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Crochemore et al. gave in WABI 2017 an algorithm that from a set of input strings finds 
all pairs of strings that have Hamming distance at most a given threshold. The proposed 
algorithm first finds all long enough exact matches between the strings, and sorts these 
into pairs whose coordinates also match. Then the remaining pairs are verified for the 
Hamming distance threshold. The algorithm was shown to work in average linear time, 
under some constraints and assumptions.
We show that one can use the Positional Burrows–Wheeler Transform (PBWT) by Durbin 
(Bioinformatics, 2014) to directly find all exact matches whose coordinates also match. The 
same structure also extends to verifying the pairs for the Hamming distance threshold. The 
same analysis as for the algorithm of Crochemore et al. applies.
As a side result, we show how to extend PBWT for non-binary alphabets. The new 
operations provided by PBWT find other applications in similar tasks as those considered 
here.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Given a set S of n strings all of the same length m
and drawn from alphabet � of size σ , we would like to 
compute the Hamming distance of all pairs {S1, S2}, where 
S1, S2 ∈ S , up to a distance limit l. This is called the All-
Pairs Hamming Distance problem. The problem was studied 
in [1] (first published in [2]) as a preprocessing step for 
building distance-based phylogenetic trees and for query-
ing typing databases, where pairs with large distance are 
not required. In what follows, we give an alternative av-
erage linear time algorithm for this problem, by replacing 
the steps of the algorithm in [1] with the usage of the Po-
sitional Burrows–Wheeler transform [3].
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2. Positional Burrows–Wheeler transform

The Positional Burrows–Wheeler Transform [3] is a method 
of sorting a set of strings of the same length at each char-
acter position in the lexicographic order of the reverse 
prefixes up to that position. One of its applications is to 
make it easy to identify longest matching substrings. The 
transformation is originally defined for the binary alphabet 
but is easily extended for the alphabet [1..σ ] as follows.

Following Durbin’s notation, for each index i from 1 to 
n define ak[i] as the identifier or index of the string S ∈ S
which is at the i-th position of the ordered reverse prefixes 
at string position k −1, that is, having sorted the strings by 
each column up to and including column index k − 1, ak[i]
shall have the identifier of the i-th string. As a result, a1
shall contain the original order. Also define yk

i to be the 
i-th string in this sorted order. In addition, the divergence 
arrays dk for k ∈ [2..m + 1] are filled. They contain values 
for each row index i such that dk[i] is the smallest value j
s article under the CC BY-NC-ND license 
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Input: ak and dk , dk prepared for range maximum queries.
Output: ak+1 and dk+1.

� Count the instances of each character.
1: Create empty array C of size σ + 1.
2: C[1]←0
3: for i←1 to n do � Iterate the strings.
4: c←yk

i [k] � Take the character in the current column.
5: C[c + 1]←1 + C[c + 1] � Increment the count of c.
6: end for
7: for i←1 to σ do
8: C[i + 1]←C[i] + C[i + 1] � Calculate the cumulative sum.
9: end for

� Sort the strings by the k-th column and build the arrays.
10: Create empty arrays ak+1 and dk+1 of size n.
11: Create array P of size σ , fill it with values 0.
12: for j←1 to n do � Iterate the strings.
13: c←yk

j [k] � Take the character in the current column.

14: j′←C[c] � Find the next available index in ak+1.
15: C[c]←1 + C[c] � Increment the count of c.
16: ak+1[ j′]←ak[ j] � Store the identifier of the current string to ak+1.

� Next value for dk+1.
17: i←P [c] � Find the previous index i where c occurred.
18: if i = 0 then
19: dk+1[ j′] = k + 2 � If this was the first instance of c, store k + 2.
20: else
21: dk+1[ j′] = dk .RMaxQ(i, j) � Otherwise make use of Obs. 1.
22: end if
23: P [c]← j � Store the current index.
24: end for

Algorithm 2.1: BuildPrefixAndDivergenceArrays ak+1 and 
dk+1.

for which yk
i [ j, k) matches yk

i−1[ j, k), that is, the starting 
string position of the matching suffix compared to the pre-
vious string in the sorted order. If yk

i [k − 1] �= yk
i−1[k − 1], 

the value of dk[i] is set to k + 1. To fill the divergence ar-
rays, the following result is utilized.

Observation 1. Given the j-th string at text position k in the 
order defined by ak, suppose i is the greatest string index less 
than j where yk

i [k] = yk
j[k]. Suppose i′ and j′ = i′ + 1 are the 

corresponding string indices in ak+1, i.e. it holds that ak[i] =
ak+1[i′] and ak[ j] = ak+1[ j′]. Then the following holds.

dk+1[ j′] = max
i<t≤ j

dk[t]

The arrays ak may be filled by applying counting sort 
[4]. After filling each dk , it may be processed for constant 
time range maximum queries in O (n) time [5], denoted 
dk.RMaxQ(i, j). Thus, it is possible to determine the value 
to be placed in dk+1 as part of executing the counting sort 
to fill ak+1 without affecting the overall time complexity 
as shown in Algorithm 2.1.

3. Positive filtering

To find candidates for Hamming distance calculation, 
the following result is utilized.

Lemma 2. To have Hamming distance at most l from each other, 
a pair of strings S and T must have a matching substring the 
length of which is at least 

⌊
m

l+1

⌋
.

Proof. Suppose the Hamming distance of S and T is l or 
less. Split the strings S and T into l + 1 parts such that the 
length of each part is at most 

⌈
m

l+1

⌉
. The differing char-

acters may be located in at most l such parts leaving one 
that may not have mismatches. �

Such pairs of candidate matches may be identified by 
utilizing the divergence arrays dk calculated as part of the 
PBWT: Split the text into substrings such that the end-

ing points are tu :=
⌈

u·m
l+1

⌉
, 1≤u≤l + 1 and t0 := 0. If 

two strings have a matching substring, it must hold that 
d1+tu [i]≤1 +tu−1 for some 1≤i≤n. If there is a run of more 
than two such adjacent rows, all combinations of two rows 
in the run are candidates.

4. Verifying a pair of candidate matches

Given a pair of candidate matches S and T , we would 
like to verify that their Hamming distance is at most l. To 
this end, we start from the divergence array for string po-
sition m + 1, that is, the position after the last character. 
am+1 determines the order of the strings sorted by the 
m-th position. The positions of S and T in dm+1 are de-
termined by utilizing the inverse of the am+1 array defined 
as a−1

m+1. Suppose the positions are i and j respectively. 
We determine the starting index of the final matching part 
t := dm+1.RMaxQ(i, j), which gives the maximum value in 
range [i.. j] of array dm+1. Since we know that the strings 
will not match at position t − 1, we consider suffixes that 
end at position t − 2. Again, by determining the indices 
i′ := a−1

t−1[am+1[i]] and j′ := a−1
t−1[am+1[ j]] of S and T re-

spectively, and utilizing dt−1, the starting position of the 
next matching part is determined. If the start of the strings 
is reached by doing l + 1 or less range maximum queries, 
there are at most l mismatches, in which case the pair 
{S, T } may be reported.

Since each position may be processed in constant time, 
an O (l) time complexity for verifying a pair of candidate 
matches is achieved, matching the bound of [1] that uses 
very similar mechanism with different data structures. The 
arrays a−1

k may be filled for all m columns in O (mn) time 
in total.

5. Analysis

Since we execute the same steps in the same time com-
plexity as in [1], we can verbatim use their analysis as an 
upper bound for our algorithm. Thus, our algorithm also 
works in average O (mn) time and space (linear in the in-
put size) under the constraint that l < (m−l−1) log σ

log mn and 
assumption that the input strings are randomly generated 
from an independent and identically distributed source. 
The constraint is derived from the expected number of 
pairs to check [1], which is the same in both algorithms.
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6. Final remarks

After the submission of this article, we implemented 
the described PBWT1 and applied it on founder sequence 
reconstruction [6]. We conducted extensive experiments 
on that application and PBWT worked efficiently in prac-
tice. For the construction of phylogenetic trees this PBWT 
approach should have much smaller constant factors than 
the suffix array-based approach of [1]: The integration of 
PBWT to the various analysis tasks considered in [1] is an 
interesting direction to study.
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