Utility of video ICG to detect the cortical entry point of a draining vein with a superficial vein during AVM surgery

Sajjad Muhammad, MD, PhD, Mika Niemelä, MD, PhD, Martin Lehecka, MD, PhD

PII: S1878-8750(18)32601-9
DOI: https://doi.org/10.1016/j.wneu.2018.11.054
Reference: WNEU 10738

To appear in: World Neurosurgery

Received Date: 20 September 2018
Revised Date: 3 November 2018
Accepted Date: 7 November 2018

Please cite this article as: Muhammad S, Niemelä M, Lehecka M, Utility of video ICG to detect the cortical entry point of a draining vein with a superficial vein during AVM surgery, World Neurosurgery (2018), doi: https://doi.org/10.1016/j.wneu.2018.11.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Utility of video ICG to detect the cortical entry point of a draining vein with a superficial vein during AVM surgery

Sajjad Muhammad MD, PhD, Mika Niemelä MD, PhD, Martin Lehecka, MD, PhD

Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland

*Correspondence:
Sajjad Muhammad, MD, PhD
Helsinki University and Helsinki University Hospital, Helsinki, Finland
Email: ext-sajjad.muhammad@hus.fi
Tel: 00358-503757488

Conflict of interest: None
Abstract

Resection of brain arteriovenous malformation is challenging particularly if the feeder arteries and draining vein are not directly visible on the surface. Indocyanine green video angiography can assist detection of the connecting point of the draining vein with the superficial vein and can thus localise the cortical entry point for AVM resection. Here, we present a case of a 27-year-old man with headache. CT scan showed right occipital atypical bleeding. CTA and DSA confirmed the cortical AVM fed by the posterior cerebral artery (PCA) branches. We decided on surgical treatment because the small PCA feeders were not easily accessible for endovascular treatment. We used an OPMI PENTERO 900 microscope (Carl Zeiss, Germany) to perform microsurgical resection of AVM. We present an illustrative video showing the surgical approach, microsurgical anatomy, and technical aspects of the utility of video ICG in deep cortical small AVM surgery. Video ICG assisted detection of the cortical arterialised draining vein that was anasthamosed with a sprawled superficial vein. This enabled a customised approach for the AVM resection. Postsurgical video ICG showed normalised flow in the superficial vein supporting the complete resection of AVM. Indocyanine angiography is potentially helpful for detecting the cortical entry point of a deep draining vein with a sprawled superficial vein. ICG should be used as an adjunct to better understand the microvascular anatomy that may aid decision making during AVM surgery.

Key words

Indocyanine angiography, Arteriovenous malformation, Surgical treatment, Draining vein
Sajjad Muhammad, MD PhD
Department of Neurosurgery,
University of Helsinki and Helsinki University Hospital
Helsinki, Finland
Email: ext-sajjad.muhammad@hus.fi

To
Editor of World Neurosurgery

Subject: Abbreviations for manuscript entitled Utility of video ICG to detect the cortical entry point of a draining vein with a superficial vein during AVM surgery

Video-ICG= Video Indocyanin angiography
AVM= Arteriovenous malformation
CT= Computer tomography
CTA= CT angiography
DSA= Digital subtraction angiography