Nickel Germanide Thin Films by Atomic Layer Deposition

Katja Väyrynen, † Anton Vihervaara, † Timo Hatanpää, † Miika Mattinen, † Mikko J. Heikkilä, † Keniichiro Mizohata, ‡ Timo Räisänen, ‡ Mikko Ritala, ♦ and Markku Leskela†

†Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
‡Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland

Supporting Information

ABSTRACT: This work presents preparation of nickel germanide (Ni2Ge) thin films by atomic layer deposition (ALD). The films were grown using NiCl2(tmpda) (tmpda = N,N′,N′,N′-tetramethyl-1,3-propanediamine) and tributylgermanium hydride serving as a new, efficient reducing agent. This is the first time ALD Ni2Ge films are prepared directly upon the combination of two precursors and without any annealing treatment. Ni2Ge is an important contact material for enabling Ge-based transistors and thus circumventing the scaling issues related to current microelectronics. The Ni2Ge process was examined at low temperatures of 160–200 °C. Self-limiting, saturative growth with a high growth rate of 0.91 Å/cycle was observed at 180 °C. The films were thoroughly analyzed in terms of morphology, crystallinity, composition, and resistivity. The Ni2Ge films were pure, with the sum of contaminants being less than 1 at. %. Owing to their high purity, the films exhibited low resistivity, suggesting suitability for contact applications.

INTRODUCTION

Ge was the material of choice for the early transistors in the 1950s, but has since been replaced by Si for its high-quality native oxide (SiO2). With Si reaching its limits in terms of scaling down and the gate SiO2 being replaced by high-k oxides, alternatives to the Si-based technology are being actively investigated. Ge is making a strong comeback, bringing performance devices.

Hydrides have recently emerged as alternative reducing agents for developing new ALD processes: first, to deposit Al metal, and second, for the ALD of Co3Sn2 and Ni3Sn2 films. According to density functional theory calculations, Cu(I) carbene hydrides may act as both the metal compound and the reducing agent for Cu ALD. Hydrides have proven to be efficient reducing agents but involve complex chemistry not yet thoroughly understood. Further work on this intriguing group of reactants is required to harness their full potential and expand the materials selection available by ALD.

Herein, we introduce the first direct ALD process for Ni2Ge thin films using tributylgermanium hydride (TBGH) as the reducing agent. The schematic structures of the precursors employed in this study are illustrated in Figure 1. The deposition of high-quality films under saturated conditions at low temperatures below 200 °C is demonstrated. The process

Figure 1. Schematic structures of NiCl2(tmpda) and TBGH.

Received: May 13, 2019
Revised: June 19, 2019
Published: June 27, 2019

DOI: 10.1021/acs.chemmater.9b01877
provides an important pathway for developing Ge-based transistors. Furthermore, the results give valuable information on the emerging topic of hydride reducing agent, possibly enabling ALD of other germanides, pure metals, or even elemental Ge.

EXPERIMENTAL SECTION

Film Deposition. All films were grown in a hot-wall, cross-flow F-120 ALD reactor provided by ASM Microchemistry. Nitrogen (AGA, 99.999%; H₂O ≤ 3 ppm; O₂ ≤ 3 ppm) was used as the carrier and purge gas. The reactor pressure was ~10 mbar. NiCl₂(tmpda) was synthesized in-house according to the procedure reported in our previous publication.²⁰ TBGH was purchased from both Gelest and Sigma-Aldrich. Both precursors were evaporated from open glass boat heaters inside the reactor. The evaporation temperatures for NiCl₂(tmpda) and TBGH were 157 and 30 °C. Ni₂Ge films were deposited on native oxide-terminated Si(100) and soda lime glass substrates coated with 10 nm Al₂O₃ (AlMe₃ + water) prior to deposition. The Al₂O₃ film was required for promoting nucleation on the glass substrate. Film growth was examined also on Ge substrates. The Ge substrates were precleaned with 10% HCl for 2 min, rinsed with deionized water, and treated with a pulse of AlMe₃ prior to Ni₂Ge deposition.

Film Characterization. Film thicknesses were determined by energy-dispersive X-ray spectrometry (EDS), employing an Oxford INCA 350 microanalysis system connected to a Hitachi S-4800 scanning electron microscope. The thicknesses were quantified from Ni Kα and Ge Kα X-ray lines using the GMRFILM program. The film density was approximated at 8.88 g/cm³. Each result was treated with an uncertainty of 5%.

Film morphology was assessed by scanning electron microscopy (SEM) imaging. Further analysis was done by atomic force microscopy (AFM, Veeco Multimode V instrument). The images were captured in air using Si probes with a nominal tip radius of 10 nm and a spring constant of 5 N/m (Tap150 from Bruker). The images were flattened to remove artifacts from the sample tilt and scanner bow. Roughness was calculated as a root-mean-square value (Rₚ).

The films were identified by X-ray diffraction (XRD) using a PANalytical X’Pert Pro MPD X-ray diffractometer. The measurements were done with parallel beam optics and grazing incidence geometry. The Cu Kα (λ = 1.54 Å) incident angle was 1°. High-temperature XRD (HTXRD) measurements were carried out under N₂ in an Anton-Paar HTK1200 oven connected to the X-ray diffractometer. Time-of-flight elastic recoil detection analysis (ToF-ERDA) was utilized for determining the film composition. A 40 MeV ¹²⁷I⁺ ion beam was used for probing the sample. Film resistivity was evaluated with a four-point probe (CPS Probe Station, Cascade Microtech and a Keithley 2400 SourceMeter). Sheet resistances were measured on Al₂O₃-coated glass substrates and multiplied by film thicknesses to acquire resistivities.

RESULTS

Precursor Properties. NiCl₂(tmpda), a diamine adduct of Ni(II) chloride, has proven to be suitable for depositing Ni₃Sn₂ and Ni₅N thin films by ALD.²⁰ The precursor was selected also for this study because of the high reactivity of the chloride ligands toward hydride reducing agents. NiCl₂(tmpda) is a solid compound that can be sublimed quantitatively under vacuum at 157 °C. The precursor decomposes at temperatures above 250 °C.²¹ NiCl₂(tmpda) can be prepared from inexpensive starting materials with a high yield and is thus a good ALD precursor also from an industrial point of view. The compound is synthesized simply by mixing NiCl₂ solution with a threefold excess of the amine and refluxing for 3 h. A more detailed description of the synthesis can be found in the literature.²⁰

TBGH is the Ge analogue of tributyltin hydride (TBTH) that has previously been used for the ALD of intermetallic Co₅Sn₂ and Ni₅Sn₂ thin films.²⁰ A suitable evaporation temperature for TBGH (30 °C) was empirically found based on the earlier experience with TBTH. The advantages of using Ge alkyl hydrides instead of their Sn equivalents include low toxicity and good stability.²⁵ Because of the similarity of the Ge and Sn alkyl hydrides, we believe that the Ni₂Ge process proceeds through a similar reaction mechanism (eq 1) as was previously proposed for Co₅Sn₂ and Ni₅Sn₂.²⁰ Most likely, the butyl groups of TBGH react with the chloride ligands on the surface and form volatile chlorobutane and HCl as by-
products. The neutral adduct ligand tmpda is eliminated simply by dissociation. In situ mechanistic studies on these processes are underway and will be published separately.

\[
2\text{NiCl}_2(\text{tmpda}) + \text{Bu}_3\text{GeH} \\
\rightarrow \text{Ni}_2\text{Ge} + 3\text{BuCl} + \text{HCl} + \text{tmpda}
\] (1)

Growth Characteristics. Figure 2 provides the results regarding the growth characteristics of the Ni$_2$Ge ALD process. The films were deposited at low temperatures of 160−200 °C, and the growth rate increased with increasing temperature (Figure 2a). The growth rate increased from 0.18 Å/cycle at 160 °C to 1.3 Å/cycle at 200 °C. The lowest applicable deposition temperature was dictated by the sublimation temperature of the Ni precursor (157 °C). At 200 °C, the film did not extend to the exhaust edge of the substrate. This may indicate the decomposition of TBGH, as we have previously shown that NiCl$_2$(tmpda) starts to decompose only at temperatures above 250 °C. Another possibility is that the film is etched by the by-product HCl and the free tmpda ligands or that these start to block the surface sites from the precursor molecules. It is also possible that the precursor doses were insufficient for the highest growth rate so that the precursors were consumed before reaching the outlet edge of the substrate.

The self-limiting growth mechanism of the process was examined at 180 °C. Saturative growth was verified with respect to both precursors. A short pulse of only 0.5 s was enough to observe saturation as a function of the Ni precursor pulse time (Figure 2b). A longer pulse of 1.5 s was required for reaching saturation with TBGH (Figure 2c). Under fully saturated conditions, a high growth rate of 0.91 Å/cycle was observed. Saturation with respect to the Ni precursor was studied using 1.0 s TBGH pulses but was also verified with 1.5 s TBGH pulses. A lower growth rate of 0.76 Å/cycle was measured when the purge times were doubled, suggesting a minor chemical vapor deposition component or desorption of the precursors.

Figure 2d shows the relationship between film thickness and cycle count. Two linear regions were observed instead of the expected one. Apart from a short nucleation delay, the film thickness increased linearly within the first 500 cycles with a rate of 0.91 Å/cycle. After the first 500 cycles, the film thickness still increased linearly but with a lower growth rate of 0.45 Å/cycle. The reason for the change in the growth rate can be ascribed to reaching full coverage of the initial substrate surface after 500 cycles; the film-forming reactions appear to be more facile on Al$_2$O$_3$ than on the film itself. Initially, the Al$_2$O$_3$ surface is covered by −OH groups that serve as reactive sites for the precursors. After the −OH groups have been consumed from the Al$_2$O$_3$ surface, it has coordinatively unsaturated Al and O ions that can also serve as reactive sites for the film growth reactions. The agglomeration of the film material ensures that Al$_2$O$_3$ remains partly uncovered up to a relatively high number of deposition cycles, that is, high film thickness (see below). A similar observation has been made in the case of Cu ALD.

The Ni$_2$Ge films exhibited excellent thickness uniformity across the 5 cm × 5 cm substrates, as demonstrated by Figure 2e. Good uniformity was observed also in the case of Co$_3$Sn$_2$ films.

Film Properties. The morphology of all the films was evaluated by SEM. Film nucleation is visualized in Figure 3 showing the SEM images of films of different thicknesses deposited at 180 °C. Thin yet continuous films are obtained when agglomeration and grain growth are minimized, that is, at low temperatures and with high growth rates. Despite the low deposition temperature and high growth rate, the thinnest film of 5 nm consisted of separate islands and was nonconductive. The substrate coverage was improved with increasing cycle count, but some holes are still visible in the 35 nm thick Ni$_2$Ge film. Although not covering the substrate fully, the 15 nm thick film forms a continuous network across the substrate and is conductive. The grain size increased with increasing cycle count and consequently increasing film thickness.

The film morphology was further analyzed by AFM (Figure 4). All the films were rough, with the respective R_q values being 7.2, 5.3, and 7.9 nm for 15, 35, and 58 nm thick Ni$_2$Ge films deposited at 180 °C. Because of the discontinuity, the thinnest film was rougher than the 35 nm thick film. Expectedly, the roughness increased with increasing film thickness after the substrate was first fully covered. Figure 4 also compares the roughnesses of 25 nm thick films deposited at 160 and 200 °C. The film deposited at 200 °C was significantly smoother than the film deposited at 160 °C. The R_q values for the films were 5.1 and 9.5 nm. The 3D images of all the films are shown in
Figure S1, Supporting Information. In the case of Ni2Ge, high growth rate is more important for obtaining smooth films than low temperature. The growth rate was significantly higher at 200 °C as opposed to 160 °C (1.3 vs 0.18 Å/cycle). With high growth rates, the nuclei have less time for grain growth, which promotes the formation of smooth films. Smooth films generally have better electrical properties because of less electron-scattering effects.31

All the films were analyzed by XRD. Figure 5 shows an exemplary X-ray diffractogram of a 46 nm thick Ni2Ge film deposited at 180 °C. The film was highly crystalline, consisting mainly of two phases: the orthorhombic Ni2Ge and the slightly Ni deficient hexagonal Ni1.7Ge phase. The NiGe phase was not observed. The films were crystalline within the entire temperature range (160–200 °C) and at all thicknesses (5–70 nm). Apart from the temperature, the growth parameters had no significant effect on the crystallinity. Expectedly, the crystallinity was enhanced when the films were grown at higher temperatures or with more cycles. To study the behavior of the films at higher temperatures, like those encountered in subsequent steps in semiconductor processing, the films were subjected to HTXRD measurements under N2. Upon heating in HTXRD, the orthorhombic Ni2Ge started to convert to the hexagonal Ni1.7Ge phase at 500 °C, and at 600 °C, only the hexagonal phase was left.

The film composition was examined by ToF-ERDA. Figure 6 depicts the representative elemental depth profiles of a 60 nm thick Ni2Ge film grown at 180 °C. The Ni and Ge contents in the film were 65 and 34 at. %. The stoichiometry correlates well with the XRD results. Similar results were also seen by EDS. Apart from slight surface oxidation, the film was of high purity, and the total contaminant level was less than 1 at. %. Despite being a ligand of the Ni precursor, the Cl content was as low as 0.06 at. %. The nitrogen content was below the detection limit (0.07 at. %) of the ToF-ERDA instrument. Previous studies using the diamine adducts of Co(II) and Ni(II) chlorides as ALD precursors have all produced films with high purity.20–22 It can be concluded that these precursors undergo fast and complete reactions when combined with suitable reactants.

Film resistivities were assessed by four-point probe measurements. A 15 nm thick Ni2Ge film deposited at 180 °C formed a continuous network across the substrate but still exhibited a high resistivity of 450 μΩ cm. At a thickness of 24 nm, the resistivity was decreased to 50 μΩ cm. When deposited at 160 °C, a film thickness of only 9 nm was enough for obtaining conductive films, albeit with a high resistivity of 470 μΩ cm. At the lowest, a resistivity of only 26 μΩ cm was obtained for a 68 nm thick film grown at 180 °C. This result is well in line with the existing literature on Ni1.7Ge films prepared by annealing Ni films on Ge substrates. The lowest values reported for Ni2Ge vary between 17 and 24 μΩ cm.5,6 The resistivity of Ni2Ge is phase-dependent; the Ni2Ge and Ni5Ge3 phases exhibit a slightly higher resistivity than the NiGe phase.5 The 1:1 stoichiometry is typically obtained by high-temperature annealing of Ni or NiO films on Ge substrates, that is, only when there is excess Ge available.

As a proof of concept, we showed that Ni2Ge films can also be deposited on Ge substrates. The native oxide was removed by HCl treatment and a pulse of AlMe3 prior to deposition. A film with 11 nm thickness was obtained from 500 cycles at 180 °C, adding up to a growth rate of 0.22 Å/cycle. The Ni2Ge film on Ge was only weakly crystalline, as shown by XRD. AFM showed that the film consisted of a smooth layer and some scattered 10–50 nm high unknown particles (Figure S2 in the Supporting Information). The Rq value was 3.2 nm without and 9.8 nm with the particles. The Rq value of the Ge substrate was 1.4 nm. The resistivity measurement was somewhat complicated because of the conductivity of the Ge substrate. The sheet resistance was, however, decreased significantly by the Ni2Ge deposition; the sheet resistance of the bare substrate was 1.6 kΩ/□ and that of the film–substrate combination was 4.5 Ω/□. From the sheet resistance of 4.5 Ω/□, a resistivity of 22 μΩ cm can be calculated for the 11 nm thick Ni2Ge film. Further work is required to study the contact resistance of the system and integrate the process to actual device structures.

CONCLUSIONS

This article presented the ALD of Ni2Ge thin films directly by combining two precursors at low temperatures. NiCl2(tmpda) has proven to be a suitable precursor for many Ni-containing materials and is also inexpensive and easy to synthesize with a high yield. This work introduced a new reducing agent, TBGH, for the ALD of metal germanides. Future work will show whether TBGH is also suitable for depositing pure metals and elemental Ge. The Ni2Ge films were grown at 160–200 °C. The saturation of the growth rate (0.91 Å/cycle) was verified with respect to both precursors at 180 °C. A thorough analysis in terms of growth characteristics, morphology, crystallinity, composition, and electrical properties was carried out. The films were of very high purity and, consequently, exhibited low...
resistivity values. As a proof of concept, we demonstrated that the films could be deposited also on Ge substrates. The good electrical conductivity of the Ni$_2$Ge films suggests applicability for contact applications in Ge-based transistors. The process shown here provides an important pathway for creating solutions to the scaling issues of the current Si-based technology.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b01877.

Additional AFM data (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: mikko.ritala@helsinki.fi.

ORCID

Katja Väyrynen: 0000-0002-8886-6997

Timo Hatanpää: 0000-0003-3745-8296

Miika Mattinen: 0000-0003-4837-1823

Mikko Ritala: 0000-0002-6210-2980

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

ASM Microchemistry Oy is gratefully acknowledged for funding this research.

REFERENCES

(25) Bowman, W. R.; Krintel, S. L.; Schilling, M. B. Tributylgerma-
nium Hydride as a Replacement for Tributyltin Hydride in Radical
Ritala, M.; Leskelä, M. Low-Temperature Atomic Layer Deposition of
Low-Resistivity Copper Thin Films using Cu(dmap)$_2$ and Tertiary
(27) Li, Z.; Rahtu, A.; Gordon, R. G. Atomic Layer Deposition of
Ultrathin Copper Metal Films from a Liquid Copper(1) Amidinate
(28) Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.;
Coffey, K. R. Comparison of the Agglomeration Behavior of Thin
(29) Thompson, C. V. Solid-State Dewetting of Thin Films. *Annu.
(30) Hagen, D. J.; Connolly, J.; Povey, I. M.; Rushworth, S.; Pemble,
M. E. Island Coalescence during Film Growth: An Underestimated
(31) Lim, J.-W.; Ishiki, M. Electrical Resistivity of Cu Films
Deposited by Ion Beam Deposition: Effects of Grain Size, Impurities,