naïve WT mice (percentage of entries in the open arms - WT: 9.5 ± 2.4, KO: 11.9 ± 2.6, t = 0.7, d.f. = 20, p > 0.05; percentage of time in the open arms - WT: 5.1 ± 1.1, KO: 4.3 ± 1.1, t = 0.5, d.f. = 12, p > 0.05; number of entries in the enclosed arms: t = 1.267, d.f. = 12, p > 0.05; n = 10–12/group; Fig. 4B) nor in the FST test (WT: 167.9 ± 6.3, KO: 168.2 ± 9.0, t = 0.03, d.f. = 25, p > 0.05; n = 13–14/group; Fig. 4C).

3.6. Evaluation of behavioral changes in the EPM induced by repeated forced swim stress

IL-18KO mice did not present significant differences in the immobility time across the repeated forced swimming sessions (t = 1.4, d.f. = 20, p > 0.05; n = 10–12/group; Fig. 5A). However, when evaluated one day after the last swimming session, KO mice presented an anxiogenic-like behavior, represented by decreased percentage of entries into the open arms (t = 2.8, d.f. = 20, p < 0.05; n = 10–12/group). There was also a tendency to a decreased percentage of time spent in these arms (t = 2.0, d.f. = 20, p = 0.06) (Fig. 5B). No effect was observed in the number of enclosed arms (WT: 14.7 ± 1.5, KO:19.1 ± 2.7, n = 11–12/group; p > 0.05; data not shown).

3.7. Brain levels of cytokines in IL-18KO and WT mice

In the hippocampus, KO mice (n = 7) presented increased levels of IL-1β (t = 2.6, d.f. = 13, p < 0.05), but not of TNF-α (p > 0.05) or IL-33 (p > 0.05), compared to WT mice (n = 9). In the prefrontal cortex, KO mice (n = 6) presented increased levels of TNF-α (t = 2.5, d.f. = 12, p < 0.05) and a tendency for increased IL-1β (p = 0.1), but
no alteration in IL-33 level (p > 0.05) compared to WT mice (n = 8). In the striatum, there was a trend to increased IL-1β levels (p = 0.1) in the KO mice (n = 7) compared to WT mice (n = 6) (Table 1).

4. Discussion

Our results suggest that IL-18KO mice present behavioral changes that resemble some features of schizophrenic patients. Despite a discrete impairment of baseline PPI, these animals showed differential response to amphetamine challenge either in the PPI test or in the locomotor evaluation. In addition, these animals presented increased aggression, greater sensitivity to repeated stress exposure, and enhanced levels of cytokines in limbic regions, such as hippocampus and prefrontal cortex. On the other hand, IL-18KO mice did not show significant behavioral changes when tested in paradigms that are predictive of anxiety- or depressive-like behaviors.

Polymorphisms in IL-18 gene have been related to specific clinical manifestations of schizophrenia, such as perception disorder and aggression, but were not directly connected with the risk of disease (Liu et al., 2011). Altered blood levels of IL-18 have been consistently described in psychiatric disorders, including schizophrenia. Considering the increased circulating levels of IL-18 and other cytokines in schizophrenic patients, it should be expected that IL-18 absence would rather facilitate PPI, instead of impairing it, as observed herein. In fact, it has been postulated that inflammatory processes would have a prominent role in the pathogenesis of schizophrenia (Monji et al., 2009). On the other hand, since IL-18 is structurally related to IL-1β and shares some biological functions with IL-12 (Dinarello, 1999; Trinchieri, 1995), it is possible that IL-18 deficiency would have induced an overcompensation of these two cytokines, which would then have been responsible for the schizophrenic-like phenotype of IL-18KO mice. In support of this hypothesis, we found increased levels of IL-1β and TNF-α in brain regions of naïve IL-18KO mice. It was shown by others that these animals also present increased IL-12 and IFN-γ levels in the hippocampus in response to neurodegenerative processes in the brain (Zhang et al., 2007). Accordingly, increased IFN-γ/IL-4 ratio, IL-1β and IL-6 are observed in schizophrenic patients, which are normalized by antipsychotic treatment (Kim et al., 2004; Miller et al., 2011). Therefore, an overcompensation of other cytokines under specific circumstances could have contributed to the development of neuroimmunological processes and subsequent structural and/or functional brain changes crucial for emotional regulation in IL-18KO mice.

Alternatively, IL-18 has also been suggested to mediate neuroprotective effects (Felderhoff-Mueser et al., 2005; Mori et al., 2001; Sugama et al., 2004). In patients with schizophrenia, lower levels of serum free IL-18 correlates with smaller hippocampal volume when compared with healthy individuals. IL-18 can also influence brain
maturation processes (Felderhoff-Mueser et al., 2005) and, therefore, its absence along brain development might have contributed to brain changes responsible for the PPI deficit observed in IL-18KO mice. Corroborating this hypothesis, the absence of other pro-inflammatory cytokines, such as IL-1β, IL-6, and IL-2, during brain development was shown to promote significant cytoarchitectural changes in regions related to the neurobiology of schizophrenia, such as the striatum and the septo-hippocampal system (Parish et al., 2002; Petitto et al., 1999).

However, considering that IL-18 can exacerbate Th1 (IFN-γ related) or Th2 (IL-4 related) responses depending on the cytokine milieu (Nakanishi et al., 2001), the understanding of its role in schizophrenia is still incomplete.

PPI has been widely used as a translational model of sensorimotor gating ability. PPI disruption possibly reflects the difficulty of suppressing or filtering excessive information in schizophrenic patients (Braff et al., 2001, Swerdlow et al., 2008) and, therefore, PPI deficit has been considered to reflect a schizophrenic-like phenotype across species (Swerdlow et al., 2008). Accordingly, PPI is usually disrupted by drugs that increase dopaminergic neurotransmission (Geyer et al., 2001). However, considering that IL-18 can exacerbate Th1 (IFN-γ related) or Th2 (IL-4 related) responses depending on the cytokine milieu (Nakanishi et al., 2001), the understanding of its role in schizophrenia is still incomplete.

Table 1
Evaluation of cytokine levels in the hippocampus (n = 7–9/group), in the medial prefrontal cortex (n = 6–8/group) or in the striatum of IL-18KO mice (n = 7–10/group). All data are multiplied by 10^-3. Data are given at pg/μg of total protein and expressed as mean ± SEM.

<table>
<thead>
<tr>
<th></th>
<th>MPFC</th>
<th>Striatum</th>
<th>Hippocampus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>IL-18 KO</td>
<td>WT</td>
</tr>
<tr>
<td>IL-1β</td>
<td>5.8 ± 2.1 (n = 8)</td>
<td>18.6 ± 9.8 (n = 5)</td>
<td>3.4 ± 1.1 (n = 6)</td>
</tr>
<tr>
<td>IL-33</td>
<td>52.8 ± 14.4 (n = 10)</td>
<td>136.2 ± 73.3 (n = 7)</td>
<td>89.4 ± 26.1 (n = 10)</td>
</tr>
<tr>
<td>TNF-α</td>
<td>82.5 ± 6.2 (n = 8)</td>
<td>170 ± 40.7 (n = 6)</td>
<td>112.5 ± 23.9 (n = 8)</td>
</tr>
</tbody>
</table>

* p < 0.05, NS: non-significant.
dopamine and other neurotransmitters increased in anticipation of the confrontation (Narvae, 2014). Therefore, this data strengthens the proposition of high midbrain dopaminergic activity in IL-18KO mice. A previous work showed that although polymorphisms in IL-18 gene do not contribute to the susceptibility of schizophrenia in a Han Chinese population, a single-nucleotide polymorphism in that gene was associated with the presence of aggressive acts in the schizophrenic patients (Liu et al., 2011). In addition, although to our knowledge there is no work evaluating the direct involvement of IL-18 in aggressive behavior, cytokine immunotherapy increase aggressive traits in patients, which could be related to IL-1β (Pesce et al., 2011). This mechanism and the possible involvement of a dopaminergic imbalance need to be further investigated.

Regarding the participation of IL-18 in other stress-related psychiatric disorders, recent studies have investigated the behavioral phenotype of IL-18 null mice in different animal models. In line with our results, IL-18KO mice with 5–7 weeks old exhibited a significant deficit in the exploration of an open field (Yaguchi et al., 2010). Those mice also exhibited normal acquisition but less retention of a fear memory in the passive avoidance test (Yaguchi et al., 2010), suggesting an anxiolytic-like effect as recently demonstrated (Tao et al., 2014). Older IL-18KO mice (12 weeks old), however, presented normal locomotor activity in the open field (Yamamoto et al., 2010). Although a reduction in the open field can be interpreted as increased anxiety levels, our results obtained with the EPM and previous work also using this model (Yaguchi et al., 2010) or another animal model of anxiety (Yamamoto et al., 2010) do not corroborate this idea. The different results among these studies could be due to different ages or animal background, with this latter factor being critical in the analysis of complex behaviors (Crawley, 2008; Crusto et al., 2009). While the genetic background of our IL-18KO mice is Balb/C, others have used C57BL/6.

Contrasting results presented herein, a previous report showed that IL-18KO mice presented decreased immobility time in the FST (Yamamoto et al., 2010). In that study, however, the mice adapted to the test on the next day, presenting immobility time similar to WT (Yamamoto et al., 2010). These studies, however, used IL-18KO mice with different genetic background. Another explanation for our negative results in the FST and EPM could be related to previous stress exposure. Stress is able to regulate IL-18 expression in a glucocorticoid-dependent way (Conti et al., 1997; Conti et al., 2000; Sekiyama et al., 1997). Therefore, in the present study the fact that after repeated swimming stress IL-18KO mice presented anxiogenic behavior support a role for IL-18 in controlling stress-induced HPA axis activation. Moreover, the increased stress-susceptibility in IL-18 null mice could be mediated by its impact on microglia activation (Mori et al., 2001, Sugama et al., 2004). These proposition, however, warrant further investigation.

In conclusion, corroborating the suggestion that pro-inflammatory cytokines are involved in the neurobiology of several psychiatric disorders (Monji et al., 2009, Stone et al., 2008, Sugama and Conti, 2008, Yaguchi et al., 2010), mice null for IL-18 presented increased levels of specific cytokines in limbic brain regions, impaired sensorimotor gating, increased sensitivity to amphetamine treatment, in addition to increased aggressive behavior and sensitivity to stress exposure. This knockout model, therefore, could provide new insights into how changes in brain immunological homeostasis induce behavioral changes related to psychiatric disorders such as schizophrenia.

Acknowledgments

The authors acknowledge Giuliana Bertozi, José C. de Aguiar, Eleni T. Gomes and Flavia F. Salatta for their excellent technical work, Felipe V. Gomes for helpful discussions about schizophrenia hypothesis. This research was supported by grants from Brazil's foundations (FAPESP, CAPES, and CNPq). There is no conflict of interest.

References


Zhang, X.M., Duan, R.S., Chen, Z., Quezada, H.C., Mix, E., Winblad, B., et al., 2007. IL-18 deficiency aggravates kainic acid-induced hippocampal neurodegeneration in C57BL/6 mice due to an overcompensation by IL-12. Exp. Neurol. 205, 64–73.
