Accepted Manuscript

Title: Targeted gene panel screening is an effective tool to identify undiagnosed late onset pompe disease

Author: Marco Savarese, Annalaura Torella, Olimpia Musumeci, Corrado Angelini, Guja Astrea, Luca Bello, Claudio Bruno, Giacomo Pietro Comi, Giuseppina di Fruscio, Giulio Piluso, Giuseppe Di Iorio, Manuela Ergoli, Gaia Esposito, Marina Fanin, Olimpia Farina, Chiara Fiorillo, Arcomaria Garofalo, Teresa Giugliano, Francesca Magri, Carlo Minetti, Maurizio Moggio, Luigia Passamano, Elena Pegoraro, Ester Picillo, Simone Sampaolo, Filippo Maria Santorelli, Claudio Semplicini, Bjarne Udd, Antonio Toscano, Luisa Politano, Vincenzo Nigro

PII: S0960-8966(17)31489-X
DOI: https://doi.org/10.1016/j.nmd.2018.03.011
Reference: NMD 3534

To appear in: Neuromuscular Disorders

Received date: 4-12-2017
Accepted date: 29-3-2018

Please cite this article as: Marco Savarese, Annalaura Torella, Olimpia Musumeci, Corrado Angelini, Guja Astrea, Luca Bello, Claudio Bruno, Giacomo Pietro Comi, Giuseppina di Fruscio, Giulio Piluso, Giuseppe Di Iorio, Manuela Ergoli, Gaia Esposito, Marina Fanin, Olimpia Farina, Chiara Fiorillo, Arcomaria Garofalo, Teresa Giugliano, Francesca Magri, Carlo Minetti, Maurizio Moggio, Luigia Passamano, Elena Pegoraro, Ester Picillo, Simone Sampaolo, Filippo Maria Santorelli, Claudio Semplicini, Bjarne Udd, Antonio Toscano, Luisa Politano, Vincenzo Nigro, Targeted gene panel screening is an effective tool to identify undiagnosed late onset pompe disease, Neuromuscular Disorders (2018), https://doi.org/10.1016/j.nmd.2018.03.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Targeted gene panel screening is an effective tool to identify undiagnosed Late onset Pompe disease

Marco Savarese1,2, Annalaura Torella2,3, Olimpia Musumeci4, Corrado Angelini5, Guja Astrea6, Luca Bello7, Claudio Bruno8, Giacomo Pietro Comi9, Giuseppina di Fruscio2 Giulio Piluso2, Giuseppe Di Iorio10, Manuela Ergoli11, Gaia Esposito2, Marina Fanin7, Olimpia Farina10, Chiara Fiorillo8, Arcomaria Garofalo2, Teresa Giugliano2, Francesca Magri9, Carlo Minetti8, Maurizio Moggio12, Luigia Passamano11, Elena Pecoraro7, Ester Picillo11, Simone Sampaolo10, Filippo Maria Santorelli6, Claudio Semplicini7, Bjarne Udd1,13, Antonio Toscano4, Luisa Politano11*, Vincenzo Nigro2,3

1 Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland;
2 Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy;
3 Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
4 Department of Clinical and Experimental Medicine, University of Messina, Italy;
5 Fondazione Hospital S.Camillo IRCCS, Venezia, Italy;
6 Medicina Molecolare, IRCCS Fondazione Stella Maris, Pisa, Italy;
7 Dipartimento di Neuroscienze, Università di Padova, Padova, Italy;
8 Center of Myology and Neurodegenerative Disease, Istituto Giannina Gaslini, Genova, Italy;
9 Centro Dino Ferrari, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
10 Neurology Clinic II and Reference Center for Rare Neuromuscular Disorders, Department of Medical Sciences, Surgery, Neurology, Metabolic Diseases and Geriatrics, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy;
11 Dipartimento di Medicina Sperimentale, Cardiomiologia e Genetica Medica, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy;
12 Neuromuscular and Rare Disease Unit, Dipartimento di Neuroscienze, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy;
13 Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.
*Corresponding author:

Prof.ssa Luisa Politano

Cardiomiologia e Genetica Medica, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”

E-mail: luisa.politano@unicampania.it

Highlights

- The diagnosis of late onset Pompe disease (LOPD) is challenging
- LOPD was identified in 3.47% of high-risk patients
- Several factors can hamper an early diagnosis of LOPD
- Comprehensive gene panels are needed for the screening of myopathy patients.
Abstract

Mutations in the GAA gene may cause a late onset Pompe disease presenting with proximal weakness without the characteristic muscle pathology, and therefore a test for GAA activity is the first tier analysis in all undiagnosed patients with hyperCKemia and/or limb-girdle muscular weakness.

By using MotorPlex, a targeted gene panel for next generation sequencing, we analyzed GAA and other muscle disease-genes in a large cohort of undiagnosed patients with suspected inherited skeletal muscle disorders (n=504). In this cohort, 275 patients presented with limb-girdle phenotype and/or an isolated hyperCKemia.

Mutational analysis identified GAA mutations in ten patients. Further seven affected relatives were identified by segregation studies. All the patients carried the common GAA mutation c.-32-13T>G and a second, previously reported mutation.

In the subcohort of 275 patients with proximal muscle weakness and/or hyperCKemia, we identified late-onset Pompe disease in 3.47%. The clinical overlap between Pompe disease and LGMDs or other skeletal muscle disorders suggests that GAA and the genes causing a metabolic myopathy should be analyzed in all the gene panels used for testing neuromuscular patients. However, enzymatic tests are essential for the interpretation and validation of genetic results.

Keywords: GAA, late onset Pompe disease (LOPD), metabolic myopathies, LGMD, hyperCKemia, gene panels
Introduction

Glycogen storage disease II or Pompe disease (MIM 232300) is an autosomal recessive disorder caused by mutations in the GAA gene (MIM 606800), encoding alpha-1,4-glucosidase, a lysosomal enzyme involved in the degradation of glycogen (1, 2).

Depending on the level of residual enzymatic activity, mutations in GAA lead to a wide spectrum of clinical phenotypes, ranging from a severe infantile form, presenting with cardiomyopathy and muscular hypotonia, to a relatively milder, late onset form of Pompe disease (LOPD), characterized by a slowly progressive proximal muscle weakness, often involving the respiratory muscles (3-5).

The diagnosis of LOPD is challenging and usually achieved with significant delay. LOPD patients, in fact, may exhibit a mild phenotype, partially overlapping that of other neuromuscular disorders (NMDs) (2, 6). Moreover, the histopathological findings are often unspecific, given the fact that often nor glycogen storage or vacuoles are present in LOPD muscle biopsies (7, 8). The clinical overlap with other disorders and the misleading histological features often hamper an early diagnosis at onset of the symptoms, resulting in a diagnostic odyssey (6, 8).

The measurement of GAA activity, usually on a dried blood spot (DBS), serves as diagnostic screening test (9), although the results must be confirmed by a second biochemical assay on different tissues as skeletal muscle, fibroblasts or leucocytes and corroborated by the presence of two GAA pathogenic mutations (10, 11).

A disease-specific treatment, the enzyme replacement therapy (ERT), is available since 2006. However, ERT has a limited effect on LOPD patients (12). Early diagnosis and the subsequent early initiation of therapy may have an impact on the therapeutic success, preventing severe muscular and respiratory impairment (6).

In recent years, the development of cutting-edge technologies has revolutionized the diagnostic approach to the genetic disorders (13). Different NGS approaches for the diagnosis of patients with
skeletal muscle diseases have been described in literature (14). In particular, targeted resequencing (TGS) of specific genes of interest represents a cost-effective strategy for the clinical diagnostics of heterogeneous disorders (14, 15).

In this manuscript, we describe clinical and morphological data of 16 LOPD patients identified by performing MotorPlex, an NGS-based platform to analyze genes associated with skeletal muscle disorders, with subsequent segregation analysis in a large cohort of myopathy patients.
Materials and methods

DNA samples from 504 patients with a broad range of myopathies, including LGMDs, congenital myopathies, distal myopathies, isolated hyperCKemia, were recruited in the network of the Italian Association of Myology. Patients were clinically evaluated by neurologists within tertiary care centers for neuromuscular disorders and had remained without final diagnosis. For each patient, clinical history and laboratory data was collected in a specific form. Patients signed a written informed consent at the time of blood collection. The study was approved by the Ethics Committee of Università degli Studi della Campania “Luigi Vanvitelli” and was performed according to the Declaration of Helsinki.

Genomic DNA was extracted from peripheral blood by phenol/chloroform extraction. All the samples were enriched using MotorPlex (16, 17), a custom assay to analyze a panel of genes causing neuromuscular disorders. All the enrichments were performed according to manufacturer’s instructions (Agilent Technologies, Santa Clara, CA, USA). Each library was run on a HiSeq 1000 (Illumina).

An in-house pipeline (18) was used to analyze the raw sequencing data generated. All the variants were confirmed by Sanger sequencing using an ABI PRISM 3130 XL automatic DNA Sequencer Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

A segregation analysis was performed according to the availability of DNA from relatives.

A biochemical test evaluating the GAA activity was performed, when possible, on samples from patients with GAA mutations. GAA activity in skeletal muscle, DBS and lymphocytes was assessed by a fluorometric method using the substrate 4-methylumbelliferyl-α-D-glucoside (19). The newly diagnosed LOPD patients were re-assessed, re-evaluating the clinical presentation, functional measures (6 minute walking test, 6MWT), creatine kinase levels and respiratory functions (forced vital capacity, FVC, in supine and/or seated position).

We performed a copy number variant (CNV) analysis by using a custom array-CGH, MotorChip (20) (Agilent Technologies).
Results

Sixteen patients from nine unrelated families were diagnosed with LOPD (patient II has been extensively described elsewhere (21)). All patients showed the common c.-32-13T>G variant (22) and a second, already reported, mutation on the other allele (23-27) (Table 1). In particular, the second allele carried a missense change in seven families and a nonsense variant in the remaining two families. Among LOPD patients, there were more men (10/16, 62.5%) than women (6/16, 37.5%), with a male to female sex ratio of 1.66. Adult onset was observed in almost all patients (13/16, 81.2%), except patients V,1 and VII who showed their first symptoms during adolescence and patient V,3 who had a childhood onset.

The symptoms at onset were mainly proximal weakness (12/16, 75%), and fatigability (10/16, 62.5%). Exercise intolerance, myalgia and contractures were less common in this cohort; some of the patients showed dysphagia. None of the patients had central nervous system involvement at onset; the heart was affected in only one patient with an early adult presentation. Respiratory involvement was observed during the first visit in six patients (37.5%). Increased creatine kinase levels (2.5-10x the upper normal limit) were observed in 14 patients. When performed (6 cases), electromyography showed a myopathic pattern. Muscle biopsy, performed in 9 patients, showed presence of vacuoles in only four patients.

The mean age of the patients was 50.8 ± 11.7 years (range 33-71). The average diagnostic delay was 21.5 years (range=11-38). Two patients used a wheelchair at the time of latest evaluation. GAA enzymatic activity, tested in 11 patients (9 through DBS, 1 each in muscle and lymphocytes) was reduced in all samples, confirming the diagnosis of LOPD.

A marked inter- and intrafamiliar phenotypic variability was observed. The presence of a nonsense variant (families VI and IIX) in trans with the common c.-32-13T>G variant did not correlate with either a more severe phenotype or an earlier onset of the disease.
Our screening also identified five patients (three affected by LGMD and two by a congenital myopathy), carrying the c.-32-13T>G variant in heterozygosity. In two of them the identification of already described mutations addressed the diagnosis towards a different disease (LGMD2C and nemaline myopathy 1). In the three remaining patients, no other causative variants in GAA were identified and a custom array-CGH (20) excluded the presence of any copy number variants affecting this gene in two of them (the third patient was not tested because of DNA unavailability).

Unfortunately the loss to follow-up of these patients did not allow us to perform any biochemical test to evaluate the GAA activity.

Discussion

We analyzed GAA together with all other genes included in the MotorPlex (15, 16) in 504 genetically undiagnosed patients who presented a wide spectrum of clinical phenotypes, ranging from isolated hyperCKemia to mild or severe muscular impairment, and a variable age of onset and disease progression (16). Two-hundred-seventy-five patients (in 259 families), presenting with a limb girdle muscular dystrophy (LGMD) and/or an isolated hyperCKemia, constituted a risk group for LOPD. Within this subgroup, we identified ten patients in nine families carrying GAA mutations consistent with a diagnosis of LOPD. Seven affected relatives were subsequently identified by segregation analyses in these families. This corresponds to a prevalence of LOPD of 3.47% (9/259) in the undiagnosed patients with adult onset proximal weakness or hyperCKemia. As expected, no bi-allelic causative GAA variants were identified among patients with other phenotypes such as, congenital myopathies, congenital dystrophies, distal myopathies, etc. Screening projects for Pompe disease by using DBS, in cohorts with similar phenotypes have been performed previously, achieving a similar results (9, 28-30), the only exception being Finland where Pompe disease is extremely rare (31) due to
lack of endemic founder mutations. Several factors have hampered an early diagnosis in all the reported cases. First, muscle biopsy showed not specific myopathic aspects in most cases. Second, the loss to follow-up of the patients for many years excluded an early detection of respiratory symptoms critical to raise the clinical suspicion of LOPD. Third, in most patients, the clinical presentation including atypical signs, e.g. dysphagia in patient III, pseudohypertrophy in patient VII or calf hypertrophy in patient VIII, was probably misleading. In patient I, a previous western blot analysis had showed a reduction of calpain 3 (CAPN3), and Sanger sequencing of CAPN3 only revealed a heterozygous causative missense variant. At that time, the molecular findings may suggest the presence of a second elusive mutation, corroborating the preliminary diagnosis of LGMD2A. However, this patient was included in the study, because this second variant was truly absent from mRNA sequencing. This confirms that any genetic report should be very cautious in similar cases. Similarly, reduced staining for dystrophin in patient VIII suggested Becker dystrophy.

On the other hand, currently NGS-based strategies are largely adopted to study genetically heterogeneous conditions, including muscle diseases (14). Recent NGS data prove that 20-30% of myopathic patients carry causative mutations in genes typically not associated with the observed phenotype (16, 32-34). Many studies (32-37) identified mutations in genes responsible for LOPD and other metabolic myopathies in patients with a wide range of phenotypes (Table 2). At the same time, a well-known homozygous mutation in ANO5, responsible for a wide spectrum of disorders described under the umbrella term “anoctaminopathy” (38, 39), was identified in a patient suspected of having glycogen storage disease because of the presence of glycogen containing vacuoles on muscle biopsy (40).

The decreasing cost and the technological improvements will make NGS approaches an effective first tier screening method in the near future (41, 42). Given the large heterogeneity of neuromuscular disorders and the increasing number of associated genes, Mendeliome or whole exome sequencing are
advisable. However, the genetic analysis has to be included within a standardized diagnostic algorithm comprising exhaustive clinical, histological and imaging tests which are essential for a proper interpretation of molecular findings. Consequently, biochemical assays, including DBS, and protein studies will remain essential for the interpretation and validation of genetic results (34). Above all, tests for acid alpha-glucosidase activity are still the gold standard tests when clinicians suspect a Pompe disease in a patient. A smart, combined use of these tests and NGS will allow a rapid diagnosis and, thereby, an early initiation of available treatments.
Acknowledgements

We are grateful to Manuela Dionisi, Francesco Musacchia, Margherita Mutarelli and the Telethon Institute of Genetics and Medicine (TIGEM)-NGS facility for the NGS analyses and to Anna Cuomo and Rosalba Erpice for the Sanger sequence analyses. We thank Jonathan Cole for linguistic editing of the manuscript. We also thank the Italian Network of Congenital Myopathies, the Italian Network of Limb-Girdle Muscular Dystrophies, the Naples Human Mutation Gene Biobank (NHMGB), the Bank of muscle tissue, peripheral nerve, DNA and cell culture, and the Bank of Cells, tissues and DNA, members of the Telethon Network of Genetic Biobanks and of Eurobiobank, for providing us with specimens.

Funding

This study was supported by Telethon Foundation (Italy), Telethon-UILDM (Unione Italiana Lotta alla Distrofia Muscolare), Association Française contre les Myopathies and Orion Research Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References

Table 1 - Patients with late-onset Pompe disease

<table>
<thead>
<tr>
<th>Case</th>
<th>Onset</th>
<th>Age at diagnosis (yrs)</th>
<th>Symptoms at onset</th>
<th>Last assessment</th>
<th>Genotype (NG_009822.1 or NM_000152.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Symptom(s)</td>
<td>GAA activity</td>
<td>1st Allele</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pmol/min/mg</td>
<td>2nd Allele</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>early adul.</td>
<td>49</td>
<td>prox.</td>
<td>no</td>
<td>fatigability</td>
</tr>
<tr>
<td>II*</td>
<td>adul.</td>
<td>71</td>
<td>prox.</td>
<td>no</td>
<td>myalgia</td>
</tr>
<tr>
<td>III</td>
<td>adul.</td>
<td>63</td>
<td>prox. and dist.</td>
<td>no</td>
<td>fatigability, dysphagia</td>
</tr>
<tr>
<td>IV,1</td>
<td>early adul.</td>
<td>40</td>
<td>prox.</td>
<td>yes</td>
<td>exercise intolerance</td>
</tr>
<tr>
<td>IV,2</td>
<td>early adul.</td>
<td>47</td>
<td>prox.</td>
<td>yes</td>
<td>exercise intolerance</td>
</tr>
<tr>
<td>IV,3</td>
<td>early adul.</td>
<td>50</td>
<td>not observed</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>IV,4</td>
<td>early adul.</td>
<td>45</td>
<td>prox.</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>V,1</td>
<td>adul.</td>
<td>42</td>
<td>prox.</td>
<td>no</td>
<td>fatigability, myalgia</td>
</tr>
<tr>
<td>V,2</td>
<td>adul.</td>
<td>33</td>
<td>prox.</td>
<td>no</td>
<td>fatigability</td>
</tr>
<tr>
<td>V,3</td>
<td>child.</td>
<td>45</td>
<td>prox.</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>VI,1</td>
<td>early adul.</td>
<td>63</td>
<td>prox. and axial</td>
<td>yes</td>
<td>fatigability, myalgia</td>
</tr>
<tr>
<td>VI,2</td>
<td>adul.</td>
<td>61</td>
<td>prox.</td>
<td>yes</td>
<td>fatigability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VI,3</td>
<td>adul.</td>
<td>64</td>
<td>prox.</td>
<td>yes</td>
<td>n.a.</td>
</tr>
<tr>
<td>VII</td>
<td>adul.</td>
<td>33</td>
<td>prox. and dist.</td>
<td>no</td>
<td>cramps</td>
</tr>
<tr>
<td>VIII</td>
<td>early adul.</td>
<td>56</td>
<td>prox.</td>
<td>no</td>
<td>fatigability, myalgia</td>
</tr>
<tr>
<td>IX</td>
<td>early adul.</td>
<td>n.a.</td>
<td>prox.</td>
<td>yes</td>
<td>fatigability, cardiac involvement</td>
</tr>
</tbody>
</table>

yrs= years; Resp.=respiratory; 6MWT= 6 minutes walking test; N=normal; adult.=adulthood; child.=childhood; adul.=adolescence; prox.=proximal; dist.=distal; n.a.=not available; DBS=dried blood spot; CK=creatine kinase; FVC=forced vital capacity; WCB=Wheelchair-bound

*Patient II has been described in full elsewhere (ref. 21)
Table 2 - Broadening the spectrum of clinical phenotypes associated with metabolic myopathies by next generation sequencing.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Genetic approach</th>
<th>Cohort</th>
<th>Results</th>
<th>Atypical elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghaoui et al. (ref.30)</td>
<td>WES</td>
<td>LGMD (n=60)</td>
<td>1 GAA*</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 CPT2</td>
<td>fixed weakness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 PYGM</td>
<td>fixed weakness</td>
</tr>
<tr>
<td>Todd et al. (ref. 31)</td>
<td>WES</td>
<td>LGMD (n=38)</td>
<td>1 GBE</td>
<td>fetal akinesia and multiple pterygium syndrome</td>
</tr>
<tr>
<td>Lévesque et al. (ref. 32)</td>
<td>Targeted resequencing</td>
<td>Muscle Disorders (n=34)</td>
<td>1 GAA</td>
<td>long lasting history of gait disturbances</td>
</tr>
<tr>
<td>Kuhn et al. (ref. 33)</td>
<td>Targeted resequencing</td>
<td>LGMD (n=58)</td>
<td>1 GBE</td>
<td>minimal non-lysosomal glycogen storage without any evidence of polyglucosan bodies</td>
</tr>
<tr>
<td>Reddy et al. (ref. 34)</td>
<td>WES</td>
<td>LGMD (n=55)</td>
<td>1 GAA, 1 VCP</td>
<td>n.a.</td>
</tr>
<tr>
<td>Johnson et al. (ref.35)</td>
<td>WES</td>
<td>LGMD and/or hyperCKemia (n=606)</td>
<td>8 GAA</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

n.a. = not available; WES= whole exome sequencing

* LOPD patient was identified in a pre-NGS screening.