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Abbreviations 75 

AMP  Antimicrobial peptide 76 

BALf  Bronchoalveolar lavage fluid 77 

CTLA4 Cytotoxic T-lymphocyte-associated protein 4 78 

FDR  False discovery rate 79 

Foxp3  Forkhead box P3 80 

LPS  Lipopolysaccharide 81 

MGG  May-Grünwald-Giemsa  82 

MRM  Multiple regression on distance matrices 83 

OTU  Operational taxonomic unit 84 

OVA  Ovalbumin 85 

PAS  Periodic acid-Schiff 86 

PBS  Phosphate buffered saline 87 

PCoA  Principal coordinates analysis 88 

RDA  Redundancy analysis 89 

rRNA  Ribosomal RNA 90 

SCFA  Short-chain fatty acid 91 

SFB  Segmented filamentous bacteria  92 
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Discussion 329 

Our study shows a clear effect of the housing environment on murine gut microbiota 330 

composition and inflammatory status. Exposure to soil, and the microbes within, 331 

skews the gut microbial composition towards Bacteroidetes dominance, whereas gut 332 

communities in control mice were dominated by Firmicutes. Soil exposure had an 333 

impact on the immune system through enhancing anti-inflammatory signalling and 334 

Th1-type immune responses, and through repressing Th2-driven immunity. Moreover, 335 

we observed modifications in the gut microbiota associated with allergen-induced 336 

lung inflammation, suggesting immune driven modification of the microbiota across 337 

the gut-lung axis. These findings imply dynamic interactions between the 338 

environment, the host and its microbiota, with profound effects on the composition of 339 

the microbiota, host immunity and immune tolerance.     340 

An association between human health and the natural environment is being 341 

established. However, only a few studies have identified causality or specific 342 

interactive mechanisms between these two 39. In an attempt to establish causality 343 

between exposure to environmental biodiversity and beneficial modifications of the 344 

immune system, we chose to expose mice to soil, as previous research has suggested 345 

health benefits related to contact with soil micro-organisms 4, 14, 40. Soil communities 346 

are highly diverse and vary according to soil characteristics 41, 42, and we took care in 347 

selecting organic, non-radiated soil for the study. While the clean bedding also 348 

contained a myriad of bacterial sequences, the soil had higher bacterial diversity, and 349 

it is plausible that the humid, fresh soil contained a higher number of viable bacteria 350 

than the dry, processed clean bedding material. The bacterial community composition 351 

in the soil resembled those described in literature 43, but due to the enormous diversity 352 
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of distinct soil environments, it is challenging to make direct comparisons to bacterial 353 

communities in different natural environments. 354 

We were able to detect OTUs from soil-dwelling bacteria in the intestine of mice in 355 

the soil group, particularly in the jejunum. This upper part of the gastrointestinal tract 356 

is partially oxygenated 44, and could therefore offer better living conditions for 357 

environmental microbes compared to the anaerobic colon. It has previously been 358 

shown that soil microbes can colonize the gut of germ-free mice 45. While the gut may 359 

be less accessible to microbes of the environment, it is possible that these soil-derived 360 

microbes colonized the mouse lungs or skin. These microbiotas were not 361 

characterised here, and may contribute to shaping immunity and inducing immune 362 

tolerance 15. Further research is needed to reveal the relative immunological relevance 363 

of different commensal microbial communities as well as the possibility of horizontal 364 

transmission of environmental microbes to human microbial ecosystems. 365 

We detected a higher Bacteroidetes to Firmicutes ratio in the soil group similarly to 366 

Zhou et al. (2016) 27, who compared mice housed in a clean environment vs. in cages 367 

with hay, leaves, soil and dust. In general, the proportion of Bacteroidetes to 368 

Firmicutes has been associated with regulation of host energy metabolism, and higher 369 

levels of Bacteroidetes due to a high-fibre diet lead to increased production of 370 

immunoregulatory products, such as short-chain fatty acids (SCFAs) 46. SCFAs have 371 

been shown to regulate the immune system in multiple ways, including protecting 372 

against allergic airways disease 47. Here, healthy mice exposed to soil had lower 373 

levels of Lachnospiraceae and higher levels of Bacteroidales family S24-7, as 374 

compared to control mice. Lachnospiraceae is a family of Clostridia, abundantly 375 

present in mammalian gastrointestinal tracts. While this family contains many 376 
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butyrate-producing species, not much is known about the group as a whole 48. 377 

Bacteroidales family S24-7 is a prominent constituent of the murine gut microbiota, 378 

and also present in the human gut, but remains poorly characterized as well. A recent 379 

metagenomic study suggested that this family contains at least 27 different species 380 

and includes members with varying enzyme repertoires involved in the degradation of 381 

specific carbohydrates and the capacity for propionate production 49. Propionate is 382 

one of the main SCFAs and may be involved in stabilizing inflammation in the gut 50, 383 

51. 384 

While making conclusions about the health effects of the housing environment is 385 

challenging based solely on the observed changes in the faecal microbial composition, 386 

the immune response detected in the ileum does implicate a beneficial effect of the 387 

soil environment. IL-10, Foxp3 and CTLA4 were all upregulated in the ileum of mice 388 

in the soil group, while pro-inflammatory cytokines, such as IL-1beta, IL-23, IL-17 or 389 

TNF, were expressed at the same level in the soil group compared with controls. 390 

Foxp3 is a marker of regulatory T cells, indicating increased presence of this cell type 391 

in the ileum. Foxp3 has also been suggested to mediate protection against asthma as a 392 

result of increased acetate production by the gut microbiota 46. IL-10 is a key anti-393 

inflammatory cytokine suppressing immune responses at environmental interfaces, 394 

such as the gut and lungs 52, and CTLA4 downregulates T cell activation by 395 

competing with CD28 for B7 binding 53. CTLA4 is constitutively expressed by ~40% 396 

of mouse regulatory T cells54, and induced in effector T cells upon activation. CD86, 397 

which is expressed on antigen presenting cells, provides costimulatory signals needed 398 

for T cell activation and survival. Moreover, CD86 plays an essential role in the 399 
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al. (2014) compared the gut microbiota of mice exposed to dog-associated house dust 448 

with control mice, but it is unclear whether the control mice were also exposed to the 449 

OVA challenge. Therefore, it cannot be ruled out that the lung inflammation per se is 450 

causing the increase in Lactobacillus abundance. Lactobacilli are commonly used as 451 

probiotics exerting anti-inflammatory effects but increases in their proportions have 452 

also been detected in inflammatory conditions, such as inflammatory bowel disease 67. 453 

Notably, Lactobacillus species have also been shown to be co-enriched with 454 

Salmonella-induced intestinal inflammation, but the implications of this enrichment 455 

are not known 65. 456 

In the present study, the ileal microbiota was dominated by Lactobacillus and SFB in 457 

both healthy and allergen-sensitized mice, with highly varying abundances. It is 458 

unclear how these groups are related, with several studies reporting both negative and 459 

positive correlations between them 68-71. SFB are unique in their ability to modify host 460 

immune responses by stimulating the maturation of B- and T-cell compartments and 461 

inducing an increase in small-intestinal Th17 responses 72. Due to their small genome 462 

size, SFB are highly dependent on essential nutrients derived from the host, and 463 

possibly also from other microbes 73, 74. 464 

In conclusion, our results provide further evidence of the bidirectional nature of the 465 

microbiota-immune system interaction, which is known to play an important role in 466 

the brain-gut dialogue 75, but has been far less studied for other organs. Moreover, we 467 

demonstrate the substantial effect that the living environment alone can have on the 468 

gut microbiota composition and inflammatory responses, leading to notable health 469 

outcomes. 470 
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Figure 1. The housing environment shapes mouse microbiota composition. (a) 725 

The composition of the murine microbiota is distinct between faeces, jejunum and 726 

ileum. (b) The housing environment (ie. control bedding material or exposure to soil) 727 

uniquely shapes the microbiota community structure in faeces (P = 0.0001), while (c) 728 

in jejunum and ileum there are overlapping community structures between the groups 729 

(as observed by random forest classification). All samples: faeces, n = 16; ileum, n = 730 

14; jejunum, n = 14. Faeces samples: control, n = 8; soil, n = 8. Results are based on 731 

the Morisita-Horn dissimilarity on log transformed abundances. 732 

Figure 2. Exposure to soil increases the proportion of Bacteroidetes relative to 733 

Firmicutes in the faecal microbiota of mice. (a) Relative abundance of bacterial 734 

groups on phylum level in the mouse faecal microbiota. (Grey shading added for 735 

visual clarification.) (b) The ratio of Bacteroidetes to Firmicutes is higher in the soil 736 

environment in comparison to the control environment. (c) Abundance (log scale) of 737 

differentially expressed features (OTUs) between the soil and control environments. 738 

Orange; soil, blue; control group. * P < 0.05, according to gls model with group-739 

specific variance structure.  740 

Figure 3. The housing environment influences intestinal gene expression. (a) 741 

Gene expression in ileum tissue differed significantly between the soil and control 742 

groups. (b) Exploring individual cytokines reveals that the expression of RNA coding 743 

for anti-inflammatory IL-10 and Treg markers Foxp3 and CTLA4, as well as CD86 is 744 

significantly higher in the soil-exposed group in comparison to the control group. 745 

Orange; soil, blue; control group.  * P < 0.05 according to gls model with group-746 

specific variance structure. See Figure E4 in the Online Repository for additional 747 

cytokines. 748 
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Supplementary figures 125 

 126 

Figure E1. Murine lung inflammation model protocol.  127 
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 130 

Figure E2. Microbial composition of the housing environments shown on phylum and 131 

family level. 132 
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 134 

Figure E3. Exposure to soil increases the number of rare OTUs in the intestinal 135 

microbiota of mice. Square-root transformed abundances of appointed OTUs that occurred in 136 

soil, which was used as a housing material, and in the intestine of soil-exposed mice, but not in 137 

the intestine of control mice. Columns in the figure representing jejunum, ileum and faeces 138 

show a summed abundance of each OTU of correspondent samples. OTUs that occurred only 139 

once in the jejunum, ileum or faecal samples and had a unique annotation at the family level 140 

were not considered. In addition, OTUs that occurred abundantly in the technical controls 141 

(blank samples) for DNA extraction, PCR or DNA purification were excluded. Orange; soil, 142 

blue; control group.  143 
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 146 

Figure E4. Expression levels of cytokines measured in the ileum of mice in the PBS-group. 147 



 148 

Figure E5. PAS staining of lung tissue in representative images from A) control PBS, b) 149 

control OVA, c) soil OVA group. Yellow arrows indicate PAS+ cells.  150 
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