
Information Processing Letters 146 (2019) 17–19
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Applying the Positional Burrows–Wheeler Transform to

all-pairs Hamming distance

Veli Mäkinen ∗, Tuukka Norri

Helsinki Institute for Information Technology & Department of Computer Science, University of Helsinki, PL 68 (Gustaf Hällströmin katu 2b),
00014 Helsingin yliopisto, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 March 2018
Received in revised form 22 December 2018
Accepted 5 February 2019
Available online 8 February 2019
Communicated by Marek Chrobak

Keywords:
Data structures
Hamming distance
Positional Burrows–Wheeler Transform
Phylogenetic inference

Crochemore et al. gave in WABI 2017 an algorithm that from a set of input strings finds
all pairs of strings that have Hamming distance at most a given threshold. The proposed
algorithm first finds all long enough exact matches between the strings, and sorts these
into pairs whose coordinates also match. Then the remaining pairs are verified for the
Hamming distance threshold. The algorithm was shown to work in average linear time,
under some constraints and assumptions.
We show that one can use the Positional Burrows–Wheeler Transform (PBWT) by Durbin
(Bioinformatics, 2014) to directly find all exact matches whose coordinates also match. The
same structure also extends to verifying the pairs for the Hamming distance threshold. The
same analysis as for the algorithm of Crochemore et al. applies.
As a side result, we show how to extend PBWT for non-binary alphabets. The new
operations provided by PBWT find other applications in similar tasks as those considered
here.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Given a set S of n strings all of the same length m
and drawn from alphabet � of size σ , we would like to
compute the Hamming distance of all pairs {S1, S2}, where
S1, S2 ∈ S , up to a distance limit l. This is called the All-
Pairs Hamming Distance problem. The problem was studied
in [1] (first published in [2]) as a preprocessing step for
building distance-based phylogenetic trees and for query-
ing typing databases, where pairs with large distance are
not required. In what follows, we give an alternative av-
erage linear time algorithm for this problem, by replacing
the steps of the algorithm in [1] with the usage of the Po-
sitional Burrows–Wheeler transform [3].

* Corresponding author.
E-mail address: veli.makinen@helsinki.fi (V. Mäkinen).
https://doi.org/10.1016/j.ipl.2019.02.003
0020-0190/© 2019 The Authors. Published by Elsevier B.V. This is an open acces
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Positional Burrows–Wheeler transform

The Positional Burrows–Wheeler Transform [3] is a method
of sorting a set of strings of the same length at each char-
acter position in the lexicographic order of the reverse
prefixes up to that position. One of its applications is to
make it easy to identify longest matching substrings. The
transformation is originally defined for the binary alphabet
but is easily extended for the alphabet [1..σ] as follows.

Following Durbin’s notation, for each index i from 1 to
n define ak[i] as the identifier or index of the string S ∈ S
which is at the i-th position of the ordered reverse prefixes
at string position k −1, that is, having sorted the strings by
each column up to and including column index k − 1, ak[i]
shall have the identifier of the i-th string. As a result, a1
shall contain the original order. Also define yk

i to be the
i-th string in this sorted order. In addition, the divergence
arrays dk for k ∈ [2..m + 1] are filled. They contain values
for each row index i such that dk[i] is the smallest value j
s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.ipl.2019.02.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:veli.makinen@helsinki.fi
https://doi.org/10.1016/j.ipl.2019.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2019.02.003&domain=pdf

18 V. Mäkinen, T. Norri / Information Processing Letters 146 (2019) 17–19
Input: ak and dk , dk prepared for range maximum queries.
Output: ak+1 and dk+1.

� Count the instances of each character.
1: Create empty array C of size σ + 1.
2: C[1]←0
3: for i←1 to n do � Iterate the strings.
4: c←yk

i [k] � Take the character in the current column.
5: C[c + 1]←1 + C[c + 1] � Increment the count of c.
6: end for
7: for i←1 to σ do
8: C[i + 1]←C[i] + C[i + 1] � Calculate the cumulative sum.
9: end for

� Sort the strings by the k-th column and build the arrays.
10: Create empty arrays ak+1 and dk+1 of size n.
11: Create array P of size σ , fill it with values 0.
12: for j←1 to n do � Iterate the strings.
13: c←yk

j [k] � Take the character in the current column.

14: j′←C[c] � Find the next available index in ak+1.
15: C[c]←1 + C[c] � Increment the count of c.
16: ak+1[j′]←ak[j] � Store the identifier of the current string to ak+1.

� Next value for dk+1.
17: i←P [c] � Find the previous index i where c occurred.
18: if i = 0 then
19: dk+1[j′] = k + 2 � If this was the first instance of c, store k + 2.
20: else
21: dk+1[j′] = dk .RMaxQ(i, j) � Otherwise make use of Obs. 1.
22: end if
23: P [c]← j � Store the current index.
24: end for

Algorithm 2.1: BuildPrefixAndDivergenceArrays ak+1 and
dk+1.

for which yk
i [j, k) matches yk

i−1[j, k), that is, the starting
string position of the matching suffix compared to the pre-
vious string in the sorted order. If yk

i [k − 1] �= yk
i−1[k − 1],

the value of dk[i] is set to k + 1. To fill the divergence ar-
rays, the following result is utilized.

Observation 1. Given the j-th string at text position k in the
order defined by ak, suppose i is the greatest string index less
than j where yk

i [k] = yk
j[k]. Suppose i′ and j′ = i′ + 1 are the

corresponding string indices in ak+1, i.e. it holds that ak[i] =
ak+1[i′] and ak[j] = ak+1[j′]. Then the following holds.

dk+1[j′] = max
i<t≤ j

dk[t]

The arrays ak may be filled by applying counting sort
[4]. After filling each dk , it may be processed for constant
time range maximum queries in O (n) time [5], denoted
dk.RMaxQ(i, j). Thus, it is possible to determine the value
to be placed in dk+1 as part of executing the counting sort
to fill ak+1 without affecting the overall time complexity
as shown in Algorithm 2.1.

3. Positive filtering

To find candidates for Hamming distance calculation,
the following result is utilized.

Lemma 2. To have Hamming distance at most l from each other,
a pair of strings S and T must have a matching substring the
length of which is at least

⌊
m

l+1

⌋
.

Proof. Suppose the Hamming distance of S and T is l or
less. Split the strings S and T into l + 1 parts such that the
length of each part is at most

⌈
m

l+1

⌉
. The differing char-

acters may be located in at most l such parts leaving one
that may not have mismatches. �

Such pairs of candidate matches may be identified by
utilizing the divergence arrays dk calculated as part of the
PBWT: Split the text into substrings such that the end-

ing points are tu :=
⌈

u·m
l+1

⌉
, 1≤u≤l + 1 and t0 := 0. If

two strings have a matching substring, it must hold that
d1+tu [i]≤1 +tu−1 for some 1≤i≤n. If there is a run of more
than two such adjacent rows, all combinations of two rows
in the run are candidates.

4. Verifying a pair of candidate matches

Given a pair of candidate matches S and T , we would
like to verify that their Hamming distance is at most l. To
this end, we start from the divergence array for string po-
sition m + 1, that is, the position after the last character.
am+1 determines the order of the strings sorted by the
m-th position. The positions of S and T in dm+1 are de-
termined by utilizing the inverse of the am+1 array defined
as a−1

m+1. Suppose the positions are i and j respectively.
We determine the starting index of the final matching part
t := dm+1.RMaxQ(i, j), which gives the maximum value in
range [i.. j] of array dm+1. Since we know that the strings
will not match at position t − 1, we consider suffixes that
end at position t − 2. Again, by determining the indices
i′ := a−1

t−1[am+1[i]] and j′ := a−1
t−1[am+1[j]] of S and T re-

spectively, and utilizing dt−1, the starting position of the
next matching part is determined. If the start of the strings
is reached by doing l + 1 or less range maximum queries,
there are at most l mismatches, in which case the pair
{S, T } may be reported.

Since each position may be processed in constant time,
an O (l) time complexity for verifying a pair of candidate
matches is achieved, matching the bound of [1] that uses
very similar mechanism with different data structures. The
arrays a−1

k may be filled for all m columns in O (mn) time
in total.

5. Analysis

Since we execute the same steps in the same time com-
plexity as in [1], we can verbatim use their analysis as an
upper bound for our algorithm. Thus, our algorithm also
works in average O (mn) time and space (linear in the in-
put size) under the constraint that l < (m−l−1) log σ

log mn and
assumption that the input strings are randomly generated
from an independent and identically distributed source.
The constraint is derived from the expected number of
pairs to check [1], which is the same in both algorithms.

V. Mäkinen, T. Norri / Information Processing Letters 146 (2019) 17–19 19
6. Final remarks

After the submission of this article, we implemented
the described PBWT1 and applied it on founder sequence
reconstruction [6]. We conducted extensive experiments
on that application and PBWT worked efficiently in prac-
tice. For the construction of phylogenetic trees this PBWT
approach should have much smaller constant factors than
the suffix array-based approach of [1]: The integration of
PBWT to the various analysis tasks considered in [1] is an
interesting direction to study.

Acknowledgements

This work was supported in part by the Academy of
Finland, grant 309048.

References

[1] J.A. Carriço, M. Crochemore, A.P. Francisco, S.P. Pissis, B. Ribeiro-
Gonçalves, C. Vaz, Fast phylogenetic inference from typing data, Al-
gorithms Mol. Biol. 13 (1) (2018) 4.

1 See https://github .com /tsnorri /libbio/.
[2] M. Crochemore, A.P. Francisco, S.P. Pissis, C. Vaz, Towards distance-
based phylogenetic inference in average-case linear-time, in: 17th In-
ternational Workshop on Algorithms in Bioinformatics, WABI 2017, in:
LIPIcs, vol. 88, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2017, pp. 9:1–9:14.

[3] R. Durbin, Efficient haplotype matching and storage using the Po-
sitional Burrows–Wheeler Transform (PBWT), Bioinformatics 30 (9)
(2014) 1266–1272.

[4] H.H. Seward, Information Sorting in the Application of Electronic Dig-
ital Computers to Business Operations, Tech. Rep. R-232, Thesis, Mas-
sachusetts Institute of Technology, Digital Computer Laboratory, 1954.

[5] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: Latin
American Symposium on Theoretical Informatics, Springer, 2000,
pp. 88–94.

[6] T. Norri, B. Cazaux, D. Kosolobov, V. Mäkinen, Minimum segmenta-
tion for pan-genomic founder reconstruction in linear time, in: 18th
International Workshop on Algorithms in Bioinformatics, WABI 2018,
August 20–22, 2018, Helsinki, Finland, in: LIPIcs, vol. 113, Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018, pp. 15:1–15:15.

http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4361723138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4361723138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4361723138s1
https://github.com/tsnorri/libbio/
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib434650563137s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib434650563137s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib434650563137s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib434650563137s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib434650563137s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib64757262696E3230313470627774s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib64757262696E3230313470627774s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib64757262696E3230313470627774s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib73657761726431393534696E666F726D6174696F6Es1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib73657761726431393534696E666F726D6174696F6Es1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib73657761726431393534696E666F726D6174696F6Es1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib62656E646572323030306C6361s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib62656E646572323030306C6361s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib62656E646572323030306C6361s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4E434B4D3138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4E434B4D3138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4E434B4D3138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4E434B4D3138s1
http://refhub.elsevier.com/S0020-0190(19)30026-2/bib4E434B4D3138s1

	Applying the Positional Burrows-Wheeler Transform to all-pairs Hamming distance
	1 Introduction
	2 Positional Burrows-Wheeler transform
	3 Positive ﬁltering
	4 Verifying a pair of candidate matches
	5 Analysis
	6 Final remarks
	Acknowledgements
	References

