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Emale
To my mom 



 

ABSTRACT

Type 2 Diabetes (T2D) is an increasingly prevalent health problem and 
better understanding of its etiology is vital for improved prevention and 
treatment. It is known that T2D has multifactorial origin and mental health 
problems seem to accompany this progressive disorder. Of note, there is a 
bidirectional association between T2D and depression. One explanation for 
this relationship between T2D and depression could be the presence of 
pleiotropic genetic variants and possibly shared biological pathways. 
However, the underlying mechanisms remain poorly understood. 

Another possible common biological mechanism underlying T2D and 
depression comorbidity is related to disrupted circadian rhythms. It has been 
well established that many common disorders have seasonal fluctuations and 
it has been hypothesized that the amount of daylight might play an important 
role in seasonal fluctuations of both mental health conditions, glucose 
metabolism and T2D. The amount of daylight varies substantially throughout 
the year in Finland, making it one of the best locations to study this 
phenomenon.  

This research explores the shared genetic basis of T2D and depression as 
limited information exists on shared genetic risk of these conditions. 
Furthermore, another possible biological mechanism associated with both 
T2D and depression – circadian rhythm – has received limited research 
attention and is thus one of the focus areas of current thesis in relation to 
glucose metabolism. 

This research aims to provide better understanding in the genetic basis of 
increasingly prevalent health problems of T2D depression. The indicated 
knowledge together with understanding environmental effects of these 
prevalent conditions is needed in development of intervention strategies in 
light of the diabetes epidemic. Thus, this thesis focuses on four objectives. The 
first objective of this doctoral thesis is to examine whether there is a common 
genetic basis of T2D, glycemic indices related to T2D, and depressive 
symptoms. The second objective is to examine which specific genetic variants 
show common variation between glycemic indices and depressive symptoms. 
The third aim is to study if a common diabetes risk variant rs10830963 in the 
Melatonin Receptor 1B (MTNR1B) gene influences the relationship between 
depressive symptoms and glycemic indices. The final aim of this doctoral 
thesis is to investigate to what extent the amount of daylight moderates the 
associations between MTNR1B rs10830963 and glycemic indices. The first two 
objectives are addressed in Study I, objective three in Study II and objective 
four in study III.  

Study I is based on the summary statistics data from previously published 
Genome-Wide Association Studies (GWAS) of depressive symptoms by 
CHARGE consortium, T2D by Diagram consortium and glycemic traits by 
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MAGIC consortium. GWAS on depressive symptoms involved 51,258 
participants, GWAS on T2D involved 34,840 cases and 114,981 controls, 
GWAS on glycemic traits involved up to 58,074 participants. Studies II-III are 
conducted within the same Prevalence, Prediction and Prevention of Diabetes, 
the PPP-Botnia Study cohort. This prospective study cohort comprises 5,208 
individuals at baseline visit and 3,850 individuals at follow-up, on average 6.8 
years later. The analytic sample of Study II involved 4,455 non-diabetic 
participants from the baseline visit who were genotyped for MTNR1B 
rs10830963, had data on glycemic indices available based on an Oral Glucose 
Tolerance Test (OGTT) and additionally had data on depressive symptoms 
measured using Mental Health Inventory (MHI). The analytic sample of Study 
III involved 3,422 participants who had data on glycemic indices at both time 
points, were genotyped for MTNR1B rs10830963 and had no diabetes at 
baseline. 

The results of Study I showed that there was very low SNP-based 
heritability of the traits of interest and no overall SNP-based genetic 
correlation between glycemic traits or T2D and depressive symptoms. Yet, 
pleiotropic genetic variation for depressive symptoms and T2D was found in 
the IGF2BP2, CDKAL1, CDKNB-AS, and PLEKHA1 genes. Pleiotropic genetic 
variation for depressive symptoms and fasting glucose was found in the 
MADD, CDKN2B-AS, PEX16, and MTNR1B genes. The results of Study II 
showed that the common diabetes risk variant rs10830963 in the MTNR1B 
gene and depressive symptoms are independently associated with glycemic 
traits. The associations between glycemic traits and depressive symptoms 
were not influenced by the variation in diabetes risk variant rs10830963. The 
results of Study III showed that each addition of the risk allele G of rs10830963 
was associated with an increasingly worse glycemic profile across the 6.8-year 
follow-up. Additionally, more daylight was associated with worse glycemic 
response across the follow-up. Finally, the risk genotype GG of the MTNR1B 
rs10830963 became more insulin resistant during the follow-up, if the amount 
of daylight was less at the follow-up than at the baseline. 

Based on these findings, there are differences in underlying genetic 
background of glycemic traits, T2D and depressive symptoms. Additionally, 
on a candidate gene level, the known diabetes risk variant rs10830963 does 
not contribute significantly to the comorbidity between depression and 
diabetes. Yet, the rs10830963 and daylight are associated with glucose 
metabolism and the longitudinal glycemic profiles vary according to the 
amount of daylight, MTNR1B rs10830963 genotype and their interaction.  

This study contributes to the research literature in several ways. The 
findings provide valuable insights into the relationship of T2D and depression 
by addressing the common genetic background of these conditions. 
Furthermore, it emphasizes the importance of the amount of daylight in 
glucose metabolism and consequently T2D genesis. 

 



 

TIIVISTELMÄ

Tyypin 2 diabetes (T2D) on yleistynyt ja sen etiologian parempi ymmärrys 
on oleellista sairauden tehokkaamman ehkäisyn ja hoidon kannalta. T2D on 
perustaltaan monitekijäinen, etenevä sairaus, jonka kanssa yhtä aikaa esiintyy 
myös mielenterveyden häiriöitä, kuten masennusta. Yksi selitys T2D:n ja 
masennuksen väliselle kaksisuuntaiselle yhteydelle voi olla näihin molempiin 
vaikuttavat - pleiotrooppiset - geneettiset variantit sekä molemmille yhteiset 
biologiset mekanismit. Näitä taustalla olevia mekanismeja ei kuitenkaan vielä 
riittävästi ymmärretä. Tämä tutkimus selvittääkin T2D:n ja masennuksen 
yhteistä geneettistä perustaa. 

Toinen mahdollinen yhteinen biologinen mekanismi T2D:n ja 
masennuksen komorbiditeetin taustalla liittyy häiriintyneeseen 
vuorokausirytmiin. Monet yleiset häiriöt vaihtelevat vuodenajan mukaan ja on 
esitetty, että päivänvalon määrän vaihtelu voisi olla tärkeässä osassa 
selittämässä vuodenaikojen mukaan tapahtuvaa mielenterveyden häiriöiden, 
sokeriaineenvaihdunnan ja T2D:n vaihtelua. Suomi on tämän ilmiön 
tutkimisen kannalta olennaisessa asemassa, koska päivänvalon määrä 
vaihtelee huomattavasti läpi vuoden. Vuorokausirytmin vaikutuksia on 
tutkittu kohtalaisen vähän, joten se on yksi tämän tutkimuksen kohdealueista 
suhteessa sokeriaineenvaihduntaan. 

Tässää väitöskirjassa oli neljä tavoitetta. Ensimmäinen tavoite oli tutkia 
T2D:n, sokeriaineenvaihdunnan ja masennuksen yhteistä geneettistä taustaa. 
Toinen tavoite oli tutkia, millä geneettisillä varianteilla on yhteistä vaihtelua 
sekä sokeriaineenvaihdunnan että masennusoireiden kanssa. Kolmas tavoite 
oli tutkia, vaikuttaako melatoniinireseptori 1B (MTNR1B) -geenissä sijaitseva 
yleinen T2D riskivariantti rs10830963 masennusoireiden ja T2D:n sekä 
sokeriaineenvaihdunnan väliseen yhteyteen. Viimeinen tavoite oli tutkia 
missä määrin päivänvalon määrä muokkaa yhteyksiä MTNR1B rs10830963-
riskivariantin ja sokeriaineenvaihdunnan välillä. Kahta ensimmäistä 
tavoitetta tutkittiin Tutkimuksessa I, kolmatta tavoitetta Tutkimuksessa II ja 
neljättä tavoitetta Tutkimuksessa III. 

Tutkimus I perustuu masennusoireiden osalta CHARGE-konsortion, 
T2D:n osalta Diagram-konsortion ja sokeriaineenvaihdunnan osalta MAGIC-
konsortion aiemmin julkaistuihin genominlaajuisiin assosiaatiotutkimuksiin 
(GWAS). Masennusoireita tutkinut GWAS-tutkimus sisälsi 51258 osallistujaa, 
T2D:sta tutkineessa GWAS-tutkimuksessa oli mukana 34840 potilasta ja 
114981 verrokkia ja sokeriaineenvaihduntaa tutkinut GWAS-tutkimus sisälsi 
58074 osallistujaa. Tutkimukset II-III toteutettiin PPP (Prevalence, Prediction 
and Prevention of Diabetes)-Botnia tutkimuskohortissa. Tämä 
prospektiivinen tutkimuskohortti sisälsi alun perin 5208 osallistujaa ja 
seurantavaiheessa, keskimäärin 6.8 vuotta myöhemmin, 3850 osallistujaa. 
Tutkimuksen II analyysiotos sisälsi 4455 alkuperäistä osallistujaa, joilla ei 
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ollut diabetesta, joiden genotyyppi MTNR1B rs10830963:n osalta oli 
selvitetty, joilla oli tietoa sokeriaineenvaihdunnasta sokerirasitustestistä 
(OGTT) ja joilta oli lisäksi tieto masennusoireista Mental Health Inventory 
(MHI)-menetelmää käyttäen. Tutkimuksen III analyysiotos käsitti 3422 
osallistujaa, joilta oli tietosokeriaineenvaihdunnasta molemmissa 
aikapisteissä, joiden genotyyppi MTNR1B rs10830963:n osalta oli selvitetty ja 
joilla ei ollut tutkimuksen alussa diabetesta. 

Tutkimus I osoitti, että tutkittujen piirteiden mitatun geneettisen vaihtelun 
perusteella arvioitu periytyvyys oli vähäistä. Lisäksi sokeriaineenvaihdunnan 
piirteiden tai T2D:n ja masennusoireiden väliset geneettiset korrelaatiot eivät 
olleet merkitseviä. Sen sijaan geeneistä IGF2BP2, CDKAL1, CDKNB-AS ja 
PLEKHA1 löytyi pleiotrooppisia geneettisiä variantteja, jotka olivat 
yhteydessä masennusoireisiin ja T2D:hen. Lisäksi geeneistä MADD, 
CDKN2B-AS, PEX16 ja MTNR1B löytyi pleiotrooppisia geneettisiä variantteja, 
jotka olivat yhteydessä masennusoireisiin ja paastosokeritasoon. Tutkimus II 
osoitti, että MTNR1B-geenissä sijaitseva yleinen diabeteksen riskivariantti 
rs10830963 ja masennusoireet olivat itsenäisesti yhteydessä 
sokeriaineenvaihdunnan piireisiin. Sen sijaan diabeteksen riskivariantti 
rs10830963 ei vaikuttanut sokeriaineenvaihdunnan piirteiden ja 
masennusoireiden välisiin yhteyksiin. Tutkimus III osoitti, että diabeteksen 
riskialleeli G rs10830963:ssa oli additiivisesti yhteydessä heikompaan 
sokeriaineenvaihduntaprofiiliin 6.8 vuoden seurannan aikana. Lisäksi 
seurannan aikana todettiin, että enenevä päivänvalon määrä oli yhteydessä 
heikompaan sokerivasteeseen. Lopuksi, diabeteksen riskigenotyyppi 
rs10830963 GG:n kantajilla insuliiniresistenssi lisääntyi seurannan aikana, 
jos päivänvalon määrä oli seurannan lopussa vähäisempi kuin tutkimuksen 
alussa. 

Näiden tulosten perusteella sokeriaineenvaihdunnan piirteiden, T2D:n ja 
masennusoireiden taustalla olevassa geneettisessä perustassa on eroja. Lisäksi 
yleinen diabeteksen riskivariantti rs10830963 ei merkitsevästi vaikuta 
masennuksen ja diabeteksen komorbiditeettiin. Sen sijaan, rs10830963 ja 
päivänvalo ovat yhteydessä sokeriaineenvaihduntaan, ja pitkäaikaiset 
sokeriaineenvaihduntaprofiilit vaihtelevat päivänvalon määrän, MTNR1B 
rs10830963 -genotyypin ja niiden yhteisvaikutuksen suhteen. 

Tämä tutkimus tarjoaa arvokasta tietoa T2D:n ja masennuksen yhteydestä 
keskittymällä näiden häiriöiden yhteiseen geneettiseen perustaan. Lisäksi 
tämä tutkimus korostaa päivänvalon määrän merkittävää osaa 
sokeriaineenvaihdunnassa ja näin ollen T2D:n synnyssä. 
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1 INTRODUCTION

Diabetes is one of the leading global health problems that is currently affecting 
more than 451 million people aged 18-99 worldwide (Cho et al., 2018). 
Alarmingly, a dramatic increase in diabetes prevalence has occurred globally 
over the past few decades. It has to be noted that the prevalence of diabetes 
was evaluated to be 151 million in 2000 and it is now estimated to rise over 
693 million by 2045 (Cho et al., 2018). That is 4.5 times higher future 
prevalence rates compared to early 2000. 

The increased diabetes prevalence reflects on an increased societal burden. 
Currently, the expenditure on diabetes already accounts for approximately 
11% of the world’s total health expenditure (da Rocha Fernandes et al., 2016). 
However, T2D patients often present several comorbidities, such as mental 
disorders, high blood pressure, heart disease and so on, which is why the 
associated healthcare costs can be considered significantly higher (Aguiree et 
al., 2013).  

According to the current classification of diabetes, type 2 diabetes (T2D) 
comprises 90% of people with diabetes (WHO, 1999). Due to the very high 
heterogeneity of the most common diabetes, T2D, a completely new five-
cluster classification of diabetes has been recently proposed including severe 
autoimmune diabetes, severe insulin-deficient diabetes, severe insulin-
resistant diabetes, mild obesity-related diabetes and mild age-related diabetes 
(Ahlqvist et al., 2018). Nevertheless, independent of the classification criteria, 
it needs to be acknowledged that almost half of all people who have diabetes 
are undiagnosed (Cho et al., 2018). Unaware of their condition, people could 
experience persistency high glucose levels for several years, which is likely to 
lead to various complications (WHO, 2009). Moreover, the disease is often 
recognized only when complications such as cardiovascular disease (CVD), 
nephropathy, retinopathy or neuropathy become evident. While many somatic 
complications can be seen in relation to diabetes, mental health problems also 
seem to accompany this progressive condition. Furthermore, several 
environmental factors are associated to diabetes. 

Taken together, in light of the growing epidemic of diabetes, a better 
understanding of its etiology and specific risk factors is vital for improved 
intervention. 
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2 REVIEW OF THE LITERATURE

2.1 DIABETES DEVELOPMENT AND DIAGNOSIS

Diabetes is considered to be one of the main threats to human health in the 
21st century (Alberti, Zimmet, & Shaw, 2005). It is a heterogeneous syndrome 
that is characterized by abnormalities in carbohydrate and fat metabolism. 
While in healthy individuals, glucose stimulates pancreatic secretion of insulin 
to maintain normal blood glucose levels by facilitating cellular glucose uptake, 
in individuals with T2D, the secretion of insulin is insufficient for their level of 
insulin sensitivity. This results in individuals with T2D having at least some 
degree of insulin resistance.  

The progression towards T2D can be seen years before the manifestation 
of the disease. With that said, prediabetes is a condition where liver and/or 
skeletal muscles are insulin resistant and the body is not able to lower blood 
glucose level. As a result, pancreas produces more insulin to compensate for 
insulin resistance, which is called hyperinsulinemia. In a prediabetic state, the 
body is not using insulin effectively, causing glucose to build up in the 
bloodstream (Wilcox, 2005). As described above, prospective studies also 
show that blood glucose may start to rise years or even decades before the 
diagnosis of T2D (Mason, Hanson, & Knowler, 2007). Shortly before the 
diagnosis, blood glucose values rise very steeply and it has been hypothesised 
that viral infections might play a role in the manifestation of T2D (Šestan et 
al., 2018). Recent findings show that acute infection is not only associated with 
the manifestation of T2D but also with insulin resistance (Šestan et al., 2018). 
Even though prediabetes is a condition that can last for years and is related to 
several complications, it does not fulfill the criteria of T2D (Tabák, Herder, 
Rathmann, Brunner, & Kivimäki, 2012) but is rather a high-risk state of 
developing T2D.  

High blood glucose levels indicate impaired glucose metabolism which is 
affected by liver and/or muscle insulin resistance. Thus, fasting hyperglycemia 
(or Impaired Fasting Glucose, IFG) and impaired glucose tolerance (IGT) are 
closely associated with insulin resistance. As described earlier, the progress 
towards T2D can be seen years before the manifestation of the disease. 
However, not only the diagnosis is related to severe complications. Also 
chronic hyperglycemia is associated with a plethora of complications including 
long-term damage, dysfunction, and failure of different organs, especially the 
eyes, kidneys, nerves, heart, and blood vessels. In order to reduce the risk of 
developing those complications, it is important to know about the risk factors 
contributing to the development of impaired glucose metabolism. Other 
cardiometabolic risk factors in addition to impaired glucose metabolism also 
exist. For example, Metabolic Syndrome (MetS) is a term used to classify a 
combination of impairments in glucose and lipid metabolism, obesity and 
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hypertension (Alberti et al., 2005). These conditions may lead to T2D and 
furthermore, are risk factors for mortality. 

T2D is diagnosed on the basis of hyperglycemia, characterized as a 
progressive disorder of glucose metabolism with decreased β-cells function 
and insulin resistance as the dominant factors in its genesis (Ismail-Beigi, 
2012). The assessment of T2D requires an oral glucose tolerance test (OGTT) 
which needs to be performed after an overnight fast, using a glucose load 
containing the equivalent of 75 grams of anhydrous glucose dissolved in water, 
and with samples obtained before (baseline) and 2h after the glucose load 
(American Diabetes Association, 2010). 

Several indices can be calculated based on the OGTT. For example, various 
insulin sensitivity indices exist, including the Homeostatic Model Assessment 
for Insulin Resistance (HOMA-IR), the product of fasting glucose and insulin 
concentrations divided by a constant; furthermore, an updated non-linear 
computer based HOMA-IR2 calculation; and additionally, Insulin Sensitivity 
Index (ISI), which, in addition to fasting values, takes 30 min OGTT based 
glucose and insulin values into account. Insulin secretion and β-cell function 
are commonly estimated using Disposition Index (DI) and Corrected Insulin 
Response (CIR) indices. 

In addition to OGTT-based diagnosis, several other measurements can be 
used to evaluate suboptimal glycemic control and in diagnosing diabetes as 
suggested by American Diabetes Association (ADA). For example, other highly 
accurate measurements of insulin sensitivity include the gold standard - 
hyperinsulinemic-euglycemic clamp - and intravenous glucose tolerance test 
(IVGTT), which also provide an assessment of insulin secretion. Additionally, 
diabetes can be diagnosed based on glycated hemoglobin (HbA1c) with a cut-
point ≥6.5% (Sherwani, Khan, Ekhzaimy, Masood, & Sakharkar, 2016) as an 
alternative to those above mentioned criteria.  

Nevertheless, although there are several easily accessible methods to 
diagnose diabetes, still around half of the individuals with T2D are left 
undiagnosed (Cho et al., 2018). 
 

2.2 DIABETES ETIOLOGY AND COMMON RISK 
FACTORS

Diabetes is a heterogeneous condition and the origin of its most common type, 
T2D, is likely to be multifactorial with both environmental and genetic factors 
contributing to the development of the disease.  

One of the main factors associated to the T2D epidemic is the worldwide 
increase in obesity (American Diabetes Association, 2017). Sedentary lifestyle 
that is very common in modern day society is contributing to the increase in 
body mass index (BMI) of both children and adults. It is known that the 
increase in adipose tissue (that is related to obesity) is triggering both 
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metabolic and inflammatory changes. These changes interfere with insulin 
action in response to glucose loading in peripheral tissues, eventually possibly 
culminating in β-cell failure. Taken together, this might cause the 
manifestation of diabetes (Qi et al., 2009). 

Although obesity is one of the main risk factors in diabetes development, 
not all overweight or obese individuals develop T2D. According to the most 
recent meta-analysis on T2D risk factors, in addition to adiposity, several other 
factors related to unhealthy lifestyle are associated to the development of T2D 
such as unhealthy dietary pattern, decreased physical activity, high sedentary 
time and duration of television watching (Bellou, Belbasis, Tzoulaki, & 
Evangelou, 2018). Furthermore, some medical conditions such as high systolic 
blood pressure, MetS and preterm birth but also serum biomarkers (including 
increased level of alanine aminotransferase, gamma-glutamyl transferase, uric 
acid and C-reactive protein, and decreased level of adiponectin and vitamin D) 
increase the risk of T2D. Of note, the authors found two main psychosocial 
factors (lower educational attainment and lower consciousness – a personality 
trait of being mindful and diligent) to be associated with the risk of T2D and 
furthermore, highly suggestive evidence for the associations between MDD 
and bipolar disorder and the risk for T2D were shown (Bellou et al., 2018). 

Against this background, it is important to identify other risk factors of T2D 
and explore the associations of these variables with glycemic traits. Thus, the 
following chapters focus on other common T2D risk factors relevant for this 
thesis – depressive symptoms, seasonality including the amount of daylight 
and genetics. The last section of the introduction gives an overview of how 
these risk factors may be associated with each other and provides insight into 
the novelty of current study. 

2.2.1 MENTAL HEALTH
 
In current modern society, people experience growing number of stressful 
events at the societal and interpersonal level, which might have harmful 
consequences on health and wellbeing. Moreover, a somatic illness itself can 
be considered as a life stressor and is often accompanied by high rates of 
mental health problems (Cassem, 1995).  

In general terms, it is well established that psychosocial factors are 
associated with chronic illnesses (Schneiderman, Ironson, & Siegel, 2005) and 
the relationship appears to be bidirectional. Individuals who are experiencing 
high levels of psychological distress might not be able to take proper care of 
their health that is especially necessary in the context of chronic illnesses. At 
the same time, as described earlier, chronic illnesses can be considered as life 
stressors that contribute to the development of mental health conditions. 
Thus, the relationship between mental and somatic health can be reciprocal.  

A recent overview and clinical practice guidelines on diabetes and mental 
health by the Diabetes Canada Clinical Practice Guidelines Expert Committee 
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(Robinson, Coons, Haensel, & Yale, 2018) has pointed out the following 
psychiatric conditions to be most commonly related to diabetes: schizophrenia 
and other psychotic disorders, anxiety disorders, sleep disorders, eating 
disorders and stress-related disorders, depressive disorder, bipolar and 
related disorders. And furthermore, individuals with diabetes often experience 
diabetes distress, psychological insulin resistance and the persistent fear of 
hypoglycemic episodes (Robinson et al., 2018). 

On a biological level, Björntorp has hypothesised that mental health 
problems such as depression or unpleasant social conditions, behavioral 
characteristics (such as smoking, alcohol consumption and drug abuse) and 
other forms of pressures on the individual, act as stressors that can cause 
endocrine responses (Björntorp, 1991). Indeed, as described above, on a 
phenotypic level psychological problems such as depression, anxiety and 
eating disorders, appear to accompany T2D (Ducat, Philipson, & Anderson, 
2014). However, the potential underlying mediators between mental health 
and somatic illnesses remain unclear.  

Some possible mechanisms have been proposed to be underlying this 
relationship. These mechanisms include the Hypothalamic–Pituitary–
Adrenal axis (HPA) activity and inflammation (Golden, 2007; Moulton, 
Pickup, & Ismail, 2015). Additionally, Talbot and Nouwen (2000) have 
proposed that psychological problems might be associated with T2D merely 
because of the daily burden of diabetes and its complications that have a 
negative effect on one’s behavior (Talbot & Nouwen, 2000). Furthermore, 
other researchers also give support to the behavioral factors underlying the 
relationship between mental health and diabetes. It has been stated that poor 
health behaviors associated with psychological problems, such as poor diet, 
smoking and lack of exercise, that may lead to weight gain and obesity, major 
risk factors for diabetes (Renn, Feliciano, & Segal, 2011).  

Sleep is significantly affecting our behavior and one of the problems in 
today’s overscheduled society is associated with sleep. Both adults and 
children have increasingly more problems with attaining proper sleeping 
pattern. Problems with sleep are commonly seen among depressed 
individuals, almost 90% of patients with depression have difficulties with 
sleeping (Tsuno, Besset, & Ritchie, 2005). Also, associations between sleep 
problems and glucose metabolism have been shown before. Based on a meta-
analysis, both the quantity and quality of sleep have been shown to 
consistently and significantly predict the risk of the development of T2D 
(Cappuccio, D’Elia, Strazzullo, & Miller, 2010). Spiegel (2008) has 
hypothesised that sleep loss and sleep disturbances could contribute to the 
development of insulin resistance and T2D either directly by having a 
deleterious effect on components of glucose regulation or indirectly, via 
behavioral factors such as dysregulation of appetite, leading to weight gain and 
obesity, a major risk factor for insulin resistance and T2D (Spiegel, 2008). 

There have been some animal studies that explore the associations between 
mental health and glucose metabolism. On a molecular level, mice study shows 
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that mice lacking the insulin receptor in the brain are displaying increased 
depression- and anxiety-like behaviors. Furthermore, these findings suggest 
that mood disorders in diabetes are caused by insulin resistance in the central 
nervous system (CNS) and involve disruption of dopaminergic pathways 
(Kleinridders et al., 2015).  

Based on the current knowledge, it is important to study T2D related 
indices in relation to mental health because, among other issues, individuals 
with T2D with comorbid psychological problems are at increased risk for 
complications, poorer quality of life, and increased mortality (de Groot, 
Anderson, Freedland, Clouse, & Lustman, 2001). Among other complications, 
patients with comorbid mental health conditions and T2D have the highest 
relative risk for developing dementia later in life (Katon et al., 2015).  

In the next chapter, the association between depression, one of the most 
common psychological risk factors of diabetes, and T2D are discussed. 

2.2.1.1 Depression and its subclinical symptoms
 
Depression is a condition that carries a high global prevalence with similarly 
rapid increase in disease incidence as T2D. Depression is estimated to affect 
350 million people worldwide and it is characterized by persistent sadness and 
a loss of interest in activities that you normally enjoy, accompanied by an 
inability to carry out daily activities (WHO, 2012). Lifetime prevalence rates 
suggest that up to 30% of adults experience a depressive episode sometime 
during their lives and estimates of 12-month prevalence rates vary from 2.9 to 
8.3% (Kessler & Wang, 2008; WHO, 2012; Wittchen & Jacobi, 2005). Finnish 
estimates are even higher and show that the prevalence of major depressive 
disorder (MDD) in Finland has significantly increased and reached 9.6% 
(Markkula et al., 2015). However, like diabetes, depression is common 
condition that is among the leading causes of disability adjusted life years: by 
2030 it is estimated to rank second in the world and first in middle and high-
income countries (Mathers & Loncar, 2006). Similarly to T2D, many 
individuals with depression have not been diagnosed with the condition. 
Moreover, subclinical depressive symptoms might be even more common than 
previous estimates show. 

Like T2D, depression is also a heterogeneous disease that imposes a heavy 
burden on people with the condition. Those who suffer from depression 
commonly experience feelings of sadness and hopelessness and lose interest 
in activities they once enjoyed. According the the diagnostic criteria, these 
symptoms must be present for at least two weeks (American Psychiatric 
Association, 2013). However, as mentioned above, depression is a 
heterogeneous condition and it has been recently proposed that it can be 
characterized as a complex dynamic system explained through evolving 
symptom-symptom relations (Cramer et al., 2016). Thus, depression is unique 
for every individual and it has been shown that those people with strong 
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connections between the symptoms are in the highest risk of developing 
depression, especially if their vulnerable network is subject to external stress 
(Cramer et al., 2016). T2D could potentially be considered as an external 
stressor to the depressive symptoms network and influence the development 
of depression. 

To continue, evidence strongly suggests that depression and T2D often co-
occur more often that would occur only by chance. The bidirectional 
relationship between T2D and depression has been confirmed in several meta-
analyses (Campayo et al., 2010; Demakakos, Pierce, & Hardy, 2010; Knol et 
al., 2006; Mezuk, Eaton, Albrecht, & Golden, 2008). Research literature has 
demonstrated that MDD is at least twice as prevalent among people with T2D 
as compared to the general population (Anderson, Freedland, Clouse, & 
Lustman, 2001). Furthermore, Knol and colleagues concluded in their meta–
analysis that depression is a risk factor for the onset of T2D, comparable in 
effect to smoking and physical activity (Knol et al., 2006). This makes 
depression one of the leading risk factors contributing to the development of 
T2D. However, as the relationship between depression and T2D is reciprocal 
and bidirectional, it can also be considered as a common complication of 
diabetes, affecting 10–30% of people with T2D (Anderson et al., 2001). 
Furthermore, a meta-analysis including 27 studies showed that an increase in 
depressive symptoms is associated with an increase in the severity or number 
of diabetes complications (de Groot et al., 2001). Based on the above, it is 
important to study the associations between depression and T2D because if 
those conditions co-occur, the individuals who are experiencing both 
disorders are at a higher risk of developing diabetes-related complications.  

On the level of symptomatology, depressive symptoms have been shown to 
influence glucose metabolism (Musselman, Betan, Larsen, & Phillips, 2003). 
Pyykkönen and colleagues have found that depressive symptoms are 
associated with insulin resistance based on several indices such as fasting 
insulin and HOMA-IR, with antidepressant medication is not modifying these 
associations (Pyykkonen et al., 2011). Another study has found a significant 
association between depression and higher levels of insulin resistance as 
measured with HOMA-IR (Everson-Rose et al., 2004). Additionally, it has 
been shown that individuals with depression develop glucose intolerance, also 
in high correlation with insulin secretion, suggestive of insulin resistance 
(Lustman & Clouse, 2005). Importantly, it has been shown that impaired 
insulin sensitivity might get resolved after recovery from depression based on 
a small prospective study of 20 non-diabetic patients with depression 
(Okamura et al., 2000). Behavioral factors might play a role in this potentially 
reversible process as individuals are able to adhere better to the treatment 
after recovery from mental health conditions (Dixon, Holoshitz, & Nossel, 
2016). 

However, the underlying mechanisms of the phenotypic association 
between depression and T2D are not extensively studied. One of the possible 
underlying mechanisms of this relationship could be the common genetic 
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background. It has to be noted that the rationale of the study comes from the 
fairly little research attention that the common genetic background of the of 
the bidirectional relationship between depression and diabetes has received 
(Renn et al., 2011). Only one population-representative Nordic twin study 
suggested a moderate genetic correlation between depression and diabetes 
(Kan et al., 2016). Thus, the common genetic background of depression and 
diabetes on a genome-wide and candidate gene level was one of the main 
avenues to explore in current research.  

2.2.2 SEASONALITY AND CIRCADIAN RHYTHM
 
As established earlier, mental and somatic health conditions tend to co-occur. 
One of the likely underlying mechanisms that influence both, in addition to 
the potential common biological background or behavioral factors, is circadian 
rhythm. It is known that both mental health conditions and glucose 
metabolism show circadian pattern (Coimbra et al., 2016; Doró, Benko, Matuz, 
& Soós, 2006; Postolache et al., 2010; Shore-Lorenti et al., 2014). Even more 
interestingly, there is a seasonal pattern of people searching for information 
on (mental) health that appears to be similar to the periodic pattern of 
seasonal affective disorder (Ayers, Althouse, Allem, Rosenquist, & Ford, 
2013).  

In general, circadian rhythms are universal and affect almost every 
biological action, including both mental and somatic processes. A wealth of 
evidence shows that numerous human physiologic and pathophysiologic 
processes also vary seasonally, including glucose metabolism which is of most 
interest in the context of current research. It is known that typically better 
metabolic profile is displayed during summer compared to winter (Mavri et 
al., 2001). For example, more individuals meet the criteria of MetS in winter 
than in summer, which has also been linked to insulin resistance and increased 
blood pressure (Kamezaki et al., 2013). 

Furthermore, on a molecular level, a functional circadian clock is necessary 
for proper insulin secretion by pancreatic islet cells. Thus, the rhythmic 
behavior can be seen in pancreatic islet cells (Rakshit, Qian, Colwell, & 
Matveyenko, 2015). Circadian regulation of glucose homeostasis is controlled 
by the suprachiasmatic nucleus (SCN) of the hypothalamus, that is an essential 
component of the master biological clock (Asher & Schibler, 2011; Marcheva 
et al., 2010). Taken together, among other functions, the circadian 
mechanisms have been found to regulate blood glucose levels, glucose sensing, 
insulin gene expression and insulin secretion (Rudic et al., 2004). 

Aside assisting in the regulation of glucose metabolism, it is also 
established that disturbances in circadian rhythms are therefore associated 
with increased risk of T2D (Depner, Stothard, Wright, & Jr., 2014). For 
example, chronic misalignment between internal and environmental rhythms 
is typically found in night-shift workers who are exposed to increased light at 
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night (Davis, Mirick, Chen, & Stanczyk, 2012; Dumont, Benhaberou-Brun, & 
Paquet, 2001; Vetter et al., 2018). Furthermore, based on extensive 
epidemiologic data, these night-shift workers are at considerably higher risk 
of developing T2D (Morikawa et al., 2005; Pan, Schernhammer, Sun, & Hu, 
2011). Of note, night-shift workers on the other hand are not at higher risk of 
developing MDD according to a systematic review even though some of the 
individual studies give support to the increased risk (Angerer, Schmook, 
Elfantel, & Li, 2017). 

The next chapter discusses the effect of daylight in relation to circadian 
disturbances and glucose metabolism. 

2.2.2.1 The amount of daylight
 
Circadian oscillations in the human body are characteristic of nearly every 
hormone. It is important to note that these hormonal profiles are a product of 
interaction between many factors, including the light exposure. According to 
bioclimatic hypothesis, changes in sunlight and climate affect variations in 
hormones and may explain the seasonal variation in disease incidences 
(Lambert, Reid, Kaye, Jennings, & Esler, 2003). It has been hypothesized that 
seasonal variation in glucose metabolism might be driven by the changes in 
daylight, with increased exposure linked to reduced risk of developing T2D 
(Shore-Lorenti et al., 2014).  

Importantly, light is the strongest environmental cue for all circadian 
systems (Duffy & Czeisler, 2009). External environmental timing that comes 
mainly from the light signals the regulation of the internal clocks. It is known 
that internal timing systems influence all physiological processes and energy 
homeostasis to maximise adaptation and fitness (Green, Takahashi, & Bass, 
2008).  

Taken together, the amount of daylight hours appears to affect our energy 
levels. It has been shown that during summer, when more daylight is available, 
typically better glycemic profile and lower body mass index (BMI) is displayed 
(Ishii, Suzuki, Baba, Nakamura, & Watanabe, 2001; Mavri et al., 2001). 
However, the relationship between daylight and glucose metabolism is more 
complex. For example, previous research findings regarding the relationship 
between the amount of daylight and insulin secretion and sensitivity have been 
scarce and inconsistent (Berglund et al., 2012; Chen, Chuang, Lin, Tsai, & 
Chou, 2008). 

However, as it has been at least partly validated that the amount of 
environmental light is associated with glucose metabolism, previous research 
has raised the question of the pathways through which light exposure could 
act to influence T2D and its related outcomes. A potential pathway through 
which daylight exposure may influence T2D related outcomes, is circadian 
rhythm and its misalignment, as briefly mentioned in the previous chapter. 
The master clock in the brain’s suprachiasmatic nucleus synchronises the 
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tissue specific intrinsic clocks to the photoperiod (the time between sunrise 
and sunset) in response to signals from retinal photoreceptors communicating 
the presence of daylight (Patton & Hastings, 2018). It synchronizes a wide 
range of complex biological processes via neurological pathways, through the 
central nervous system and into peripheral tissues (Morris, Yang, & Scheer, 
2012). 

Disturbances in hormonal profiles might arise from major changes in 
daylight potentially contributing to circadian misalignment. Very long and 
very short days might challenge the network within the circadian pacemaker 
as it is known that the principal circadian clock entrains to the sun light 
(Roenneberg, Kumar, & Merrow, 2007). Entrainment errors during the period 
of rapid daylight changes might challenge the circadian pacemaker and 
predispose to circadian misalignment especially during equinoxes when dark 
light transitions are most rapid.  

From that perspective, the association between daylight and glucose 
metabolism has received some research interest. A Swedish study shows that 
fasting glucose concentrations are higher in participants examined during the 
dark season (Nov-April) compared with the light season (Renström et al., 
2015). Furthermore, there is also evidence that higher level of recreational 
sunshine exposure (sunbathing) reduces the odds of T2D incidence, yet the 
findings regarding glycemic traits are not consistent (Shore-Lorenti et al., 
2014).  

The other potential pathways through which daylight could act to influence 
glucose metabolism are related to vitamin D, photo immunomodulation, 
thermogenesis but also cellular stress (Lindqvist, Olsson, & Landin-Olsson, 
2010; Shore-Lorenti et al., 2014). It has been proposed that vitamin D might 
underlie relationship between daylight and glucose metabolism, as a large part 
of vitamin D is endogenously produced when solar rays trigger its synthesis 
(Holick, 2007). Low serum 25-hydroxyvitamin D (25-OHD) is the index of 
vitamin D nutritional status and its low levels have been associated with 
increased risk of several cardiometabolic outcomes including T2D and MetS 
(Osei, 2010). Parker and colleagues showed in their meta-analysis of 28 
independent studies a 43% of decrease in cardiometabolic disorders for those 
of highest levels of 25-OHD (Parker et al., 2010), however experimental 
vitamin D supplementation studies have been inconclusive. For example, it 
has been shown that vitamin D supplementation does not have an effect on 
glucose concentrations, insulin level and HOMA-IR values based on a 
systematic review of randomized controlled trials in overweight and obese 
populations (Jamka et al., 2015; Pittas et al., 2010). Taken together, vitamin D 
supplementation might not be effective treatment for improvement of glucose 
metabolism, thus other avenues shall be explored to unravel the potential 
underlying mechanisms between daylight and glucose metabolism. 
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2.2.2.2 Melatonin
 
At the epicentre of circadian rhythms is melatonin, thus the association 

between daylight and glucose metabolism might be affected by melatonin 
pathway. A recent review of melatonin action emphasized that the effect of 
melatonin needs to receive even further research interest to reduce the existing 
uncertainties in relation to various health conditions given the technological 
and lifestyle changes that are associated with chronodisruption (such as the 
overwhelming use of LED lights at night) (Posadzki et al., 2018). 

Melatonin is a neurohormone that is mainly associated with sleep, yet 
involved with a broad spectrum of functions in the human body including anti-
inflammatory and immune-enhancing effects (Hardeland, Pandi-Perumal, & 
Cardinali, 2006). Mainly via these effects on health, melatonin is related to the 
development of several conditions ranging from acute coronary syndrome, 
metabolic diseases to various cancers (Posadzki et al., 2018). Melatonin is also 
involved in the development of depression (Hickie & Rogers, 2011) and 
diabetes (McMullan, Schernhammer, Rimm, Hu, & Forman, 2013), relevant 
in the context of this current thesis.  

Melatonin production is under the control of the biological clock and, 
importantly, is directly responsive to daylight (Bonmati-Carrion et al., 2014). 
It is secreted from the pineal gland and produced from serotonin, which is 
derived from the amino acid tryptophan (Claustrat, Brun, & Chazot, 2005). 
Melatonin is a neurohormone that has a very short half-life. Once it is secreted, 
it is immediately released into the general circulation, thus plasma 
concentrations of melatonin are accurate and reflect its pineal synthesis (Pevet 
& Challet, 2011). At the same time, these measurements are time-critical due 
to the short half-life of melatonin in the bloodstream. Melatonin release is 
triggered by a loss of light exposure to the retina and its levels are high in the 
evening and low in the morning, thus melatonin is often referred to as a sleep 
hormone and also most often studied in relation to sleep disorders (Posadzki 
et al., 2018). However, melatonin acts in concert with other neurotransmitters, 
glucocorticoids and thyroid hormones.  

As discussed above, melatonin is directly responsive to environmental light 
and exerts its effect through its receptors. In humans, there are two subtypes 
of melatonin receptors, MTNR1A and MTNR1B. Both of these receptors are G 
protein-coupled receptors and are expressed in various tissues of the body 
including the brain and pancreatic islets (Tosini, Owino, Guillaume, & Jockers, 
2014). The presence of melatonin receptors MTNR1B and MTNR1A in various 
tissues explains the direct action of melatonin in many organs such as the 
brain, suprachiasmatic nucleus (SCN), retina and pancreatic α- and β-cells 
(Hardeland, 2012).  

Melatonin is a hormone that has several functions in the human body as 
described above. Thus far, both the production and administration and 
supplementation (ranging from oral and intravenous to sublingual) of 
melatonin has been studies previously in the context of glucose metabolism. 
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First of all, it is known that insulin secretion follows a circadian pattern 
opposite to melatonin secretion with a nocturnal fall (Haus, 2007). 
Furthermore, it has been proposed that the phase of the insulin secretion 
rhythm might be modulated by melatonin (Mulder, Nagorny, Lyssenko, & 
Groop, 2009) and recent findings show that melatonin physiologically serves 
as an inhibitor of nocturnal insulin release (Tuomi et al., 2016). However, the 
relationship between melatonin and glucose metabolism is not that clear 
although endocrine rhythms and circadian rhythms are closely 
interconnected. Both inhibitory and stimulatory effects of melatonin on 
insulin secretion and action have been reported (Kemp, Ubeda, & Habener, 
2002; Peschke, Bach, & Muhlbauer, 2006; Tuomi et al., 2016). However, a 
recent meta-analysis of the effects of melatonin supplementation on glucose 
metabolism concluded that melatonin administration is related to improved 
glucose metabolism but not with insulin levels and insulin sensitivity (Doosti-
Irani et al., 2018). Furthermore, the findings of humans and of preclinical 
studies are conflicting – animal models show that melatonin administration 
improves lipid metabolism in diabetic rats, probably through restored insulin 
resistance (Nishida, Segawa, Murai, & Nakagawa, 2002).  

Taken together, previous research literature points towards the potential 
influence of melatonin pathway in glucose metabolism although the findings 
are scarce and inconsistent.  

2.2.3 GENETICS OF TYPE 2 DIABETES
 
In addition to previously discussed environmental and mental health 
associations (and potential molecular mechanisms) with glucose metabolism, 
it is widely known that T2D and glucose metabolism also has genetic 
component. T2D is polygenic disease which means that the development of 
this condition is influenced by several genes.  

Based on family studies, it has been estimated that the lifetime risk of 
developing T2D is 40% for individuals who have one parent with T2D and 70% 
if both parents have T2D (Creutzfeldt, Köbberling, & Neel, 1976). Based on 
twin studies, the heritability estimates of T2D are around 76% after the 15-year 
follow-up; with rather astonishing concordance rates of 96% in abnormal 
glucose metabolism after the 15-year follow-up (Medici, Hawa, Ianari, Pyke, & 
Leslie, 1999). On the other hand, SNP-based heritability estimates are much 
lower (around 10%) because these estimates rely on common genetic variation 
(Bulik-Sullivan et al., 2015) as GWA studies are not capturing rare variants 
that might account for a sizable proportion of heritability of this complex 
disease and its development. Furthermore, mutations have higher effect 
compared to common variants which penetrance is low or indeed zero.  

Nevertheless, hundreds of variants have been identified using several 
methods in relation to T2D and while each variant explains only a very small 
proportion of the disease risk, these variants have significantly contributed to 
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the understanding of the genesis of T2D (Prasad & Groop, 2015). Most 
coherently associated genetic variants are briefly described below. 

TCF7L2 is one of the most successfully replicated variant that has been 
associated with T2D. This variant was first found to be associated with T2D in 
linkage studies. The association between T2D and TCF7L2 has been confirmed 
across various populations, conferring a relative risk of approximately 1.4 
(Tong et al., 2009). Other genetic variants (single nucleotide polymorphisms 
- SNPs) in or near PPARγ, KCNJ11, TCF2, TCF7L2, CDKAL1, CDKN2A-
CDKN2B, IDE-KIF11-HHEX, IGF2BP2, MTNR1B, SLC30A8, KCNQ1, 
CDC123, GLIS3, HNF1B, DUSP9 have been identified in Caucasian 
populations and also replicated elsewhere (Cho et al., 2012; Imamura et al., 
2012; Shu et al., 2010). 

In current thesis, the most important findings arise from the collaborative 
effort of DIAGRAM and MAGIC consortia that are described below as these 
summary statistics were used in the analyses of the Study I. DIAGRAM 
investigators were exploring the associations between common variants on a 
genome-wide level and T2D diagnosis (Morris et al., 2012). They had data on 
34,840 cases and 114,981 controls combining Stage 1 and 2. Based on this 
extensive data, these researchers found eight new loci associated with T2D. 
These signals were from ZMIZ1, ANK1, KLHDC5, HMG20A, GRB14 genes. 
Furthermore, rs7177055 and rs13389219 were not previously reported in 
European ancestry populations. The authors discuss that several of these 
signals were mapped to loci that had been previously implicated in T2D-
related metabolic traits (Morris et al., 2012).  

In the analysis of glycemic traits, GWAS from MAGIC investigators has 
resulted in identification several new loci using the data of 46,186 individuals 
without diabetes and following up among 76,558 additional subjects. 
Following up the 25 initially identified loci resulted in 16 loci associated with 
glycemic traits. These included nine loci newly associated with fasting glucose 
(ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and 
C2CD4B), one locus influencing fasting insulin and HOMA-IR (IGF1), and five 
loci with T2D (ADCY5, PROX1, GCK, GCKR, DGKB-TMEM195) (Dupuis et al., 
2010). 

These findings are not any more the most recent to date. Scott and 
colleagues have since published an expanded GWAS of T2D as a follow-up to 
the initial research effort involving individuals with European ancestry (Scott 
et al., 2017). They analysed the samples of 26,676 cases of T2D and 132,532 
controls and found several novel loci associated to T2D. These variants were 
near the GLP2R, GIP, and HLA-DQA1 genes; all together they found 128 
independent variants to be associated with T2D belonging to 113 loci. They 
state that they causality and biological plausibility need to receive further 
research attention (Scott et al., 2017). 
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2.2.3.1 Melatonin Receptor 1B gene
 
MTNR1B is a member of the melatonin receptor family expressed in many 
tissues, including pancreatic islets and brain (Hardeland, 2012) that is 
encoded by the MTNR1B gene (Reppert et al., 1995). MTNR1B is one of the 
genes which variants – specifically rs10830963 - have been most consistently 
shown to be associated with T2D and glucose metabolism. MTNR1B is often 
described in the research literature as a diabetes risk gene. Molecular studies 
have shown increased expression of the MTNR1B receptors in β-cells in 
pancreatic islets of nondiabetic and diabetic individuals carrying the MTNR1B 
risk variant (Lyssenko et al., 2009). 

Furthermore, genome-wide association studies have shown that a common 
variant of the MTNR1B gene is associated with altered insulin and glucose 
concentrations and risk of future T2D (Prokopenko et al., 2009). Lyssenko and 
colleagues showed that the risk genotype of MTNR1B SNP rs10830963 
predicts future T2D in two large prospective studies (Lyssenko et al., 2009). It 
is important to point out that rs10830963 in the MTNR1B gene has been 
proved to be the causal variant in functional studies (Gaulton et al., 2015). 

The MTNR1B gene has been studied in relation to lifestyle intervention in 
the context of gestational diabetes (Grotenfelt et al., 2016). Findings from the 
study by Grotenfelt and colleagues (2016) show that genetic variants might 
influence the effectiveness of lifestyle interventions although they were not 
able to show that diabetes risk allele G carriers would have poorer response to 
the intervention (Grotenfelt et al., 2016).  

2.2.4 THE LINKS BETWEEN DIABETES RISK FACTORS
 

This literature review has given an overview of the individual contribution of 
depressive symptoms, circadian rhythm that is affected by the amount of 
daylight and genetics in the development of T2D and impaired glucose 
metabolism. However, these factors are all closely linked. Yet, the interactions 
between these factors have received very little research attention. Against this 
background, the current study focuses on genetic associations, filling in the 
gap in the research literature as the genetic moderation of the relationship 
between 1) depressive symptoms or 2) the amount of daylight and glucose 
metabolism has not not received enough scientific attention.  

Pleiotropic genetic variants that are shared between the traits could 
unravel potential novel pathways through which these conditions are 
associated. Due to the limited information on these shared genetic risks, this 
current study was conducted, allowing the researchers to fill in the gap in the 
research literature. Indeed, previous research has suggested that there is 
abundant pleiotropy among genetic variants related to complex traits 
(Sivakumaran et al., 2011). Sivakumaran and colleagues showed that 16.9% of 
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the genes have pleiotropic effects on complex diseases (Sivakumaran et al., 
2011). 

There have been numerous studies exploring the genetic background of 
complex diseases but these have been conducted on univariate level – 
involving one single disease. However, these studies using both genome-wide 
approach or candidate gene analyses in relation to metabolic traits and mental 
health have found variants related to both mental and somatic health. Recent 
meta-analysis exploring the associations between MDD, bipolar disorder, 
coronary artery diseases, T2D and hypertension gave an overview of these 
recent findings and they identified 24 potentially pleiotropic variants shared 
between the traits of interest (Amare, Schubert, Klingler-Hoffmann, Cohen-
Woods, & Baune, 2017). These variants included SNPs in or near MTHFR, 
CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, 
CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4, PPP1R1B, APOE, CRY2, HTR1A, 
ADRA2A, TCF7L2, MTNR1B, IGF1. The authors also completed pathway 
analysis that revealed several biologically plausible and significant pathways 
supporting these associations and concluded the following: “Overall, genes 
that encode for molecules involved in HPA-axis activity, circadian rhythm, 
inflammation, neurotransmission, metabolism and energy balance were found 
to have a central role to link mood disorders with cardiometabolic diseases. It 
is also worth noting the gene-environment interaction that might contribute 
to the diseases” (Amare et al., 2017). This study by Amare and colleagues has 
been the most recent to provide insights into the shared genetic mechanisms 
of mental health and cardiometabolic traits.  

In addition to the view where depression and T2D are two distinct 
phenomena that might share a common genetic background, gene-
environment interaction should be explained further, especially since the 
concept of genetic moderation of associations was mentioned above. Gene-
envionment interaction is commonly described as a phenomenon where 
different genotypes are responding differently to environmental variation. In 
the case of T2D, environment is most commonly referred to as lifestyle factors 
(Franks, Pearson, Bchir, & Florez, 2013). It is known that individuals respond 
differently to lifestyle interventions, the most common strategy to prevent and 
treat T2D, and it has been proposed that it might be due to gene-environment 
interaction (Franks & Merino, 2018). However, environmental variation can 
be for example external (such as the amount of daylight), internal (such as the 
psychological state), behavioral (lifestyle) or other. Thus, the concept of gene-
environment interaction is important in the context of this research because 
the aim is to explore the associations between different T2D risk factors 
including both genetic variation and environmental factors. Consequently, 
genetic moderation of both external (the amount of daylight) and internal 
(depressive symptoms) environmental exposures is explored. 

This current research provides further insights into the relationship 
between depression and T2D and contributes significantly to the scientific 
literature. The pleiotropy on a genome-wide level between depressive 
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symptoms and glycemic traits is explored and moreover, the associations are 
studied on a candidate gene level. Furthermore, environmental factors such as 
the amount of daylight are taken into account. 
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3 AIMS OF THE STUDY

Previous studies have identified several risk factors contributing to the genesis 
of diabetes. In addition to genetic susceptibility, mental health and 
environmental factors also have an effect in the disease development. Thus, 
this thesis focuses on four objectives: 
 

1. The first objective of this doctoral thesis is to examine whether there is 
a common genetic basis of the phenotypic associations between T2D, 
glycemic indices related to T2D, and depressive symptoms (Study I) 
 

2. The second objective is to examine which specific genetic variants are 
potentially pleiotropic, affecting both glycemic indices and depressive 
symptoms (Study I) 
 

3. The third aim is to study if a common diabetes risk variant rs10830963 
in the Melatonin Receptor 1B (MTNR1B) gene influences the 
relationship between depressive symptoms and glycemic indices 
(Study II)  
 

4. The fourth aim of this doctoral thesis is to investigate to what extent the 
amount of daylight moderates the associations between MTNR1B 
rs10830963 and glycemic indices (Study III)  
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4 MATERIALS AND METHODS

4.1 PARTICIPANTS: STUDY I-III

Study I is based on the summary statistics data from previously published 
GWA studies, described in detail below. Studies II and III are conducted 
within the same PPP-Botnia cohort, described in detail below. 

4.1.1 STUDY I: SUMMARY STATISTICS OF GWAS FOR T2D, 
GLYCEMIC INDICES AND DEPRESSIVE SYMPTOMS

 
The analyses of Study I are based on previously published univariate GWAS 
summary statistics which did not require generating any new cohort-level 
results but re-uses consortium-level summary statistic data. 

Data on T2D have been contributed by DIAGRAM investigators, and 
include 34840 cases with T2D and 114981 controls without T2D (Morris et al., 
2012). Summary statistics were publicly available and obtained from the 
www.diagram-consortium.org website (accessed 08.10.2015). 

Data on glycaemic traits have been contributed by MAGIC investigators, 
and include up to 46186 participants without diabetes from up to 21 cohorts 
(Dupuis et al., 2010). Summary statistics were publicly available and obtained 
from the www.magicinvestigators.org website (accessed 26.11.2015).  

Data on depressive symptoms have been contributed by the Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE) depression 
working group investigators and include 51258 individuals (Hek et al., 2013). 
The data and the approval to pursue bivariate studies using the summary 
statistics on depressive symptoms was obtained from the CHARGE depression 
working group in March 2014. 

4.1.2 STUDY II-III: PPP-BOTNIA STUDY
 
The prospective PPP-Botnia Study is a population-based study in the Botnia 
region of western Finland. The study is designed to obtain accurate estimates 
of prevalence and risk factors for diabetes, impaired glucose regulation, and 
the MetS in the population aged 18 – 75 years and to use this information for 
prediction and prevention of diabetes. The study is described in further detail 
elsewhere (Di Camillo et al., 2018) and has the general aims to identify early 
disturbances in persons with risk of suffering from T2D; to identify gene 
defects which cause these interferences and which increase the risk of T2D; to 
investigate which cause these gene defects has for the development of the 
disease and the outlet of the disease; to try to prevent the development of T2D. 
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In short, the study is comprised of 5208 individuals participating in the 
baseline study in 2004-2008. Of those, the analytic sample of Study II 
comprised of 4455 individuals who were genotyped for rs10830963, did not 
have T2D and had data on glycemic traits and depressive symptoms. In 
comparison with the excluded sample (753 individuals), those in the analytic 
sample were more often women, younger, had lower BMI, more often had 
higher education, less often smoked, more often used alcohol and reported 
lower depressive symptoms. They also had lower glucose, insulin, HOMA-IR, 
HOMA2-IR and higher CIR values (Study II, Table 1). However, the groups 
did not differ in 30-min insulin, ISI and DI, physical activity, rs10830963 
genotype frequencies and in season of the testing date (Study II, Table 1).  

The follow-up visits took place in 2010-2015 and 3850 individuals (74% of 
the baseline study participants) participated in the follow-up. Of those, 
individuals who did not have T2D at baseline and participated in the follow-
up, had genetic data and data on glycemic traits available (3422 individuals) 
formed the analytic sample of Study III. This analytic sample did not differ 
from the whole baseline cohort, except that they had lower 120 min and AUC 
for glucose, smoked less often and used more alcohol (Study III, Table 1). 

The flowchart of analytic samples of Study II and Study III is described in 
Figure 1. 
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Figure 1. PPP-Botnia flowchart 
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4.2 MEASURING AND EVALUATING GLYCEMIC TRAITS
AND T2D: STUDY I-III

4.2.1 STUDY I: SUMMARY STATISTICS OF GWAS FOR T2D, 
GLYCEMIC INDICES AND DEPRESSIVE SYMPTOMS

 
T2D diagnosis in DIAGRAM GWAS was based on several different criteria 
including self-reported T2D, physician’s diagnosis, registry data, and OGTT 
applying WHO criteria (WHO, 1999). 

The quantitative glycemic traits in MAGIC included fasting insulin, fasting 
glucose, HOMA-β [(20 × fasting plasma insulin)/(fasting plasma glucose − 
3.5)] for assessment of β-cell function, and HOMA-IR (fasting plasma insulin 
× fasting plasma glucose/22.5) for estimation of the degree of insulin 
resistance (Wallace, Levy, & Matthews, 2004). 

4.2.2 STUDY II-III: PPP-BOTNIA STUDY
 
PPP-Botnia Study participants underwent a 2-hour OGTT performed in the 
morning after an overnight fasting. The subjects ingested 75 grams of glucose 
and one of the participants had worked during the two nights preceding the 
OGTT. 

During the OGTT, venous-samples for glucose and insulin were drawn at 
fasting and additionally at 30 and 120 min after the glucose load. Plasma 
glucose was measured with a glucose dehydrogenase method (HemoCue, 
Ängelholm, Sweden) and serum insulin by a fluoroimmunoassay (Delphia; 
Perkin-Elmer Finland, Turku, Finland). 

The formulas of all indices calculated based on the OGTT used in current 
thesis are listed in Table 1. We also used online calculator for HOMA2-IR, 
which is available at https://www.dtu.ox.ac.uk/homacalculator/. 

 

Table 1. Glycemic traits calculated based on the OGTT 
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4.3 MEASURING DEPRESSIVE SYMPTOMS: STUDY I-II

Self reported questionnaires on depressive symptoms including Center for 
Epidemiological Studies Depression Scale (CES-D) and Mental Health 
Inventory (MHI-5) derived from the 36-item Short-Form Health Survey (SF-
36) were used in evaluating depressive symptoms across the studies. Used 
questionnaires are described in further detail below. 

4.3.1 STUDY I: SUMMARY STATISTICS OF GWAS FOR T2D, 
GLYCEMIC INDICES AND DEPRESSIVE SYMPTOMS

 
Depressive symptoms in CHARGE GWAS were estimated from the total sum 
score of the Center for Epidemiological Studies Depression Scale (CES-D) 10, 
11 or 20-item versions.  

The CES-D is a brief self-report scale designed to measure depressive 
symptoms experienced in the past week in a general population (Radloff, 
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1977). The CES-D questionnaire has been established as a reliable and valid 
measure of depressive symptoms both in the context of various conditions 
such as cancer, but also in noninstitutionalized (general) populations (Cosco, 
Prina, Stubbs, & Wu, 2017; Hann, Winter, & Jacobsen, 1999). The 
questionnaire is divided into scales reflecting major facets of depression 
including somatic, positive and negative domains. The continuous sum score 
of the CES-D was used in the study.  

4.3.2 STUDY II: PPP-BOTNIA STUDY
 
Depressive symptoms were reported by the five-item Mental Health Inventory 
(MHI-5) derived from the 36-item Short-Form Health Survey (SF-36)(Hays, 
Sherbourne, & Mazel, 1993).  

The five-item MHI-5 questionnaire includes following questions: feeling 
nervous, feeling down in the dumps, feeling downhearted and blue, feeling 
calm and peaceful (reverse scored) and feeling happy (reverse scored). The 
questions are rated on a six-point scale ranging from none of the time (1) to all 
the time (6) during the past 4 weeks.  

A sum score of these items is transformed into a scale that ranges from 0 
to 100 (Ware & Sherbourne, 1992). A higher value of the sum score of these 
items reflects higher depressive symptoms.  

 

4.4 GENOTYPING: STUDY I-III

Genotyping of the the cohorts that participated in the genome-wide meta-
analyses of T2D, glycemic indices, and depressive symptoms has been 
described in the original articles (Dupuis et al., 2010; Hek et al., 2013; Morris 
et al., 2012).  

In PPP-Botnia, genotyping of MTNR1B rs10830963 was performed either 
by mass spectrometry or by allelic discrimination method, as described in 
detail elsewhere (Jonsson et al., 2013). 

4.5 THE AMOUNT OF DAYLIGHT: STUDY III

The amount of daylight varies considerably with the season in Finland. The 
range of day length in western Finland is from 4h 44min to 20h 17min. 

Daylight information was provided by the Finnish Meteorological Institute 
(FMI) Climate Service for Seinäjoki Pelmaa station. Seinäjoki station is the 
closest meteorological station to the PPP-Botnia study centers in Närpiö, 
Maalahti, Mustasaari, Vaasa and Pietarsaari. The average distance between 
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Seinäjoki Pelmaa and the study centers is about 71 km (53 km to Vaasa and 97 
km to Pietarsaari.  

Daylight (day length in hours) at the testing date from the Seinäjoki station 
was linked to the baseline and follow-up study dates.  

4.6 STATISTICAL ANALYSIS: STUDY I-III

4.6.1 STUDY I
 
To estimate genetic correlation of depressive symptoms with T2D, fasting 
glucose, fasting insulin, HOMA-β and HOMA-IR, results from univariate 
GWAS meta-analyses were combined using LD (linkage disequilibrium) Score 
Regression tool LDSC (B. K. Bulik-Sullivan et al., 2015). Default options of this 
command line tool were used for estimating heritability and genetic 
correlation from GWAS summary statistics. The tool relies on the fact that the 
GWAS effect size estimate for a given SNP incorporates the effects of all SNPs 
in LD with that SNP. LDSC is not biased by sample overlap and has been 
described in detail elsewhere (Bulik-Sullivan et al., 2015). 

To identify potential pleiotropic SNPs associated with both depressive 
symptoms and T2D, fasting glucose, fasting insulin, HOMA-β or HOMA-IR, 
five independent bivariate GWAS analyses were performed using empirical-
weighted linear-combined test statistics (eLC) (Chen & Hsu, 2017) with 
aggregate data (Z test statistics) from each univariate GWAS meta-analysis. 
The bivariate analyses were performed only of those SNPs with nominal p-
values < 0.05 in univariate GWAS meta-analyses as suggested before (Ligthart 
et al., 2016). Potential pleiotropic SNPs are reported based on 1) p-value < 
5x10-8 from the bivariate GWAS analyses and 2) the bivariate p-value is at least 
one order of magnitude smaller than the univariate p-values.  

The influence of identified potential pleiotropic SNPs on gene expression 
were further evaluated in the Brain eQTL Almanac (BRAINEAC, 
www.braineac.org) database, and GTEx portal V6 (dbGaP Accession 
phs000424.v6.p1, www.gtexportal.org).  

4.6.2 STUDY II-III
 
IBM SPSS version 23.0 was used for data analysis in Studies II-III 
(www.ibm.com/spss/). Primary findings are based on multiple linear 
regression analysis in both studies. 

In Study II, multiple linear regression analyses were used to test if the 
MNTR1B rs10830963 genotype influenced the associations between 
depressive symptoms and glycemic traits by including main effects of 
rs10830963 and depressive symptoms and their interaction into the 
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regression equation with indices of glycemic traits as the outcomes. Before 
proceeding to the interaction tests, we used multiple linear regression analyses 
to also test if the rs10830963 and depressive symptoms were associated with 
the glycemic traits and if these effects were independent of each other. In these 
analyses we used depressive symptoms both as continuous and dichotomized 
at the clinical cutoff. All associations were tested in the presence of covariates 
including sex, age, body mass index, education, current smoking status, 
alcohol consumption, physical activity and season of testing. Skewed variables 
were log-transformed where appropriate and variables were standardized to 
the mean of 0 and SD of 1 to facilitate interpretation. To decrease the 
likelihood of type 1 error, we used the false discovery rate (FDR) procedure to 
account for multiple testing. The FDR procedure is a method for 
conceptualizing the rate of type 1 errors in null hypothesis testing when 
conducting multiple comparisons and is formally described elsewhere 
(Benjamini & Hochberg, 1995). 

In Study III, multiple linear regressions were used to test if rs10830963 
and daylight were associated with glycemic traits cross-sectionally both at 
baseline and at follow-up. To test if daylight moderated the association of 
rs10830963 and glycemic traits, an interaction term of daylight x rs10830963 
was added into the linear regression model following the main effects of these 
variables. In change analysis, multiple linear regression analyses were used to 
study if rs10830963, change in the amount of daylight (amount of daylight at 
the date of baseline testing was subtracted from the date of follow-up testing), 
or their interaction, were associated with change in glycemic traits between 
baseline and follow-up (baseline glycemic trait value was subtracted from the 
respective follow-up value). The analyses of change were adjusted for the 
baseline value of the outcome variable. The covariates included sex, age, body 
mass index, smoking, alcohol use, physical activity and educational 
attainment. Skewed variables were log-transformed where appropriate and 
daylight, daylight change, glycemic traits, and glycemic trait change variables 
were standardized to the mean of 0 and SD of 1 to facilitate interpretation. 
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5 RESULTS

5.1 STUDY I: DEPRESSIVE SYMPTOMS AND GLYCEMIC 
TRAITS - BIVARIATE GWAS

5.1.1 GENETIC CORRELATION
 
SNP-based heritability estimates based on the LDSC analysis, were all very low 
between 0.04 and 0.10. More specifically, the estimates were 0.09 [0.07, 0.12] 
for T2D, 0.10 [0.06, 0.15] for fasting glucose, 0.07 [0.05, 0.10] for fasting 
insulin, 0.07 [0.05, 0.09] for HOMA-β, 0.05 [0.03, 0.07] for HOMA-IR, and 
0.04 [0.01, 0.07] for depressive symptoms.  

Considering the low heritability estimates, we also did not find any 
significant SNP-based genetic correlations between depressive symptoms and 
T2D or quantitative glycemic traits. SNP-based genetic correlations between 
depressive symptoms, T2D or glycemic traits were not significant (p-values > 
0.37). 

5.1.2 PLEIOTROPIC SNPS
 
We found several SNPs showing potential pleiotropic effects between 
depressive symptoms and 1) T2D and 2) fasting glucose (Figure 2). The 
analyses for depressive symptoms and 1) fasting insulin 2) HOMA-β and 3) 
HOMA-IR did not result in any significant findings. Significant findings are 
described in detail below. 

Bivariate GWAS analysis for depressive symptoms and T2D resulted in 
following significant and potentially pleiotropic variants: intronic SNPs in the 
insulin like growth factor 2 mRNA binding protein 2 gene (IGF2BP2; chr 3) 
and CDK5 regulatory subunit associated protein 1-like 1 gene (CDKAL1; chr 
6), intergenic SNPs close to the CDKN2B antisense RNA 1 gene (CDKN2B-AS; 
chr 9) and pleckstrin homology domain-containing family A member 1 gene 
(PLEKHA1; chr 10) (Figure 2). Not all associations were in the same direction 
with depression and T2D (Figure 2). All these SNPs were associated with 
significant alterations in expression of several genes in brain tissues in the 
BRAINEAC database and rs6769511 and rs10510110 as well with expression in 
other tissues in the GTEx database (Study I, Supplemental Table S4). 

Bivariate GWAS analysis for depressive symptoms and fasting glucose 
resulted in following significant and potentially pleiotropic variants: intronic 
SNPs in the MAP kinase-activating death domain protein gene (MADD; chr11), 
peroxisomal biogenesis factor 16 gene (PEX16; chr 11), intergenic SNPs near 
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CDKN2B-AS (chr 9) and MTNR1B (chr 11) The associations of rs11039183 
(MADD) and of rs7020996 (CDKN2B-AS) with depression and glucose levels 
were in the same direction whereas for rs11038708 and rs10510110 in PEX16 
and MTNR1B, the effect was opposite. Of these four SNPs, rs11039183 was 
associated with expression of several genes in brain and other tissues in the 
Braineac and GTEx databases (Study I, Supplemental Table S4). 
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Figure 2. SNPs showing potential pleiotropic association with depressive 
symptoms, T2D and fasting glucose 
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5.2 STUDY II: DEPRESSIVE SYMPTOMS AND 
GLYCEMIC TRAITS - THE EFFECT OF RS10830963

MTNR1B rs10830963 had a significant main effect on glucose response 
(fasting and AUC glucose), insulin resistance (ISI) and insulin secretion (DI 
and CIR). The addition of each copy of the minor G allele was associated with 
worse glycemic profile: higher fasting and AUC glucose, lower ISI, CIR and DI 
(Table 2). However, the association with ISI did not survive the FDR 
correction for multiple testing. 

 
 

Table 2. Associations between MTNR1B rs10830963, depressive symptoms 
and glycemic traits  
Panel A: The effect of rs10830963 (CC/CG/GG) 
Outcome (SD units) β (95% CI)a R2 P1 P2 P3 P4 P5 
Glucose        
Fasting  .174 (.142; .206) .050 <.001 <.001 <.001 <.001 <.001 
AUC  .162 (.126; .198) .119 <.001 <.001 <.001 <.001 <.001 
Insulin        
Fasting  .011 (-.030; .051) .007 .603 .236 .740 .887 .850 
AUC  -.020 (-.065; .024) .015 .368 .480 .658 .724 .744 
Insulin resistance       
HOMA-IR .048 (.007; .089) .012 .023 .002 .058 .097 .088 
HOMA2-IR .021 (-.027; .068) .012 .390 .257 .711 .707 .676 
ISI -.047 (-.090; -.004) .027 .031 .006 .037 .048 .044 
Insulin secretion       
DI -.203 (-.242; -.164) .094 <.001 <.001 <.001 <.001 <.001 
CIR -.198 (-.240; -.156) .050 <.001 <.001 <.001 <.001 <.001 
Panel B: The effect of depressive symptoms (continuous sum score)  
Outcome (SD units) β (95% CI)a R2 P1 P2 P3 P4 P5 
Glucose        
Fasting .004 (-.017; .025) .025 .720 .870 .720 .697 .599 
AUC .033 (.009; .057) .104 .007 .020 .013 .012 .008 
Insulin        
Fasting .051 (.024; .078) .009 <.001 .001 .002 .002 .002 
AUC .046 (.017; .076) .017 .002 .012 .004 .005 .005 
Insulin resistance        
HOMA-IR .051 (.023; .078) .013 <.001 .002 .003 .003 .003 
HOMA2-IR .050 (.019; .081) .014 .002 .012 .005 .005 .005 
ISI -.058 (-.087; -.030) .029 <.001 .001 <.001 <.001 <.001 
Insulin secretion        
DI -.033 (-.059; -.007) .072 .013 .037 .033 .034 .026 
CIR .012 (-.016; .040) .031 .395 .610 .594 .600 .645 
P1 – linear regression model 1 is adjusted for sex and age  
P2 – linear regression model 2 is adjusted for sex, age, and body mass index 
P3 – linear regression model 3 is adjusted for sex, age, body mass index, education, current 
smoking status, alcohol consumption, and physical activity 
P4 – linear regression model 4 is adjusted for sex, age, body mass index, education, current 
smoking status, alcohol consumption, physical activity and season 
P5 – linear regression model 5 is adjusted for sex, age, body mass index, education, current 
smoking status, alcohol consumption, physical activity, season and depressive symptoms (in 
the analysis of rs10830963) or rs10830963 (in the analysis of depressive symptoms) 
a – β coefficients and R2 are from the model 1 and show change in standard deviation units 
in outcome 
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Higher depressive symptoms were associated with higher glucose response 
(AUC), higher insulin response (AUC), higher insulin resistance (fasting 
insulin, HOMA-IR, HOMA2-IR and ISI) and lower insulin secretion (DI) 
(Table 2). However, the association with DI did not survive the FDR correction 
for multiple testing. Additionally, we used previously established cut-off of 60 
for depressive symptoms and consequently identified individuals with 
clinically relevant depressive symptoms. We then ran the analyses again using 
categorical depression as a factor variable which resulted in no changes in the 
significance of the findings (data not shown). 

The furthest right column (P5) in Table 2 shows that the effects of 
rs10830963 and depressive symptoms on glycemic traits were independent of 
each other.  

Furthermore, Table 3 indicates that the interactions between rs10830963 
and depressive symptoms were not significantly associated with glycemic 
traits (Table 3). 

  
 

Table 3. Interaction between depressive symptoms and rs10830963 on 
glycemic traits 
Outcome (SD units) β (95% CI)a P1 P2 P3 P4 
Glucose      
Fasting  -.004 (-.040; .033)  .321  .327 .654 .572 
AUC -.005 (-.041; .030)  .776  .851  .879 .903 
Insulin      
Fasting  .007 (-.033; .047)  .736  .636  .754 .408 
AUC  .022 (-.023; .066)  .341  .225  .167 .076 
Insulin resistance     
HOMA-IR  .003 (-.038; .044)  .875  .788  .815 .478 
ISI .005 (-.041; .052) .816 .656 .397 .393 
Insulin secretion -.017 (-.059; .026)  .444  .266  .253 .107 
DI     
CIR .000 (-.039; .039)  .990  .900  .965 .971 
Glucose .008 (-.034; .050)  .714  .670  .592 .423 
P1 – linear regression model 1 is adjusted for sex and age  
P2 – linear regression model 2 is adjusted for sex, age, and body mass index  
P3 – linear regression model 3 is adjusted for sex, age, body mass index, education, 
current smoking status, alcohol consumption, and physical activity 
P4 – linear regression model 4 is adjusted for sex, age, body mass index, education, 
current smoking status, alcohol consumption, physical activity, and season 
a – Beta coefficients are from model 1 and show change in standard deviation units in 
outcome 
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5.3 STUDY III: THE AMOUNT OF DAYLIGHT, 
RS10830963 AND GLYCEMIC TRAITS

Table 4 shows that at baseline and at follow-up the addition of each G allele of 
the rs10830963, conferring risk for T2D, was associated with higher glucose 
response (fasting and AUC glucose) and with lower insulin secretion (DI, CIR). 
At baseline, the addition of each G allele of the rs10830963 was also 
significantly associated with insulin resistance (higher HOMA-IR and lower 
ISI), but at the follow-up, rs10830963 was not significantly associated with the 
HOMA-IR or ISI. Similarly, the addition of each G allele of the rs10830963 
was also associated with an increase in fasting glucose and AUC for glucose 
and with a decrease in DI and CIR values between the baseline and the follow-
up but was not associated with change in insulin resistance (HOMA-IR or ISI) 
between baseline and follow-up (Table 4).  

All these associations remained unchanged when adjusted for sex, age, and 
BMI at the respective visit(s), and when additionally adjusted for baseline 
education and lifestyle factors at the respective visit(s), except for the 
associations with HOMA-IR and ISI at baseline, which were rendered non-
significant (Table 4). 

At baseline, daylight was not associated with any of the glycemic traits 
(Table 4). However, at the follow-up, individuals studied on days with more 
daylight had lower fasting glucose, yet higher AUC for glucose, higher insulin 
resistance (higher fasting insulin, lower ISI), as well as lower insulin response 
(DI, CIR). Individuals who underwent the OGTT on days with more daylight 
available at the follow-up than at the baseline, displayed significantly higher 
increase in AUC for glucose and decrease in CIR between the baseline and the 
follow-up (Table 4).  

MTNR1B rs10830963 and daylight did not interact significantly at the 
baseline or the follow-up cross-sectional analyses of the glycemic traits (Table 
5). However, rs10830963 and change in daylight between the baseline and the 
follow-up visits interacted significantly with the change between the baseline 
and the follow-up in fasting insulin and HOMA-IR (Table 5, panel C). 

To illustrate these interactions, we divided the participants into three 
groups according to change in daylight between baseline and follow-up. These 
tertiles were the following: less daylight at the follow-up than at the baseline 
(-15h to -2h difference), no or small difference in daylight between the testing 
days (-1h to 4h difference), and more daylight at the follow-up than at the 
baseline (5h to 15h difference). These findings show that those with no or one 
risk allele of the rs10830963 (CC and CG genotypes), change in fasting insulin 
and HOMA-IR was independent of the change in daylight between the baseline 
and follow-up testing days (Figure 3). Yet, those homozygous for the risk allele 
(GG) became more insulin resistant (higher fasting insulin and HOMA-IR) 
during the follow-up if the amount of daylight was less at the follow-up than 
at the baseline date compared with individuals who had similar or higher 
amount of daylight at follow-up than at baseline. 
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Table 4. Associations between MTNR1B rs10830963, daylight and glycemic 
traits cross-sectionally and over time 
Panel A: Baseline 
 rs10830963 Daylight 
Outcome β (95% CI)a P1 P 2 β (95% CI)a P1 P 2 
Glucose      
Fasting .221 (.171; .271) <.001 <.001 .026 (-.007; .060) .122 .224 
AUC .199 (.151; .247) <.001 <.001 .030 (-.003; .062) .071 .086 
Insulin      
Fasting  .009 (-.037; .055) .698 .528 .022 (-.008; .052) .153 .171 
AUC -.017 (-.067; .032) .503 .510 .002 (-.030; .035) .881 .999 
Insulin resistance      
HOMA-
IR 

.046 (.000; .091) .050 .377 .026 (-.004; .056) .095 .122 

ISI -.047 (-.093; .000) .050 .199 -.015 (-.046; .016) .341 .414 
Insulin secretion      
DI -.248 (-.298; -.199) <.001 <.001 -.028 (-.062; .005) .096 .062 
CIR -.224 (-.275; -.173) <.001 <.001 -.018 (-.052; .017) .309 .202 
Panel B: Follow-up 
 rs10830963 Daylight 
Outcome β (95% CI)a P1 P 2 β (95% CI)a P1 P 2 
Glucose      
Fasting .173 (.124; .221) <.001 <.001 -.069 (-.101; -.037) <.001 <.001 
AUC .123 (.076; .170) <.001 <.001 .053 (.022; .084) .001 <.001 
Insulin      
Fasting  .008 (-.036; .051) .723 .698 .045 (.016; .073) .002 .002 
AUC -.043 (-.090; .004) .073 .134 .007 (-.024; .038) .645 .527 
Insulin resistance      
HOMA-
IR 

.041 (-.002; .084) .063 .091 .028 (.000; .056) .052 .043 

ISI -.018 (-.062; .025) .397 .358 -.023 (-.051; .006) .124 <.001 
Insulin secretion      
DI -.192 (-.241; -.144) <.001 <.001 -.048 (-.080; -.015) .004 .003 
CIR -.213 (-.253; -.152) <.001 <.001 -.040 (-.073; -.006) .021 .024 
Panel C: Change over time 
 rs10830963 Daylight change 
Outcome β (95% CI)a P1 P 2 β (95% CI)a P1 P 2 
Glucose       
Fasting .088 (.043; .134) <.001 .001 -.017 (-.047; .012) .253 .094 
AUC .019 (-.029; .067) .438 .495 .068 (.036; .099) <.001 <.001 
Insulin       
Fasting  -.001 (-.047; .045) .970 .893 .000 (-.030; .031) .997 .880 
AUC -.054 (-.103; -.006) .027 .066 -.010 (-.042; .021) .519 .500 
Insulin resistance      
HOMA-
IR 

.010 (-.037; .057) .690 .519 -.002 (-.033; .029) .897 .818 

ISI -.008 (-.053; .036) .712 .625 -.024 (-.053; .005) .104 .185 
Insulin secretion      
DI -.063 (-.114; -.012) .016 .038 -.030 (-.064; .003) .071 .077 
CIR -.070 (-.122; -.108) .008 .042 -.037 (-.071; -.003) .031 .030 
P1 – linear regression model is adjusted for sex, age, body mass index 
P2 – linear regression model is adjusted for sex, age, body mass index, smoking, alcohol use, 
physical activity at respective visit(s), and education at baseline 
a – Beta coefficients are from model 1 
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Table 5. Interaction between daylight and rs10830963 on 
glycemic traits 
Panel A: Baseline 
Outcome β (95% CI) P1 β (95% CI) P 2 
Glucose    
Fasting .027 (-.022; .076) .279 .051 (.000; .102) .051 
AUC -.015 (-.062; .032) .531 .001 (-.048; .051) .960 
Insulin    
Fasting  -.009 (-.054; .035) .680 -.005 (-.051; .042) .844 
AUC .008 (-.040; .056) .737 -.002 (-.052; .048) .940 
Insulin resistance    
HOMA-IR -.004 (-.049; .041) .862 .005 (-.041; .052) .830 
ISI -.001 (-.047; .045) .975 -.005 (-.053; .042) .833 
Insulin secretion    
DI .022 (-.027; .071) .375 -.002 (-.053; .049) .927 
CIR .031 (-.020; .081) .231 .007 (-.045; .059) .796 
Panel B: Follow-up 
Outcome β (95% CI) P1 β (95% CI) P 2 
Glucose    
Fasting -.020 (-.068; .028) .420 -.031 (-.081; .019) .226 
AUC .017 (-.029; .064) .465 .008 (-.040; .056) .746 
Insulin    
Fasting  -.020 (-.063; .023) .372 -.019 (-.064; .025) .399 
AUC .016 (-.030; .063) .499 .012 (-.037; .060) .366 
Insulin resistance    
HOMA-IR -.022 (-.065; .021) .314 -.024 (-.068; .020) .290 
ISI .001 (-.043; .044) .968 .004 (-.042; .049) .878 
Insulin secretion    
DI -.002 (-.050; .046) .939 -.001 (-.051; .049) .978 
CIR .001 (-.049; .052) .958 .000 (-.052; .052) .998 
Panel C: Change over time 
Outcome β (95% CI) P1 β (95% CI) P 2 
Glucose     
Fasting -.016 (-.061; .028) .478 -.027 (-.074; .019) .252 
AUC -.024 (-.071; .023) .313 -.032 (-.080; .017) .201 
Insulin     
Fasting  -.071 (-.117; -.026) .002 -.068 (-.115; -.021) .005 
AUC -.034 (-.082; .014) .162 -.034 (-.085; .016) .181 
Insulin resistance    
HOMA-IR -.073 (-.120; -.027) .002 -.067 (-.115; -.019) .006 
ISI -.008 (-.052; .036) .723 -.019 (-.065; .026) .407 
Insulin secretion    
DI .006 (-.044; .056) .817 .009 (-.045; .064) .731 
CIR .014 (-.037; .064) .600 .013 (-.040; .066) .625 
P1 – linear regression model is adjusted for sex, age, body mass index 
P2 – linear regression model is adjusted for sex, age, body mass index, 
smoking, alcohol use, physical activity at respective visit(s), and education at 
baseline 
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Figure 3. The interaction between rs10830963 and change in daylight on 
fasting insulin and HOMA-IR. The figure is reproduced with permission from 
the copyright holder (Informa UK Limited, trading as Taylor & Francis 
Group).  
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6 DISCUSSION

This thesis consisted of three studies exploring the relationship between 
depressive symptoms, the amount of daylight and glycemic traits. The central 
candidate gene in the studies was MTNR1B and specifically its variant 
rs10830963. This study was designed to explore the underlying mechanisms 
of the common comorbidity of depression and diabetes. Furthermore, one of 
the aims was to unravel the potential moderating effect of MTNR1B in the 
relationship of daylight and glucose metabolism. 

First, it was shown in Study I that there was no common genetic 
background between depressive symptoms and glycemic traits and T2D in a 
genome-wide level using previously published GWAS summary statistics. 
However, several potentially pleiotropic SNPs were identified that were 
associated to both depressive symptoms and fasting glucose or T2D. 
Importantly, one of the identified variants was near the MTNR1B gene. A 
variant rs10830963 in the MTNR1B gene was extensively studied in the next 
studies Study II and III.  

Second, the relationship between depressive symptoms and glucose 
metabolism was further explored in a population-based PPP-Botnia Study in 
Study II. These results indicated that there was no interaction between 
depressive symptoms and rs10830963 in the analysis of glycemic traits. 
However, it was shown that the effect of these factors was additive.  

Third, it was hypothesized that even though there was no interaction 
between depressive symptoms and rs10830963, the variant could potentially 
interact with the amount of daylight. This was assumed against previous 
research literature as melatonin is directly responsive to environmental light 
and one’s genetic makeup could influence the effect of daylight on glucose 
metabolism. In Study III it was found in the same PPP-Botnia Study that the 
amount of daylight was not associated to any glycemic trait at baseline visit 
but in this study it was also possible to analyze the data from the follow-up. At 
follow-up, daylight was moderately associated with some of the glycemic 
traits. Moreover, when exploring the interaction between rs10830963 and 
change in the amount of daylight on change in glycemic traits, a significant 
interaction on the change in insulin sensitivity was found.  

The findings are further discussed below, the results emphasize the 
importance of taking psychological wellbeing and the amount of daylight into 
account in the context of glucose metabolism. After discussion of the findings, 
an overview of methodological considerations is given, followed by a general 
discussion and conclusions with further research directions.  
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6.1 STUDY I

Study I was conducted combining previously published summary statistics 
from several sources allowing us to evaluate the common genetic background 
of depressive symptoms and diabetes using independent and large-scale 
samples of thousands of individuals. To authors’ best knowledge, this was the 
first bivariate GWAS focusing solely on the possible common genetic 
background of the known phenotypic association of depressive symptoms and 
glycemic traits. This study should be considered as the first attempt in focusing 
the analyses on the common genetic background of depressive symptoms and 
glycemic traits and T2D.  

The findings from the study showed that SNP-based heritability estimates 
for the traits were low, ranging from 4% to 10%. These low heritability 
estimates might arise from the study design as GWA studies may not be able 
to capture relevant genomic variation necessary in the development of 
complex diseases. Furthermore, in addition to low heritability estimates, the 
authors were not able to show significant SNP-based genome-wide genetic 
correlations between the traits of interest (p-values > 0.37). However, these 
findings were in line with previous findings as another study had also found 
no genetic overlap between major depressive disorder (MDD) and glycemic 
traits (Bulik-Sullivan et al., 2015). Furthermore, recent GWAS on MDD found 
associations between BMI and MDD, they had significant genetic correlation 
and shared more than 30 independent potentially pleiotropic loci. Obesity is 
closely associated with T2D, thus these findings are important to discuss, 
however, the authors concluded that BMI is not either a causal risk factor for 
MDD or correlated with causal risk factors for MDD (Wray et al., 2018).  

On the other hand, not all studies have failed to show genetic correlation 
between these traits. One population-representative Nordic twin study 
pointed towards a moderate genetic correlation between depression and 
diabetes (Kan et al., 2016). However, it needs to be clarified that this study 
used different methodology as twin study design was used in the research by 
Kan and colleagues. Nevertheless, the lack of common genetic background as 
an underlying mechanism in the relationship of depression and diabetes might 
not hold true based on these findings, suggesting other biological mechanisms 
to be involved in this association, such as previously proposed cytokine-
mediated inflammatory response or HPA axis dysfunction (Moulton et al., 
2015). 

To continue, although a potential common genetic co-predisposition was 
expected, the authors were not able to show significant genetic correlation 
between depressive symptoms and glycemic traits and T2D. Nevertheless, 
current study identified novel SNPs which may contribute to the correlation of 
depressive symptoms and glycemic traits. Several pleiotropic SNPs were 
identified between depressive symptoms and fasting glucose and T2D but not 
between other glycemic traits. The authors propose that these variants need to 
receive further research attention.  
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In the analyses of depressive symptoms and T2D, potentially pleiotropic 
variants in the IGF2BP2 and CDKAL1 genes and near the CDKN2B-AS and 
PLEKHA1 genes were found. Not all the associations were in the same 
direction between the traits which means that these results address the topic 
that biological processes underlying phenotypic correlation might operate in 
different directions or possibly emphasize the role of chance findings. Those 
identified variants had been associated with some cardiometabolic traits 
previously (Dorajoo, Liu, & Boehm, 2015; Prasad & Groop, 2015) but not with 
depressive symptoms in any of the previous studies. Those variants were novel 
in relation to depressive symptoms and the effect should be further explored 
because all of the potentially pleiotropic variants altered an expression of 
genes in various regions of the brain. Thus, future research should focus on 
the biological relevance of those variants on depression and its subclinical 
symptoms.  

In the analyses of depressive symptoms and fasting glucose, potential 
pleiotropic loci in the MADD and in the PEX16 genes and near the CDKN2B-
AS and the MTNR1B genes were identified. Once again, all of these 
associations were novel in relation to depressive symptoms but had been 
identified in relation to metabolic traits (Cornes et al., 2014; Dupuis et al., 
2010). The variant rs6483221 near the MTNR1B gene that showed potential 
pleiotropy between depressive symptoms and fasting glucose was of the most 
interest to the authors in the context of current research as another variant 
rs10830963 in MTNR1B was extensively studied in relation to depressive 
symptoms and the amount of daylight on glucose metabolism in other two 
studies presented in current thesis. 

Taken together, the bivariate GWAS study showed that the IGF2BP2, 
CDKAL1, CDKN2B-AS, PLEKHA1, MADD, PEX16 and MTNR1B may be 
associated with both metabolic traits and depressive symptoms and their 
biological plausibility should be further investigated. However, it needs to be 
pointed out that in the recent GWAS on MDD, variants in or near these genes 
were not identified to be associated with depression (Wray et al., 2018). Wray 
and colleagues (2018) identified 44 variants to be associated with MDD using 
data on 135,458 cases and 344,901 controls, none of those overlapping with 
the variant identified in current study. Nonetheless, this study was based on 
depression diagnosis and not its symptomatology, thus on an endophenotype 
level, further investigation of those variants is justified.  

However, these few potentially pleiotropic variants were identified from 
around 2.4 million variants, which raises the question of potentially sporadic 
findings and rather support the view that depression and diabetes might be 
independently acquired due to the effect of lifestyle or other factors rather than 
sharing common genetic background. Previous studies show that there are 
several behavioral factors contributing to the bidirectional relationship. 
Depressed patients are often displaying poorer health behavior and smoking 
and obesity are two of the main factors driving the associations (Katon et al., 
2004). These associations can also be seen on a brain level, one additional 
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plausible mechanism is through functioning of the dopaminergic reward 
circuitry, that modulates food reward and is linked with obesity (Karatsoreos 
et al., 2013) and that show alterations in depression; this circuit includes 
projections from ventral tegmental area to nucleus accumbens that are 
regulated by input from the habenula, hippocampus and prefrontal cortex. 

Despite the limitations of the study that are discussed under the chapter of 
methodological considerations, no overall SNP-based genome-wide genetic 
relation was shown between depressive symptoms and glycemic traits. 
Understanding these findings allow researchers to explore other avenues in 
finding the common underlying mechanisms of commonly co-occurring 
depression and diabetes. 

6.2 STUDY II

In Study II, the relationship between depressive symptoms and glycemic traits 
was explored further and the potential moderating effect of MTNR1B 
rs10830963 in these associations was studied.  

It was shown in a large PPP-Botnia cohort from Finland that contrary to 
expected, the known diabetes risk variant rs10830963 does not influence the 
associations between depressive symptoms and glycemic traits. Rather, it was 
shown that the effects of depressive symptoms and rs10830963 are 
independent and additive. Thus, the main interesting findings arise from the 
main effects of depressive symptoms and rs10830963. The study showed that 
the addition of each copy of the risk allele G was associated with poorer 
glycemic profile that was evaluated based on higher fasting plasma glucose 
concentrations and also glucose response to OGTT, higher insulin resistance 
and lower insulin secretion. Higher depressive symptoms were also associated 
with poorer glycemic profile. It was shown that more depressive symptoms 
were associated with higher glucose response to OGTT, higher fasting insulin 
and insulin response to OGTT, higher insulin resistance and lower insulin 
secretion. 

These findings are highly relevant for the research literature. Earlier GWAS 
studies have identified promising candidate genes for glycemic traits (Dupuis 
et al., 2010; Manning et al., 2012; Scott et al., 2007) and for depression (Hek 
et al., 2013; Ripke et al., 2013) and our own previous research indicated 
potential pleiotropic effect of one variant near the MTNR1B gene on depressive 
symptoms and fasting glucose. Thus, exploring the potential moderating effect 
of one candidate gene MTNR1B on the known relationship of depression and 
diabetes was crucial.  

The findings indicate that depressive symptoms and rs10830963 have 
independent effects on glucose metabolism, furthermore, these effects are 
independent of the covariates including sex, age, BMI, smoking, alcohol 
consumption, physical activity and educational attainment. Thus, these 
findings do not support the role of MTNR1B as a contributing factor in the 
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relationship between depression and T2D, yet are in line with previous 
findings on the level of main effects (Moulton et al., 2015; Prasad & Groop, 
2015). 

The findings are important as molecular studies have shown increased 
expression of MTNR1B in β-cells in pancreatic islets of individuals carrying 
the MTNR1B risk variant (Lyssenko et al., 2009). Based on that, this variant is 
not only associated with glycemic traits in GWA studies but also seems to be 
functional. It has been suggested that the pathogenic effects on melatonin are 
likely mediated through inhibitory effects on β-cell function, which results in 
worsening of glucose metabolism (Jonsson et al., 2013; Peschke, 2008).  

From the perspective of the relationship between depressive symptoms and 
glycemic traits, current study emphasizes the same conclusion as in the Study 
I – most probably behavioral factors play the biggest role in underlying this 
relationship as proposed also previously (Moulton et al., 2015).  

Despite the limitations, current study did not unravel the biological 
underpinnings of the common comorbidity between depressive symptoms and 
T2D in relation to MTNR1B rs10830963 variant. Taken together, first two 
studies of current thesis show that the relationship between depression and 
diabetes is independent of one’s genetic makeup.  

6.3 STUDY III

The final study III investigated in the PPP-Botnia cohort the relationship 
between rs10830963 and glycemic traits in a longitudinal study setting while 
studying the potential moderating effect of the amount of daylight in these 
associations. Daily changes in daylight and seasonality are associated with 
physiological processes and the geographical location of Finland allowed to 
study the extensive variation in daylight in relation to insulin and glucose 
metabolism over time in a prospective study. To the author’s best knowledge, 
this study was the first to investigate the amount of daylight as a continuous 
variable allowing us to capture the variability in the increase versus decrease 
in day length in the analyses of glycemic traits. The rationale of current study 
was associated with the hypothesis that disturbances in hormonal profiles 
might arise from major changes in daylight potentially causing circadian 
misalignment. 

The main findings of Study III, that was conducted in a large, prospective 
population-based sample of individuals residing in Western Finland, consist 
of three main parts. 

First, it was found in the cross-sectional analysis of daylight on glucose 
metabolism that individuals who got tested during the lighter days of the year, 
had lower fasting glucose but higher fasting insulin levels and worse glucose 
response to OGTT (higher glucose AUC, lower DI and CIR) at follow-up but 
not at baseline visit. Furthermore, the longitudinal analyses showed that 
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individuals who got tested on lighter days at the follow-up than at the baseline 
showed worsening of glucose response to OGTT across the follow-up.  

Second, the study replicates findings from our research group in relation to 
MTNR1B rs10830963 and glycemic traits with additional analysis completed 
at the follow-up and considering the change in glucose metabolism. It was 
shown that each risk G allele of the MTNR1B rs10830963 was associated with 
higher fasting glucose and additionally with worse glucose response to OGTT. 
In the previous study (Study II), the focus was on the baseline visit, yet in 
current study, it was possible to evaluate changes over time. Thus, 
longitudinally, each G allele was additively associated with worsening of 
glucose response to OGTT across the follow-up (higher fasting glucose, lower 
DI and CIR). Finally, the findings showed that risk genotype GG carriers of 
MTNR1B rs10830963, who underwent the OGTT on darker days at follow-up 
than at the baseline, showed deterioration of insulin sensitivity across the 
follow-up. These findings were independent of the covariates; thus the 
findings thus suggest that individual glycemic profiles may be modulated by 
daylight, the MTNR1B genotype and their interaction. 

The findings were in line with previous findings from the Swedish 
GLACIER cohort. Similarly to the GLACIER study, we showed that more 
daylight is associated with lower fasting glucose (Renström et al., 2015). It is 
important to note that GLACIER cohort is from the Västerbotten region in 
Sweden which means that the latitude of PPP-Botnia and GLACIER are very 
similar. Furthermore, the GLACIER study has not been the only study 
reporting better glycemic profiles during seasons with more daylight (Shore-
Lorenti et al., 2014). For example lower BMI and lower fasting glucose has 
been reported during summer when there is more daylight available (Chen et 
al., 2008; Mavri et al., 2001; Suarez & Barrett-Connor, 1982). In our study, we 
showed associations between daylight and glucose metabolism only at follow-
up and longitudinally but not at baseline visit. Not all previous studies 
consistently show the associations between the amount of daylight and glucose 
metabolism. For example Waldhauser and Dietzel (1985) showed no seasonal 
differences in fasting glucose values (Waldhauser & Dietzel, 1985). 
Furthermore, previous research has found conflicting results in the 
relationship of seasonality and insulin values. Both higher and lower insulin 
values have been reported in lighter season (Berglund et al., 2012; Isken et al., 
2011).  

The authors had the opportunity to study the effect of daylight also in a 
longitudinal study setting and we showed that more daylight is associated with 
worse glucose response to OGTT and worsening of the glycemic profile across 
the follow-up. Apart from lower fasting glucose, our cross-sectional and 
longitudinal findings suggest that more daylight is associated with worse 
glycemic profiles. However, previous research has found mixed findings 
(please see above), thus future studies should further explore the relationship 
using more detailed measures on the daylight exposure, which the amount of 
daylight or season do not directly capture. 



 

57 

The authors propose that one of the potential mechanisms through which 
daylight has an effect on glucose metabolism is related to reduced periodic 
melatonin exposure that occurs during the light season. Shorter nocturnal 
melatonin peak caused by the known inhibitory effects of light from an early 
sunrise on melatonin secretion gives an insight into the potential mechanism 
through which light exposure influences metabolic profile. Based on the 
findings from Luboshitzky and colleagues (1998), it is known that there is a 
seasonal variation in the concentration of melatonin in the human pineal 
gland. Long photoperiod from April to September is associated with higher 
melatonin concentrations at night; short photoperiod is shown to be possibly 
associated with phase-delay in melatonin secretion (Luboshitzky et al., 1998).  

Furthermore, the study showed that the interaction between change in 
daylight and rs10830963 was associated with glycemic profiles. It was found 
that rs10830963 GG carriers became more insulin resistant when less daylight 
was available at the follow-up than at the baseline visit. In the context of 
previous studies, this is in contrast with findings from the GLACIER study. 
Renström and colleagues (2015) showed the lowest 2h glucose concentrations 
during the dark season in individuals with the GG genotype (Renström et al., 
2015). However, this interaction finding was not replicated in the GLACIER 
study follow-up conducted a decade later (Renström et al., 2015). This once 
again confirms, that further research is needed in order to explore this 
relationship further because current literature shows inconsistent findings. 

However, both biological and behavioral factors may influence these 
associations. It is well known that environmental influences are important in 
human behavior but furthermore, seasonal effects can als arise from other 
environmental factors in addition to the amount of daylight such as the 
changes in temperature. These factors collectively could have effect on human 
behavior including caloric intake and physical activity (Ishii et al., 2001). In 
addition, some other behavioral factors such as changes in eating patterns, 
hunger, alcohol use and alertness can also be associated with light exposure. 
Additionally, the feeding-fasting cycle itself could play a critical role in the 
circadian rhythm of metabolic processes as the dominant environmental cue 
(Dibner & Schibler, 2015).  

Taken together, this study shows that individual glycemic profiles can vary 
according to the amount of daylight, the MTNR1B rs10830963 genotype and 
their interaction. 

6.4 METHODOLOGICAL CONSIDERATIONS

6.4.1 LIMITATIONS
 
The studies discussed in current thesis had several limitations. Study I used 
previously published GWAS summary statistics and this meta-analysis 
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methodology might not capture all relevant genetic variation as only common 
genetic variation is explored. Furthermore, even though previously published 
summary statistics were used, the sample might have still been underpowered 
to detect genetic effects typical for complex traits. Importantly, the authors did 
not find replication cohorts for Study I, thus further research should focus on 
the replication of these findings. The study has methodological restraints as 
twin studies show higher heritability estimates for these traits. However, it is 
typical that SNP-based heritabilities are considerably lower than heritabilities 
based on twin studies. Furthermore, rare mutations that are not explored in 
GWAS have higher effect compared to common variants which penetrance is 
low or indeed zero. Additionally, in further studies, the importance of family 
history has to be noted.  

Study II and III also had several limitations with the main one being the 
fact that we did not measure melatonin concentrations or its circadian 
variation. Furthermore, sleep has been shown to play an important role in 
glucose metabolism but were not evaluated in current studies more deeply 
than adding it as a covariate (which did not change the findings). Also, while 
the variant rs10830963 in the MTNR1B is also common in other ethnic groups, 
these associations may be exaggerated in Finns living at latitudes with large 
seasonal variations in light and darkness. The applicability to other ethnic 
groups remains to be seen. In Study II, self-reported MHI-5 instrument was 
used for measuring depressive symptoms that is derived from the 36-item 
short form health survey SF-36. Thus, Study II did not utilize more commonly 
used instruments such as Beck Depression Inventory-II (BDI II) or CES‐D 
(Smarr & Keefer, 2011) and therefore lacked the the more clinically relevant 
measurement of depression. 

Regarding the limitations of Study III, it needs to be pointed out that we 
were not able to explore other proposed alternative mechanisms through 
which light exposure might influence glycemic traits. For example, due to the 
lack of data on vitamin D levels, we were not able to test if the vitamin D 
hypothesis holds true in the relationship between the amount of daylight and 
glucose metabolism. Furthermore, several other advanced data analysis 
methods such as the repeated measures mixed modeling or path analysis could 
have been used to address the research questions, however, linear regression 
was chosen as the analysis method, especially since we only had only two 
datapoints available in Study III. 

Finally, we do not know if missingness would have influenced the findings 
as imputation of missing data was not used in Study II-III. 

6.4.2 STRENGTHS
 
The main strength of Study I was related to the summary statistics that were 
the most comprehensive to date and allowed the exploration of the genetic 
basis of the known phenotypic relationship of depression and diabetes on a 
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genome-wide level among independent samples. The state-of-the-art, newly 
developed, truly novel methodology at the time was used, allowing to address 
if the potential underlying genomic associations are 1) pleiotropic, and 2) if the 
associations between depression and diabetes are modified by genomic loci. 

One of the main strengths of Study II is related to the state-of-the-art 
measures on glycemic traits that allowed the researchers to compute several 
indices based on the measurements after fasting, 30 minutes after the glucose 
load and 120 minutes after the load. In general, regarding both Study II and 
III that used PPP-Botnia cohort benefitted from the detailed clinical 
examination that was carried out at two timepoints, on average 6.8 years apart.  

A strength of Study III is its population-based longitudinal design and data 
on the amount of daylight available both at baseline and follow-up derived 
from a meteorological station in Pelmaa, Seinäjoki near the PPP-Botnia study 
centers. The geographic location of PPP-Botnia study centers allowed to 
explore the large variation in the amount of daylight available at these 
latitudes.  
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7 GENERAL DISCUSSION

Diabetes prevalence estimates have increased 281% between 2000 and 2017 
(Cho et al., 2018) making it one of the fastest growing burdens of disease. It 
has been estimated that the rapid rise in diabetes prevalence is associated with 
socioeconomic changes, such as changes towards sedentary lifestyle causing 
weight gain among other issues (Cho et al., 2018). However, in addition to the 
known effect of lifestyle on the development of diabetes, it is also important to 
emphasize the effect of mental health in relation to diabetes. Knol and 
colleagues (2006) have concluded in their meta-analysis that the effect of 
depression on diabetes is comparable to known lifestyle factors contributing 
to the development of diabetes (Knol et al., 2006). In current studies, the 
authors also explored the relationship between psychological factors and 
diabetes that has been shown to be affected by a number of potential 
mechanisms including individual’s biological vulnerability – also one of the 
topics to explore in current thesis.  

The authors were able to replicate previous consistent findings showing the 
association between depression and diabetes (Pan et al., 2012; Renn et al., 
2011) on a level of depressive symptoms and glycemic traits (Study II). Yet, 
these phenotypic associations were not shown to have common genetic 
background on a whole genome level, which was one of our hypotheses (Study 
I). Nevertheless, several common genetic variants were found to be associated 
with both depressive symptoms and glycemic traits that might potentially be 
pleiotropic and require further research to evaluate the causality of these novel 
associations.  

The authors did not identify diabetes risk variant MTNR1B rs10830963 to 
be associated with both depressive symptoms and glycemic traits in our study, 
yet melatonin pathway has been indicated to be involved with both depression 
and diabetes (de Bodinat et al., 2010; Peschke, 2008) and another variant 
rs6483221 near MTNR1B was identified as being potentially pleiotropic 
between depressive symptoms and fasting glucose. Thus, in Study II the 
authors explored the interaction between depressive symptoms and MTNR1B 
rs10830963, one of the most consistently identified diabetes risk variant, on 
glycemic traits. Instead of confirming an interaction, we identified the 
relationship to be additive – both depressive symptoms and MTNR1B have an 
effect on glucose metabolism but the effect is independent. This gives new 
knowledge to the research literature as the associations of MTNR1B and 
depressive symptoms on glucose metabolism have been confirmed 
independently (Tuomi et al., 2016; Yu, Zhang, Lu, & Fang, 2015) but it was 
additionally shown that when exploring the potential interaction, the effect 
remains independent.  

Taken together, the findings from current research indicate that the known 
phenotypic association between depression and diabetes is not significantly 
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explained by genetic factors on genome-wide level and on candidate gene level. 
There might be other mechanisms causing this common comorbidity of 
depression and diabetes. For example, it has been proposed that psychosocial 
pressure, stress, contributes to HPA axis dysfunctions which could manifest in 
fat accumulation and insulin resistance (Björntorp, 2001). Cytokine-induced 
HPA axis dysregulation has also been shown (Pace & Miller, 2009). 
Inflammatory mechanisms are indeed associated with both conditions (Stuart 
& Baune, 2012). Mechanistically, cytokines may interact with the serotonergic 
neurotransmitter system and induce tryptophan depletion (Fujigaki et al., 
2006). Furthermore, it has been suggested that obesity might be an amplifying 
factor in this relationship given the existence of inflammatory pathways in all 
three conditions with the inter-relational potential (Stuart & Baune, 2012). 
Abdominal obesity in patients with T2D is indeed associated with the severity 
of depressive symptoms (Labad et al., 2010).  

We also should not exclude the possibility of epigenetic changes as 
underlying this relationship because even though our genome contains all the 
information, many of the traits are determined by gene regulation. And even 
though we were able to show the additive effect of depressive symptoms and 
MTNR1B, but not gene-environment interaction, epigenetic changes might be 
seen on a molecular level as humans are adjusting to the environment across 
the lifespan for adaptivity (Kanherkar, Bhatia-Dey, & Csoka, 2014).  

Furthermore, behavioral factors might play a significant role in this 
relationship as depression is related to poorer health behavior and adherence 
to treatment (Carter & Swardfager, 2016). Unhealthy lifestyle (including 
alcohol consumption, smoking, unhealthy diet and sedentary behavior) is 
more common among patients with depression but also with T2D compared 
to the general population (Bellou et al., 2018; Cabello et al., 2017). 

Our behavior is also affected by our environment. Importantly, the amount 
of daylight is one of the key environmental cues that influence our behavior 
and physiologic processes (Duffy & Czeisler, 2009). Thus, the authors wanted 
to further explore the associations between MTNR1B and the amount of 
daylight on glucose metabolism. It was expected that there is an interaction 
between the amount of daylight and MTNR1B on glycemic traits as melatonin 
is directly responsive to daylight and its effect on glucose metabolism is known 
(Tuomi et al., 2016). The authors were able to explore these associations in a 
longitudinal study design and we showed some support to the interaction 
between daylight and MTNR1B on glucose metabolism, but these associations 
require further research attention. Currently, one of the leading hypothesis 
linking the amount of daylight with diabetes has been the vitamin D 
hypothesis suggesting that vitamin D has a direct effect on insulin action 
(Parker et al., 2010; Pittas, Lau, Hu, & Dawson-Hughes, 2007). The deficiency 
of vitamin D has been shown to impair insulin secretion of the pancreatic β-
cells and increase the insulin resistance. However, vitamin D supplementation 
has not resulted in consistent effects on glucose metabolism (Jamka et al., 
2015). 
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Furthermore, as discussed earlier, epigenetic regulation might play a role 
in this relationship as well because it provides a potential mechanism for cells 
in our body to integrate genetic programs with environmental signals in order 
to achieve adaptivity. DNA methylation appears to act as a critical mediator of 
the complex interactions between genetic, environmental and developmental 
systems in mammals (Powell & LaSalle, 2015). 

Last, in addition to the feasible role of biological and molecular 
mechanisms underlying the relationship between the factors explored in this 
thesis, behavioral components should be also taken into account. As people 
are responsive to their environment, it can be estimated that one’s behavioral 
pattern is also influenced by the extensive seasonal changes taking place in 
Finland, affecting both the lifestyle factors, such as eating habits and physical 
activity, but also mental wellbeing. Combined with the stress from the burden 
of dealing with a chronic illness, this is in favour of the disease progression 
theory from the dynamic model viewpoint (Cramer et al., 2016), making those 
with already sensitive underlying networks more responsive to environment 
and potentially making the chronic disease management more burdening to 
them. Consequently, behavioral factors that are affected by the seasonal 
pattern such as unhealthy lifestyle that is frequently seen in both depression 
and T2D development and maintenance collectively contribute to the disease 
burden.  
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8 CONCLUSIONS

It is known that T2D is a complex disease and glucose metabolism is affected 
by various factors including mental health, environmental factors and 
genetics. The known multifactorial origin of T2D implicates that the disease 
could be triggered in genetically susceptible individuals in the presence of 
relevant environmental risk factors (Prasad & Groop, 2015). The disease 
development is associated with modern lifestyle, going hand in hand with the 
rapid increase in obesity in the society (Rössner, 2002). But also individuals’ 
mental wellbeing plays a significant role in glucose metabolism and in the 
development of diabetes. 

Although human genome has not changed markedly during the last few 
decades, we are seeing a dramatic rise in lifestyle associated diseases including 
T2D. This, together with the findings of current study, emphasize the effect of 
environmental factors in the disease development.  

The findings from current study explored the relationship between 
depressive symptoms and glycemic traits on the whole-genome level but also 
on the candidate gene level studying the effect of known diabetes risk variant 
rs10830963. The results show that the known phenotypic relationship 
between diabetes and depression is not significantly explained by one’s genetic 
makeup. Rather, the effect of mental health and genetics are both important 
in relation to glucose metabolism and we suggest that these effects could be 
additive. Furthermore, we emphasized the effect of daylight on glucose 
metabolism, showing that also these associations were independent of the 
known diabetes risk variant rs10830963. 

These results are clinically relevant with implications for T2D prevention 
drawing more attention to the effect of daylight, depression and one’s genetic 
profile that all have an additive effect on the disease development. 

8.1 FUTURE DIRECTIONS

This thesis suggests that depressive symptoms, the amount of daylight and 
genetics go hand in hand in relation to glucose metabolism. Still, the causality 
needs to be identified in further research. Even more, future studies in larger 
sample sizes than ours are needed to either confirm or refute our findings.  

Additionally, more molecular and experimental data is needed to explain 
these associations and the underlying mechanisms. We do not know if sleep-
wake rhythm might affect the relationship between daylight, depression and 
metabolic outcomes and future studies should focus on this relationship. 

Moreover, future studies should investigate the effect of chronotype on 
these associations as chronotype reflects how individual circadian clocks are 
entrained within the 24-hour day. Additionally, very long and very short days 
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might challenge the network within the circadian pacemaker as it is known 
that the principal circadian clock entrains to the sun light (Paul, Saafir, & 
Tosini, 2009). Furthermore, future studies should investigate whether these 
associations are through vitamin D or independent of it.  

Additionally, other photoperiod-related environmental variables and 
meteorological parameters such as daily temperature should be further 
investigated. Finally, epigenetic changes should be further explored on a 
molecular level.  

Even further emphasis, both from the perspective of research and 
developing intervention strategies, should be given to behavioral factors 
contributing to the development of both depression and diabetes. 
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