
Mattinen, Miika
2018-12-11

Miika Mattinen,*† Jan-Lucas Wree,‡ Niklas Stegmann,† Engin Ciftyurek,*‡ Mhamed El Achhab,* Peter J. King,† Kenichiro Mizohata,*§ Jyrki Räisänen,*§ Klaus D. Schierbaum,*§ Anjana Devi,*‡ Mikko Ritala,*† Markku Leskelä†

† Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Finland
‡ Inorganic Materials Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
§ Material Science Department, Institute of Experimental Condensed Matter Physics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany

* Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 43, 00014, Finland

ABSTRACT: Heteroleptic bis(tert-butylimido)bis(N,N'-diasopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition (ALD) of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties, but exhibit different growth behavior. With the molybdenum precursor, high growth rates up to 2 Å/cycle at 300 °C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 Å/cycle at 300 °C. Highly pure films of both metal oxides are deposited and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WO3 films crystallize as γ-WO3 at 300 °C and above while the films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (≤250 °C), crystalline suboxide (275 °C), a mixture of suboxide and α-MoO3 (300 °C), or pure α-MoO3 films (≥325 °C). MoO3 films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoO2 film deposited at 275 °C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 °C.

Introduction

Molybdenum and tungsten have versatile yet rather similar oxide chemistry. Both elements form various compounds with different oxidation states, crystalline structures, and physical as well as chemical properties.1–6 The most important and stable oxides are the trioxides MoO3 (M = Mo, W), which exhibit several polymorphs and are wide band-gap semiconductors (Eg ≈ 2.5–3.5 eV) with poor electrical conductivity in pristine form. In reducing conditions the trioxides easily form oxygen vacancies as well as crystalline suboxide phases, such as Mo3O11 (Mo2O22), Mo4:O17 (≈Mo2O2:7), Mo5:O23 (≈Mo2O3:8), and Mo6:O22 (≈Mo2O4:9) for molybdenum, and W22O64 (WO2:5), W16O48 (≈WO2:3), W17:O47 (≈WO2:7), and W20:O38 (WO2:9) for tungsten.6–7 The oxygen-deficient forms exhibit increased electrical conductivity and even metallic behavior.5,7–9 The dioxides Mo2 and W2 are well-known metallic conductors.8,10

The similarities of molybdenum and tungsten oxides extend to the studied range of applications of Mo3 and suboxides,1–3 which include smart windows and other optical coatings,11 (photo)catalysis,12–14 gas sensors,15,16 nonvolatile memories,17–19 and lithium ion batteries.20 Obviously, as each crystalline phase has a different structure and properties, their performance in different applications vary accordingly.14,21–24

To highlight one promising application, MoO3 has recently been studied as a sensor for gases such as H2,25–30 O2,31 O3,31 NH3,30 NO2,26,31 and SO2.22 Advantageously, MoO3 sensors may be operated at moderate temperatures, usually from 200 to 400 °C.25,26,29,30 Hydrogen gas sensors, in particular, are rapidly gaining importance as hydrogen is being increasingly used as a clean energy source. H2 is a highly flammable yet colorless and odorless gas. Therefore, sensitive, reliable, and fast hydrogen sensors are needed to enable safe storage, transport, and use of hydrogen.29 Although various nanostructured forms of α-MoO3 have shown respectable performance in H2 sensing,25,27,28 suboxide MoO2 phases have not, to the best of our knowledge, been studied as H2 sensors.
As outlined above, controlled deposition of uniform thin films and other nanostructures of molybdenum and tungsten oxides with desired phase and morphology is required to achieve optimal performance in different applications. As discussed in detail by de Castro et al.\(^3\) and Zheng et al.\(^3\), MoO\(_x\) and WO\(_x\) thin films and other nanostructures are typically deposited using techniques such as electrodeposition, hydro- or solvothermal synthesis, sol-gel process, chemical vapor deposition (CVD), and different physical vapor deposition (PVD) methods. However, using these methods, uniform coating on micro- and nanostructured substrates with high surface areas is rarely demonstrated and can be difficult or even impossible to accomplish. On the contrary, using atomic layer deposition (ALD), an advanced gas-phase thin film deposition method based on self-limiting surface reactions of alternately pulsed precursors, uniform coating of both large and complex substrates with accurately controlled film thickness and excellent reproducibility is easily achieved. ALD typically produces high-quality films at relatively low deposition temperatures and is also straightforward to scale up for industrial use.\(^{34-36}\)

ALD is a chemical technique with several requirements for the precursors,\(^34\) including volatility, thermal stability, high reactivity, and lack of etching or dissolution reactions with the film or substrate. Thus, synthesizing, identifying, and evaluating suitable precursors are key steps in developing ALD processes. Due to the similar chemical properties of molybdenum and tungsten, analogous compounds have often been used as ALD precursors to deposit oxides of both metals, including \([M(CO)_4]^{37-39}\), \([M(N_Bu)_2(C_Me_2)_2]^{40,41}\) and \([MOC_Bu_2]^{42}\) (M = Mo, W).\(^44\) However, some differences have been reported in the reactivity of the molybdenum and tungsten compounds under ALD conditions. For example, \([W(N_Bu_2)_2(C_Me_2)_2]^{43}\) reacts with \(H_2O\) whereas the corresponding Mo compound requires the use of more reactive \(O_3\) or \(O_2\) plasma.\(^{40,41}\) Additionally, some other metal precursors have been used to deposit either MoO\(_x\)\(^{45-49}\) or WO\(_x\)^{50,53} by ALD. Nevertheless, ALD of crystalline MoO\(_x\)\(^{46}\) or WO\(_x\)^{50,51} films without the use of plasma-enhancement or post-deposition annealing has been rarely achieved and only limited control over the different crystalline phases has been demonstrated. Therefore, it is evident that further efforts in precursor development are required to identify precursors that combine adequate thermal stability and reactivity with the ability to control the phase composition of the MoO\(_x\) and WO\(_x\) films.

In this report, we have studied all-nitrogen coordinated, heteroleptic bis(imido)-bis(amidinate) compounds \([M(N_Bu_2)(dpamd)_2]^{47}\) (M = Mo, W; dpamd = diisopropylacetamidinate) as ALD precursors. The compounds have promising thermal properties and have previously been used to deposit WO\(_x\)\(^{54}\) WO\(_x\)\(^{55}\) MN\(_x\)\(^{56}\) and MS\(_x\)\(^{57}\) films by CVD. The suitability of these precursors for ALD of MoO\(_x\) and WO\(_x\) (x \(\approx\) 3) is shown using ozone as a reactant. Growth characteristics and film structure are examined in detail for both oxides. Clear differences between the metals are observed in terms of growth rates and crystallization behavior. Temperature-dependent resistivity and hydrogen gas sensing properties of MoO\(_x\) films are further evaluated to highlight the high quality and performance of the deposited films.

Experimental section

Molybdenum and tungsten oxide films were deposited in a commercial, hot wall, cross-flow ASM F120 ALD reactor\(^{58}\) operating at approximately 5 mbar. Nitrogen (\(N_2\) AGA, 99.999%) served both as carrier and purge gas. The films were mostly deposited on 5 \(\times\) 5 cm\(^2\) silicon (100) and soda lime glass substrates. The glass substrates were cleaned using successive ultrasonic baths of alkaline ultrasonic cleaning solution, tap water, ethanol, and de-ionized water. The silicon substrates were blown clean of particles using pressurized nitrogen. 4 \(\times\) 4 mm\(^2\) SiO\(_2\):(500 nm)/Si substrates fixed to a 5 \(\times\) 5 cm\(^2\) Si carrier substrate with double-sided Kapton tape were used to prepare samples for the temperature-dependent resistivity and gas sensing measurements.

Bis(tert-butylimido)bis(\(N,N'\)-disopropylacetamidato) compounds of molybdenum and tungsten were synthesized by salt methathesis.\(^{59}\) The compounds were evaporated from open glass boats inside the ALD reactor heated to 145 °C for \([Mo(N_Bu_2)(dpamd)_2]^{50}\) and 155 °C for \([W(N_Bu_2)(dpamd)_2]^{50}\). The precursors were delivered to the substrates by \(N_2\) carrier gas flow and the pulsing was achieved by inert gas valving.\(^{58}\) Thermogravimetric analysis (TGA) of the precursors was performed using a Mettler Toledo STAR\(_e\) system equipped with a TGA850 thermo-balance under atmospheric pressure of \(N_2\). The heating rate was 10 °C/min and the sample size was approximately 10 mg.

Ozone (\(O_3\)) was produced from oxygen (\(O_2\), AGA, 99.999%) using an ozone generator (Wedeco Ozomatic Modular 4 HC) resulting in an \(O_3\)-\(O_2\) mixture with a nominal \(O_3\) concentration of 100 g/Nm\(^3\). The flow rate of the \(O_3\)-\(O_2\) mixture was typically set to approximately 200 sccm using a needle valve. Unless otherwise noted, the films were deposited at 300 °C using 1 s metal precursor and 5 s \(O_3\) pulses separated by 1 s \(N_2\) purges.

Further film deposition tests were done using de-ionized H\(_2\)O, H\(_2\)S (AGA, 99.5%), and NH\(_3\) (AGA, 99.999%) as the reactant. The reactants were pulsed by mechanical solenoid valves with flow rates set to approximately 10 sccm for H\(_2\)S and NH\(_3\) during continuous flow using needle valves.

Film thicknesses were primarily measured by a FilmSense FS-1 multi-wavelength ellipsometer. Cauchy models were used to model the native silicon oxide and the film. For the roughest films, a roughness layer on the film surface was included in the model using effective medium approximation with 50% void content. Thickness mapping using the ellipsometer was performed for selected samples by measuring film thickness at points separated by 0.5 cm (0.5 cm edge exclusion), resulting in 81 measurements over the 5 \(\times\) 5 cm\(^2\) silicon substrates. Energy-dispersive X-ray spectroscopy (EDS, Oxford INCA connected to a Hitachi S-4800 SEM) and X-ray reflectivity (XRR, Rigaku Smartlab) were also used for some samples to confirm the ellipsometry thicknesses, as shown in the Supporting Information (Figure S1–S5). For EDS, the thicknesses were calculated from Mo and W L\(_\alpha\) k-ratios using GMRFilm software.\(^{60}\)
assuming MoO3 stoichiometry and bulk densities (MoO3 4.7 g/cm3, WO3 7.2 g/cm3). XRR was also used to determine film densities.

Film morphology was studied by scanning electron microscopy (SEM, Hitachi S-4800) and atomic force microscopy (AFM, Veeco Multimode V). Silicon probes with a tip radius of less than 10 nm (Bruker) were used for the tapping mode AFM imaging. The images were flattened to remove artefacts caused by sample tilt and scanner non-linearity. Film roughness was calculated as a root mean square value (Rq) from 2 × 2 mμm2 images.

Film crystallinity was examined by X-ray diffraction (XRD, Rigaku Smartlab) using Cu Ka (λ = 1.54 Å) x-ray beam and either grazing incidence (incident angle of 1°) or 0-20 geometry. Raman spectroscopy was performed in backscattering geometry using a confocal Raman microscope (NT-MDT Ntegra) with a 100× objective and a 532 nm or 633 nm laser.

Film composition was analyzed by time-of-flight elastic recoil detection analysis (ToF-ERDA) using a 40 MeV 79Br+ ion beam. The incident angle of the ion beam was 20° with respect to the sample surface. The angle between the sample and the detector was also 20°, resulting in a scattering angle of 40°. Valence and core level X-ray induced photoelectron spectra were measured at Dortmund Electron Accelerator (DELTA) using synchrotron based X-ray radiation of varied energy: 400 eV for Mo 3d and C 1s and 630 eV for O 1s core levels, 65 eV for valence band analysis, and 400, 630, or 650 eV for survey spectra. Two electron take-off angles of 0 or 60° with respect to the sample normal were used. The 60° take-off angle significantly increased surface sensitivity by probing less than half the depth of the 0° measurement. 5 eV pass energy and 0.5 eV (survey) or 0.05 eV (core and valence levels) step size were used. Sample surface was cleaned gently prior to measurements using low-energy Ar+ ions at 0.5 kV accelerating voltage for 15 s. During the measurements, the chamber pressure was maintained at approximately 2×10-10 mbar. The C 1s peak at 284.5 eV was used as an energy reference. The peak deconvolution was performed using Gaussian functions with Shirley background removal taking into account the spin orbit splitting and the ratios of the corresponding quantum states.

Temperature-dependent resistivity measurements were performed under atmospheric conditions using the van der Pauw (vdP) four-point geometry for MoO3 samples deposited on 500 nm SiO2/Si substrates. A similar MoO3/500 nm SiO2/Si structure with two silver (Ag) point contacts was used for hydrogen (H2) sensing experiments. The gas atmosphere was controlled using mass flow controllers (MFCs, Bronkhorst Instruments) for hydrogen as well as for dry air that was used as the reference and balance gas. A Preama 5017 Digital Multimeter was used to measure current in a two-point configuration. In-house developed Labview software was used to control the flow rates of the testing and reference gases and to acquire the temperature and electrical current data. In all tests, the total flow was set to 50 sccm by mixing H2 and dry air in defined proportions. H2 concentration was varied from 5000 to 35000 ppm (0.5 to 3.5 vol-%). 15 minute pulses of H2 were mostly used with 15 minute pulses of dry air in between to allow the sensor surface to recover before the next measurement.

Results and Discussion

Bis(tert-butylimido)bis(N,N'-disopropylacetamidinato) compounds of both molybdenum and tungsten are solids that exhibit reasonably high and nearly identical volatility as shown by thermogravimetric analysis (TGA) in Figure 1. The residues of less than 3% at 500 °C suggest good thermal stability. The precursor temperatures needed to obtain sufficient vapor pressure for deposition experiments were estimated to be close to 150 °C for both compounds based on the previously developed empirical relation for our ALD reactor and TG instrument,62 which was further refined to 145 °C for [Mo(NBu)2(dpamd)2] and 155 °C for [W(NBu)2(dpamd)2].

![Thermogravimetric analysis of [M(NBu)2(dpamd)2] compounds](image)

Figure 1. Thermogravimetric analysis of [M(NBu)2(dpamd)2] compounds, where M = Mo (black) and W (red), heated under atmospheric pressure of N2. The inset shows the schematic structure of the compounds.

We evaluated the reactivity of both compounds with different typical ALD reactants, including H2O and O3, H2S, and NH3 aiming to deposit oxides, sulfides, and nitrides, respectively. However, below the temperatures where the metal precursors were visually observed to decompose in the glass tubes of the ALD reactor, namely 300 °C for the Mo and 325 °C for the W precursor, films were only obtained using O3 as the reactant. This suggests that the hydrides (H2O, H2S, and NH3) are unable to protonate the ligands of the adsorbed precursors, whereas ozone is capable of combusting the ligands. Thus, we focused on the deposition of oxide films using O3. Other compounds of molybdenum and tungsten could likely be deposited using more reactive, perhaps plasma-activated reactants.

Initial deposition studies at 300 °C showed a high growth rate, around 1.5 Å/cycle, using [Mo(NBu)2(dpamd)2] and O3, compared to 0.45 Å/cycle with [W(NBu)2(dpamd)2] and O3. However, saturation of the growth rate after a sufficient precursor dose is supplied, a unique characteristic of ALD, was not fully reached for molybdenum oxide when lengthening the...
[Mo(N'Bu)₂(dpamd)₂] pulse at 300 °C or even at 250 °C (Figure 2a), the latter being well below the decomposition temperature of the precursor as discussed below.

With O₃ the growth rate saturated when pulses of at least 3 s were used (Figure 2b). In contrast, for tungsten oxide, saturation at 0.45 Å/cycle was achieved with both precursors using [W(N'Bu)₂(dpamd)₂] and O₃ pulses of at least 1 and 5 s, respectively (Figure 2a,b). All further depositions were done using 1 s [M(N'Bu)₂(dpamd)₂] and 5 s O₃ pulses separated by 1 s N₂ purges, unless otherwise noted.

The behavior of [Mo(N'Bu)₂(dpamd)₂] is similar to our earlier studies on [MoO₂(thd)₂] and O₃, where the growth rate did not completely saturate with the [MoO₂(thd)₂] pulse, even though no film was deposited when only [MoO₂(thd)₂] was pulsed. Here, the observed increase of the growth rate when lengthening the Mo precursor pulse at 300 °C (~0.2 Å/cycle per additional 1 s of [Mo(N'Bu)₂(dpamd)₂] pulsing) greatly exceeded the decomposition observed when only [Mo(N'Bu)₂(dpamd)₂] was pulsed on silicon (~0.02 Å/cycle for 1 s pulses). This suggests precursor decomposition on the surface of the growing MoO₃ film as the main reason for the lack of saturation as opposed to decomposition on the starting SiO₂ surface or in the gas phase. Furthermore, no film growth (decomposition) was observed when pulsing only [Mo(N'Bu)₂(dpamd)₂] on silicon at 250 °C, yet the growth of MoO₃ films was not saturative at this temperature, either. Therefore, MoO₃ surface appears to have a catalytic effect in decomposition of the adsorbed [Mo(N'Bu)₂(dpamd)₂].

Both processes exhibited linear growth when the number of ALD cycles was varied, although the intersection of the fitted lines and the x-axis at approximately 10 cycles suggests slight nucleation delay (Figure 2c). Notably, the linear growth behavior of MoO₃ is in contrast to the previous two ALD processes capable of depositing crystalline MoO₃ films, where initial slow growth of amorphous films was followed by faster growth after crystallization.⁴⁰,⁴¹

Strong temperature dependence of the growth rate was evident for both processes, even more so for MoO₃, with the growth rate increasing from 0.1 Å/cycle at 200 °C to 1.6 Å/cycle at 300 °C, whereas for WO₃ the growth rate increased rather linearly from 0.2 Å/cycle at 200–250 °C to 0.6 Å/cycle at 350 °C (Figure 2d). The glass source tubes inside the ALD reactor revealed the first visual signs of metal precursor decomposition at 300 °C for [Mo(N'Bu)₂(dpamd)₂], although film uniformity suffered only at 350 °C. With [W(N'Bu)₂(dpamd)₂], decomposition was observed on the walls of the source tubes at 325 °C and above, but even the films deposited at 350 °C were uniform over the substrates. The increase in the growth rate with increasing deposition temperature when operating below the decomposition temperatures of the precursors is likely due to crystallization behavior of the films as discussed later, although changes in reaction mechanisms cannot be ruled out.

Figure 2. Growth rates of MoO₃ and WO₃ films versus a) [M(N'Bu)₂(dpamd)₂] (inset shows region below 0.5 Å/cycle in more detail) and b) O₃ pulse length. c) Film thickness as a function of ALD cycles with inset showing the first 100 cycles in more detail. d) Growth rate versus deposition temperature. Ellipsometry thickness maps of e) MoO₃ and f) WO₃ films with 0.5 cm edge exclusion, where the precursor inlet and outlet are at the top and bottom of the figures, respectively. Unless otherwise noted, the films were deposited at 300 °C using 1000 cycles with 1 s [M(N'Bu)₂(dpamd)₂] and 5 s O₃ pulses separated by 1 s N₂ purges. The thicknesses were measured by ellipsometry, see Supporting Information for EDS and XRR results (Figure S1–S5). Solid lines represent linear fits to the data and dashed lines are meant to guide the eye.
Both processes yielded very uniform films at 300 °C. The uniformity of the MoOₓ films was remarkable—even though the growth rate did not completely saturate, the films had non-uniformity as low as 0.6% over the 5 × 5 cm² substrates (Figure 2e). The research-scale cross-flow reactor used in this work typically results in higher non-uniformities compared to many other ALD reactor designs due to inlet effects caused by byproduct reabsorption and impurities in the carrier gas, for example.34,36 For comparison, the AlMe₃+H₂O process, which is regarded as a near-ideal, model ALD process,63 resulted in a non-uniformity of 0.8 % in our ALD reactor at 300 °C. The WOₓ films were also uniform with a 2.7% non-uniformity measured for an approximately 40 nm film deposited at 300 °C (Figure 2f).

Conformality, the unique ability of ALD to uniformly coat complex structures, was studied by depositing a MoOₓ film in a deep trench structure. Good, approximately 90% conformality was achieved up to an aspect ratio of 20 using the relatively short pulse and purge lengths selected for this experiment, although a change in film morphology as a function of the aspect ratio was observed (Figure S6 in Supporting Information).

The strong temperature-dependence of the MoOₓ film growth may be explained by changes in film crystallinity and morphology. The films deposited at 250 °C and below were very smooth, while the films deposited at 275 °C and above were clearly rougher (Figure 3a). Whereas the films deposited at 275 and 300 °C still had a relatively compact and smooth-looking surface, those deposited at 325 °C and especially 350 °C appeared very rough with tall rod-like grains present on the surface, in line with the matte-like visual appearance of the film deposited at 350 °C.

The morphology was also correlated with the film crystallinity (Figure 3b): the smooth films deposited at 250 °C and below were amorphous, whereas at 275 °C a strong X-ray reflection emerged at 22.2 °2θ accompanied by a weaker one at 45.4°, which corresponds to half of the d-spacing of the first reflection. These reflections are suggested to originate from a crystalline suboxide MoOₓ phase (2.75 ≤ x ≤ 2.89). Based on the peak positions, the most likely candidate is the orthorhombic γ-MoO₁₁₁ (Powder Diffraction File, PDF 005-0337), although other suboxide phases also have reflections within ±0.3° of 22.2°, including monoclinic η-MoO₁₁₁ (PDF 013-0142), Mo₁₇O₄₇ (PDF 013-0345), Mo₅O₁₄ (PDF 012-0517), Mo₁₇O₄₃ (PDF 005-0339), and Mo₁₉O₄₆ in both triclinic (PDF 012-0753) and monoclinic (PDF 005-0441) forms. Thus, the suboxide phase could not be definitively identified by XRD. We were also unable to identify the suboxide phase by Raman spectroscopy (Figure S7 and Table S1 in Supporting Information).

In the samples made at 300 °C, reflections of the stable orthorhombic α-MoO₃ (PDF 005-0508) appeared in addition to the suboxide reflections. The films deposited at 325 to 350 °C were phase-pure α-MoO₃. 0-28 XRD measurements showed the α-MoO₃ to be preferentially oriented with the (0k0) planes parallel to the substrate (Figure S9 in Supporting Information). Previously, a three-phase mixture of a suboxide phase and both α and β-MoO₃ phases was observed in ALD MoOₓ films deposited from
[MoO$_2$(thd)$_2$] and O$_3$ at 225 to 260 °C, whereas nearly phase-pure α-MoO$_3$ films was deposited at 300 °C. Thus, the onset of crystallization was about 50 °C higher in the present process compared to the [MoO$_2$(thd)$_2$]+O$_3$ process. In comparison, the PEALD process of Vos et al. using [Mo(N'Bu)$_2$(NMe$_2$)$_2$] and O$_3$ plasma produced crystalline α-MoO$_3$ films at 300–350 °C.

The refractive index (at 630 nm) increased with increasing deposition temperature from 1.85 at 200 °C to 2.3 at 325 °C (Figure 3c), which we attribute to densification and crystallization as well as changes in texture. Refractive indices of 1.8–2.2 at ~630 nm have been reported for trioxide-like MoO$_3$ thin films. For reference, the refractive index of bulk α-MoO$_3$ single crystals at 589 nm has been shown to be strongly anisotropic, ranging from 1.88 to 2.54 along the a and c axes, respectively. XRR measurements showed that the amorphous films deposited at 250 °C had a rather low density of 3.6–3.7 g/cm3 as compared to the MoO$_3$ bulk density of 4.7 g/cm3. Unfortunately, high roughness prevented density measurements of our crystalline MoO$_x$ films by XRR.

Next, the effect of the MoO$_x$ film thickness on the morphology and crystallinity was examined by varying the number of ALD cycles at 300 °C. The films started to roughen already after 50 cycles due to what appeared to be formation of crystallites on the surface (Figure 4a and Figure S9 in Supporting Information). Thereafter, the root-mean-square roughness remained nearly constant at 4 to 5 nm between 250 and 1000 cycles despite the four-fold increase in thickness. The morphology evolved from a surface pronouncedly exposing individual crystallites at 250 cycles to a more compact-looking surface at 1000 cycles. Grazing incidence X-ray diffraction (GIXRD) showed the first signs of the suboxide phase after 100 cycles, whereas α-MoO$_3$ started to form after 250 cycles. The relative amount of α-MoO$_3$ in comparison to the suboxide then increased with increasing number of cycles (GIXRD in Figure 4b and θ-2θ XRD in Figure S10 in Supporting Information).

In addition to the deposition temperature and film thickness, the phase composition could be modified by changing the precursor pulse lengths. Increasing the [Mo(N'Bu)$_2$(dpamd)$_2$] pulse length at 300 °C increased the amount of the suboxide phase relative to α-MoO$_3$ and smoothened the film surface (Figure S11–S13 in Supporting Information), whereas O$_3$ pulse length had the opposite effect (Figure S14–S16 in Supporting Information). In particular, nearly phase-pure α-MoO$_3$ was obtained using the longest, 10 s O$_3$ pulses. Effects of pulse times on film composition, crystallinity, and other properties are rarely examined, especially in the saturative ALD regime. Nevertheless, these effects are certainly not unique to this process, as similar observations have been made in ALD MoO$_x$, SnS, and TiN processes, for example.

![Figure 4. a) SEM images and roughness values (R$_q$) determined by AFM as well as b) grazing incidence X-ray diffraction patterns of MoO$_x$ films deposited at 300 °C with different number of ALD cycles. α refers to α-MoO$_3$ (PDF 005-0508).](image-url)

The morphology of the WO$_x$ films was also strongly temperature-dependent. The films grown at 250 °C and below were smooth similar to the MoO$_x$ films, whereas individual crystallites started to form on the film surface at 275 °C and above (Figure 5a). Only the films deposited at 325 to 350 °C appeared to be fully crystalline, however. Thus, the crystallization of WO$_x$ seems to occur at slightly larger thicknesses and temperatures compared to MoO$_x$.

6
Furthermore, the crystalline WO$_x$ films had a denser and smoother appearance compared to MoO$_x$. These interpretations are supported by GIXRD, which showed no signs of crystallinity at 250 °C, a very weak and broad peak at 275 °C, and sharp peaks attributed to WO$_3$ at 300 °C and above (Figure 5b). The films exhibited an increasing degree of preferred (002) orientation with increasing deposition temperature (Figure S17 in Supporting Information).

We indexed the reflections to the monoclinic γ-WO$_3$ phase (PDF 043-1035), which is stable from 17 to 350 °C in bulk form, although other phases of WO$_3$ including the triclinic δ-WO$_3$ (stable from -40 to 17 °C, PDF 20-1323) and the orthorhombic β-WO$_3$ (stable from 350 to 720 °C, PDF 020-1324) have similar structures and could not be definitively ruled out. Contrary to MoO$_x$, no suboxide WO$_x$ phases were seen in any of the films. Raman spectra of the WO$_x$ films deposited at 300 °C and above only revealed modes attributed to one of the WO$_3$ phases (Figure S18 and Table S2 in Supporting Information).

Both the refractive indices (at 630 nm) and densities of the WO$_x$ films increased with increasing deposition temperature, from 1.8 and 5.7 g/cm3 at 200 °C, respectively, up to 2.3 and 7.4 g/cm3 at 350 °C (Figure 5c). The refractive indices agree with reports on WO$_3$ thin films, although even higher values from 2.28 to 2.70 along the c and a-axes, respectively, have been reported for bulk WO$_3$ single crystals at the long-wavelength limit. The density of the films deposited at the highest temperatures is practically equivalent to the WO$_3$ bulk density of 7.2 g/cm3.

The thinnest WO$_x$ film deposited using 100 cycles at 300 °C (approximately 4 nm) was smooth (Figure 6a) and amorphous (Figure 6b and Figure S19 in Supporting Information). A few small crystallites were visible on the surface after 250 cycles, but XRD detected crystallinity only after 500 cycles. After 1000 cycles at 300 °C the surface still had some smooth, likely amorphous areas.

The crystallinity of the WO$_x$ films was also correlated to the precursor pulse lengths used, as was observed for the MoO$_x$ films. The [W(NBu)$_2$(dpamd)$_2$] pulse length yielding the highest crystallinity and density at 300 °C was 0.5 s, below the length needed for the saturation (Figure S20–S22 in Supporting Information). On the other hand, lengthening the O$_3$ pulse length increased the crystallinity, density, refractive index, and the degree of the preferred (002) orientation (Figure S23–S25 in Supporting Information).

Both the MoO$_x$ (Table 1) and WO$_x$ (Table 2) films were relatively close to the MoO$_3$ stoichiometry with low impurity contents according to ToF-ERDA. The MoO$_x$ films deposited at 275 °C the O/Mo stoichiometry of 2.80 was in line with the film being at least partly crystalline suboxide (2.75 ≤ x ≤ 2.89), whereas the α-MoO$_3$ film deposited at 325 °C had an excess of oxygen (O/Mo 3.19). The C and N levels, likely originating from the precursor ligands, were low and generally decreased with increasing deposition temperature. The somewhat higher hydrogen content in the MoO$_x$ films (1.4–2.7 at.%) showed little

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>MoO$_x$ Composition (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>2.80</td>
</tr>
<tr>
<td>325</td>
<td>3.19</td>
</tr>
<tr>
<td>200</td>
<td>2.75–2.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>WO$_x$ Composition (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2.3</td>
</tr>
<tr>
<td>250</td>
<td>2.3</td>
</tr>
<tr>
<td>300</td>
<td>2.3–2.7</td>
</tr>
</tbody>
</table>

The Table 1. Composition of MoO$_x$ films deposited using 1000 cycles as determined by ToF-ERDA.
Measurements were done after gentle Ar sputtering to surface contamination and hydroxyl groups, which would also explain some of the excess oxygen in the films. The WO$_x$ films deposited at both 300 and 350 °C were close to the WO$_{2.9}$ structure and stoichiometry (O/W 2.9), with very low impurity contents: only C, N, and H combined. The impurity contents were lower or on similar level compared to the reported ALD MoO$_x$ and WO$_x$ films.

In order to gain further insight into the structure and composition of the scarcely studied suboxide MoO$_x$ films, we used synchrotron photoemission spectroscopy to characterize a 50 nm molybdenum oxide film deposited at 275 °C. Measurements were done after gentle Ar$^+$ sputtering using two take-off angles, 0° and 60° with respect to the surface normal, the latter resulting in increased surface sensitivity. Survey scans detected only Mo, O, and C, the last one being a surface contaminant (Figure S26 in Supporting Information). The broad Mo 3d doublet at 0° take-off angle was deconvoluted to three chemical states (Figure 7a): Mo$^{6+}$, Mo$^{5+}$, and Mo$^{4+}$ with Mo 3d$_{5/2}$ binding energies (and relative amounts) of 233.0 eV (28%), 231.6 eV (51%), and 230.2 eV (21%), respectively (Table S3 in Supporting Information). Compared to the MoO$_{2.8}$ composition determined by ToF-ERDA as an average through the film thickness, photoemission spectroscopy yielded a more oxygen-deficient composition: MoO$_{2.9}$ and MoO$_{2.4}$ at 0° and 60° take-off angles, respectively, which suggests that the oxidation state of molybdenum and the O/Mo ratio were lower on the film surface than in the film bulk. The surface composition may have changed while cooling the film in vacuum after the film deposition or during storage in air.

Five main chemical states were identified in the O 1s spectra (Figure 7a) at 534.4 eV (adsorbed H$_2$O), 533.7 eV (surface OH$^-$), 532.8 eV (O$^{2-}$ bonded with Mo$^{6+}$), 531.5 eV (O$^{2-}$ bonded with Mo$^{5+}$), and 530.6 eV (O$^{2-}$ bonded with Mo$^{4+}$). The valence band spectra show convoluted Mo 4d and 5s as well as O 2p features between 5 and 15 eV and O 2s levels near 23 eV (Figure 7b). The defect states located at approximately 3 eV below the Fermi level were attributed to oxygen vacancies of the MoO$_x$ film, which are more pronounced on the surface (60° take-off angle).

The valence band maximum was located at 1.0 eV below the Fermi level. We estimated the work function of the film by extrapolating the linear part of the secondary electron cut-off to zero and deducting this from the excitation photon energy of 65 eV (not shown). This procedure yielded values of 6.0 and 7.0 eV at 0° and 60° take-off angles, respectively. The higher work function at the 60° take-off angle is attributed to surface contamination and hydroxyl groups, whereas the value of 6.0 eV obtained at 0° matches those reported for non-stoichiometric MoO$_{2.8}$.

Next, to explore the suitability of MoO$_x$ films for gas sensing, we performed temperature-dependent resistivity measurements in air on 50 nm MoO$_x$ films deposited at 275 °C. Measurements were done after gentle Ar$^+$ sputtering using two take-off angles, 0° and 60° with respect to the surface normal, the latter resulting in increased surface sensitivity. Survey scans detected only Mo, O, and C, the last one being a surface contaminant (Figure S26 in Supporting Information). The broad Mo 3d doublet at 0° take-off angle was deconvoluted to three chemical states (Figure 7a): Mo$^{6+}$, Mo$^{5+}$, and Mo$^{4+}$ with Mo 3d$_{5/2}$ binding energies (and relative amounts) of 233.0 eV (28%), 231.6 eV (51%), and 230.2 eV (21%), respectively (Table S3 in Supporting Information). Compared to the MoO$_{2.8}$ composition determined by ToF-ERDA as an average through the film thickness, photoemission spectroscopy yielded a more oxygen-deficient composition: MoO$_{2.9}$ and MoO$_{2.4}$ at 0° and 60° take-off angles, respectively, which suggests that the oxidation state of molybdenum and the O/Mo ratio were lower on the film surface than in the film bulk. The surface composition may have changed while cooling the film in vacuum after the film deposition or during storage in air.

Five main chemical states were identified in the O 1s spectra (Figure 7a) at 534.4 eV (adsorbed H$_2$O), 533.7 eV (surface OH$^-$), 532.8 eV (O$^{2-}$ bonded with Mo$^{6+}$), 531.5 eV (O$^{2-}$ bonded with Mo$^{5+}$), and 530.6 eV (O$^{2-}$ bonded with Mo$^{4+}$). The valence band spectra show convoluted Mo 4d and 5s as well as O 2p features between 5 and 15 eV and O 2s levels near 23 eV (Figure 7b). The defect states located at approximately 3 eV below the Fermi level were attributed to oxygen vacancies of the MoO$_x$ film, which are more pronounced on the surface (60° take-off angle).

The valence band maximum was located at 1.0 eV below the Fermi level. We estimated the work function of the film by extrapolating the linear part of the secondary electron cut-off to zero and deducting this from the excitation photon energy of 65 eV (not shown). This procedure yielded values of 6.0 and 7.0 eV at 0° and 60° take-off angles, respectively. The higher work function at the 60° take-off angle is attributed to surface contamination and hydroxyl groups, whereas the value of 6.0 eV obtained at 0° matches those reported for non-stoichiometric MoO$_{2.8}$.

Next, to explore the suitability of MoO$_x$ films for gas sensing, we performed temperature-dependent resistivity measurements in air on 50 nm MoO$_x$ films deposited at...

Table 2. Composition of WO$_x$ films deposited using 1000 cycles as determined by ToF-ERDA.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>W (at.%)</th>
<th>O (at.%)</th>
<th>O/W</th>
<th>C (at.%)</th>
<th>N (at.%)</th>
<th>H (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>25.3±0.3</td>
<td>73.4±1.9</td>
<td>2.9±0.08</td>
<td>0.38±0.14</td>
<td>0.48±0.13</td>
<td>0.39±0.21</td>
</tr>
<tr>
<td>350</td>
<td>25.0±0.2</td>
<td>73.7±1.3</td>
<td>2.95±0.06</td>
<td>0.40±0.09</td>
<td>0.32±0.08</td>
<td>0.61±0.23</td>
</tr>
</tbody>
</table>

Figure 6. a) SEM images and b) grazing incidence X-ray diffractograms of WO$_x$ films deposited with different number of ALD cycles at 300 °C.
275 and 300 °C, which consisted of the suboxide and a mixture of the suboxide and α-MoO₃ phases, respectively (Figure S27 in Supporting Information). Both films had a resistivity of approximately 80 Ωcm at 40 °C (Figure 8). The resistivity first increased up to 76 °C, likely due to desorption of H₂O, and then decreased at higher temperatures as expected for semiconductors. The film deposited at 300 °C had a higher resistivity between 115 and 189 °C than the film deposited at 275 °C probably due to the greater oxygen deficiency of the latter.

Figure 7. a) High resolution Mo 3d and O 1s X-ray photoemission spectra and b) valence band region of a 50 nm MoOₓ films deposited at 275 °C measured at 0 and 60° take-off angles.

Above 200 °C the difference between the samples decreased, likely due to annealing of surface defects. Both films ended up having a resistivity of 6–7 Ωcm at 330 °C. Identical results were obtained on cooling the film and repeating the measurements, which shows that no irreversible changes in film structure occurred up to 330 °C.

The measured resistivity values are relatively low compared to stoichiometric MoO₃, which has a resistivity above 10⁹ Ωcm at room temperature. Various suboxides have been reported to have much lower resistivities compared to MoO₃, ranging from 100 Ωcm for MoO₃ up to as low as 10⁻⁴ Ωcm for γ-MoO₃. Additionally, easily forming oxygen vacancies are known to greatly enhance the conductivity of MoO₃.

Figure 8. Resistivity versus temperature (in air) of 50 nm MoOₓ films deposited at 275 and 300 °C on 500 nm SiO₂/Si substrates.

Finally, a simple gas sensor device was constructed by depositing a 50 nm MoOₓ film at 275 °C on a silicon substrate covered with 500 nm of SiO₂. The device was contacted using two silver point contacts. The 275 °C sample was chosen because of its phase composition: as described above, the films deposited at 275 °C contained an unidentified molybdenum suboxide phase as the only crystalline phase and had surface and bulk stoichiometries of MoO₂.4 and MoO₂.8 according to synchrotron-based XPS and ToF-ERDA, respectively. Unlike MoO₃, 25–30 molybdenum suboxides have not, to the best of our knowledge, been previously studied as hydrogen gas sensor materials.

The MoOₓ sensor exhibited a clear, reversible change in conductance when exposed to different concentrations of hydrogen gas. The response against H₂ was quantified using the absolute value of sensitivity (S), which represents the change in conductance compared to that measured in dry air as defined in Eq. 1, where C_E and C_B denote conductance during exposure to the target gas and baseline in dry air, respectively. Additionally, response (recovery) times were defined as the time passed until the sensor reached 90% (10%) of the maximum signal for a given concentration. Furthermore, following a common convention, a decrease in conductance when exposed to hydrogen is designated as p-type response and an increase is termed n-type response.

\[
\text{Sensitivity } (S) = \left| \frac{C_E - C_B}{C_B} \right| \times 100 \quad \text{Equation 1}
\]

The MoOₓ sensor showed an overall p-type response to hydrogen when the sensor was operated at 120 °C. During each hydrogen pulse the sensor exhibited a weak initial n-type response, in other words an increase in conductance, but a much stronger p-type response, i.e. decrease in conductance quickly followed leading to an overall p-type response of the sensor. The semiconducting molybdenum
oxides usually behave as n-type semiconductors and gas sensors. Although p-type response has also been reported for MoO$_3$ gas sensors, reasons for the p-type behavior are not understood at present.

Figure 9. Dynamic sensor response of a 50 nm MoO$_3$ film deposited at 275 °C: a) complete measurement against six different concentrations of H$_2$ (5000-35000 ppm) and two different exposure times (1 and 15 min) and b) a more detailed view of the 15 min 25000 ppm H$_2$ pulse along with the extracted sensor performance. The measurements were done at 120 °C.

The sensitivity increased from 1.6 to 6.9% when the H$_2$ concentration increased from 5000 to 35000 ppm (Figure 9a). The sensor responded rapidly to the changes in the atmosphere with response and recovery times of 36 and 160 s determined during a 15 minute 25000 ppm H$_2$ pulse (Figure 9b). Even a one-minute pulse of H$_2$ resulted in a sensitivity of 3.2% at 30000 ppm H$_2$ concentration. Thus, the sensor showed fast kinetics as well as a repeatable and reversible response with a capability to distinguish between different hydrogen concentrations at a relatively low operating temperature of only 120 °C. Future work is planned with more sophisticated interdigitated current collectors (IDEs) in order to obtain more detailed information on the sensing mechanisms as well as to use higher testing temperatures to increase the sensitivity.

Conclusions

We introduced bis(tert-butylimido)bis(N,N'-diisopropylacetamidinato) compounds of molybdenum and tungsten as precursors for atomic layer deposition. MoO$_3$ and WO$_3$ (x ≈ 3) films were deposited using ozone as a reactant at 200 to 350 °C. Both precursors yielded uniform films, although the growth behaviors differed: MoO$_3$ films grew at a high growth rate of up to 2 Å/cycle at 300 °C but without complete saturation, whereas the growth of WO$_3$ was saturative with a growth rate of 0.45 Å/cycle at 300 °C. Crystallinity and composition could be tuned by changing deposition conditions, especially the deposition temperature, but also film thickness and precursor pulse times. Whereas WO$_3$ crystallized to WO$_3$ at 300 °C and above, MoO$_3$ formed crystalline suboxide (275-300 °C) and α-MoO$_3$ (300-350 °C) phases. Crystalline films of both metal oxides were very pure and close to the expected stoichiometry. Synchrotron-based surface enhanced photoemission spectroscopy revealed a high amount of oxygen vacancies on the surface of a MoO$_3$ suboxide film deposited at 275 °C. The temperature-dependent resistivity of the MoO$_3$ films suggested the films to be suitable for gas sensor applications. A simple hydrogen gas sensor device constructed using a 50 nm suboxide MoO$_3$ film showed reversible and fast response to hydrogen gas at low temperature. The present results form a solid base for further in-depth studies exploring the use of uniform and conformal molybdenum and tungsten oxide films with controlled crystallinity as gas sensors as well as in other applications, such as catalysis and energy storage.

ASSOCIATED CONTENT

Supporting Information. Thickness measurements using different methods (ellipsometry, EDS, and XRR), SEM images of MoO$_3$ film deposited in a trench structure. Further XRD and Raman data of MoO$_3$ and WO$_3$ films deposited at different temperatures and with different number of ALD cycles. AFM images of MoO$_3$ films deposited at 300 °C. SEM images, X-ray diffractograms, and refractive indices of MoO$_3$ and WO$_3$ films deposited using different precursor pulse lengths. Photoelectron survey spectra, tabulated photoemission results, X-ray diffractograms and SEM images of a 50 nm MoO$_3$ film deposited at 275 °C. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

* M. Mattinen. E-mail: miika.mattinen@helsinki.fi
*M. Ritala. E-mail: mikko.ritala@helsinki.fi

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The research was supported by ASM Microchemistry and the Finnish Centre of Excellence in Atomic Layer Deposition (ALDCoE) funded by the Academy of Finland. The authors from Ruhr-University Bochum and Heinrich Heine University Düsseldorf acknowledge the funding from European Funds for Regional Development (EFRE-o800672-FunALD).
REFERENCES

ALD MoO₅ and WO₅

Low-temperature H₂ sensor

M = Mo, W

MoO₅ / SiO₂ / Si