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Abstract4

Forest inventories comprise observations, models and sampling. Airborne LiDAR has established its role in providing5

observations of canopy geometry and topography. These data are input for estimation of important forest properties to support6

forestry-related decision-making. The primary deficiency in forest remote sensing is tree species identification. This study7

examines the quite atypical option of using multi-footprint airborne LiDAR data. Features of such sensor design exist in recently8

introduced multispectral laser scanners. The first objective was to acquire radiometrically normalized, multi-footprint (11, 22, 449

and 59 cm) waveform (WF) data that characterize 1064-nm backscatter reflectance on the interval scale. The second objective10

was to analyze and validate the data quality in order to draw the correct conclusions about the effect of footprint size. Finally,11

the data were analyzed in different forest canopies. The experiment was carried out in Finland. Footprint variation was12

generated by acquiring data at different flying heights and by adjusting the transmitted power. The LiDAR campaign was13

successful and the data were of sufficient quality, except for a 1 dB trend due to the atmosphere. Significant findings were made14

concerning the magnitude of atmospheric losses, the linearity of the amplitude scale and the bandwidth characteristics of the15

receiver, the stability of the transmitter, the precision of the amplitude data, the transmission losses in canopies and power lines16

as well as the response of WF attributes to footprint size in forest canopies. Multi-footprint data is a promising approach17

although the species-specific signatures were weak.18
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1. Introduction21

22

Airborne LiDAR data are used for many purposes, and the rationales for the present study originate from LiDAR remote sensing23

(RS) of forests (Vauhkonen et al., 2014). It has recently become an integral part of forest management planning systems in24

Finland (Maltamo and Packalén, 2014). LiDAR is an observation tool that has reduced the sampling intensity and provided25

entirely new observations for the estimation of forest attributes. In Finland, forest planning inventories consist of area-based26

estimation of stand boundaries, attributes and management proposals, using a combination of field reference, aerial image and27

LiDAR data, all finally followed by a field inspection. The data acquisition costs have decreased compared with field-work28

intensive systems, with both improvements and deficiencies in the deliverables. The primary deficiency in forest RS, not only in29



Finland, is tree species identification. There is a need for observations that aid in solving this problem. Multi-footprint data may30

comprise one option.31

Regarding sensors, foresters have mostly used data acquired by topographic small-footprint instruments. Narrow beams32

promote accurate geometry and reach the ground. While simulation studies have highlighted how sensor properties influence33

the available information (Disney et al., 2010, Hovi & Korpela, 2014), certain constraints pertain to sensor design. They include34

the need for extremely high dynamic range, consideration of eye-safety, receiver sensitivity and bandwidth, availability of35

powerful lasers at different wavelengths, data transfer and storage capacity requirements, power consumption, limitations on36

the size of the mirror and the aperture, and the final instrument cost. Advances in the last 10−15 years relate to improvements37

in pulse repetition frequency, capture of waveform (WF) data, fast direct georeferencing and the detection of multiple echoes,38

inter alia. Teledyne Optech (Vaughan, Ontario) recently released a three-band, dual-footprint WF-recording sensor called Titan,39

in which the divergence of the 532-nm pulses is wider than that of 1064-nm and 1550-nm pulses. The relative reflectance40

difference of green and woody vegetation between the 1064 and 1550 nm bands is likely beneficial for tree species iden-41

tification as the green/woody silhouette visible from the above shows between-species differences owing to differences in leaf42

angle distributions, and in branch and crown morphology. On the other hand, WFs carry species-specific traits (Hovi et al., 2015),43

when tens of pulses per crown are evaluated. How the combination of WF and multi-band data will benefit species44

identification, is a very interesting topic. Although advances are foreseeable with multispectral LiDAR, this study examines the45

relatively unconventional concept of multi-footprint LiDAR to investigate how such data characterize canopy structure, and in46

general augment our understanding of the characteristics of LiDAR data. The rest of this section provides further background to47

the topic and introduces hypotheses that were tested empirically.48

The radar equation (Eq. 1) applies to LiDAR as well, and states that the received power (Pr) is influenced by the aperture area (D),49

the atmospheric transmission losses (T), the optical efficiency of the system (Q), the transmitted power (Pt), the laser beam50

divergence (b), the range (R), and the backscattering cross-section of the target (s):51
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where s can be said to be comprised of target reflectance, geometry and the illuminated/silhouette area. Eq. (1) is53

‘instantaneous’, while in reality the power terms and s are time- or distance dependent and the optical power of the beam has54

a Gaussian cross-section profile (cf. Wagner et al., 2006; Mallet and Bretar, 2009).55

Eq. (1) states that Pr is in linear dependence with target reflectance and the transmitted power. A large aperture increases Pr and56

the signal-to-noise ratio (SNR), because the extra solar illumination reaching the detector, non-attenuated, is minor compared to57

the internal receiver noise. Atmospheric attenuation is 0.1-0.3 dB/km in weather conditions that are suitable for LiDAR RS.58



The effect of R, i.e. the spherical losses, depend on the target, because large surfaces, linear targets and blob-like objects all59

exhibit different response. A sensor that provides ratio- or interval-scale measurements of Pr, will show a fourfold (6 dB)60

increase in well-defined surfaces, when R is halved, whereas Pr is 8 or 16 times (9 or 12 dB) larger for a wire or a small leaf. Tree61

crowns are volumetric and the structure influences the signal change due to R (Korpela et al., 2010, Gatziolis, 2011), making62

range normalization ill-posed in canopies. In linear targets, such as cables, the distribution of Pr has an exponential-even shape63

with a modest peak near the maximum, while for blob-like features, the distribution is inverse-exponential.64

Divergence defines the angular spread of the beam’s Gaussian irradiance profile. Here it is defined by the 1/e2 point. A target65

may give rise to a measurable echo, only if it is illuminated by the pulse center. The backscatter cross-section may shrink for a66

tilted target, or at least the returning pulse is extended and dampened. Because sensors record meaningful data only,67

backscattering (Pr) needs to be strong enough to trigger an observation, and the real signal distributions are always truncated by68

some combination of s and the receiver noise. The sensor used in this study stores a single continuous and fixed-length WF, the69

recording of which is triggered by the first threshold-exceeding echo. Some sensors record variable-length WF samples with70

pauses in between and thresholding applies to this 'piecewise WF-recording’ as well (e.g. Armston et al., 2010). In general, weak71

backscattering preceding the first echo may remain undetected, while such weak within-canopy or ground scattering may be72

observable, when the recording is on, and missed, while it is paused. This constitutes a vertical sampling bias. A somewhat73

similar effect causes selection bias in the analyses of discrete-return (DR) intensity data, when the separation between only and74

first-of-many echoes is often made (Ørka et al., 2010; Korpela et al., 2010b), because this instrument-driven division is75

influenced by the backscatter cross-section profile of targets following the first interaction, for example the ground flora in the76

case of tree crowns.77

Regarding multi-footprint data, changing solely the beam width will not influence Pr as long as the target is a well-defined78

surface filling the footprint, while for small targets, Pr varies according to the intersection geometry, as stated. Multiple79

scattering and transmission losses are introduced instantly following the first pulse-canopy interaction (the subsequent targets80

comprise an apparent differential backscatter cross-section profile (Richter et al., 2015), high-order volumetric scattering can be81

significant, and backscattering occurs far from the beam path (Hovi and Korpela, 2014). Foliage orientation, size, density and82

silhouette area were shown to influence the recorded intensity in broadleaved and coniferous trees in Finland (Korpela et al.,83

2010b, 2013; Hovi and Korpela, 2014).  If beam width increases by a factor of i, while Pt is constant, the average Pr decreases by84

1/i2 and 1/i in blob-like and linear targets, respectively. A wide beam is more likely to find directional canopy gaps and the85

proportion of pulses that illuminate the ground is higher. Many small targets that trigger an echo in narrow beams remain86

undetected in large-footprint data and contribute to transmission losses, which explain why ground signal levels can be87

expected to be lower in large-footprint data. The wider the pulse, the smaller is the likelihood for the pulse to reach the ground88

with maximal energy. Thus, measuring the reflectance properties of the forest floor using single-return data is more accurate in89



narrow footprint data as shown for understory lichens in Korpela (2008). The peak amplitude distribution of canopy echoes can90

therefore be expected to be shifted towards low values in large footprint data. It can also be expected that the return WFs are91

widened in large-footprint data, because a wider beam illuminates targets that also spread across a larger depth.92

As stated, spherical losses depend on the target geometry and it is therefore evident that a fixed signal-to-noise-ratio (SNR)93

cannot be maintained for the canopy and the ground, when scanning from different heights (Goodwin et al., 2006, Ørka et al.,94

2010). When R is doubled, a 6 dB increase in Pt will maintain the SNR for well-defined surfaces. We cannot expect this to hold95

true for the forest floor, because canopy transmission losses will increase with increasing footprint size. The SNR of small targets96

will fall even if the power is increased by 6 dB, which explains the reduction in canopy echo counts in high-altitude LiDAR97

(Goodwin et al., 2006). Of course, atmospheric losses introduce additional signal loss. Varying the scan zenith angle changes R98

and the incidence angles. Pulses reflecting from tilted surfaces will exhibit widened echoes, in which the peak amplitude is dam-99

pened, and both the widening and the dampening depend on the footprint size (e.g. Mallet and Bretar, 2009).100

Increasing Pt improves the SNR. Other options include enlarging the receiver aperture and mirror, or decreasing the receiver101

noise level. The latter comprises dark noise of the detector, electronic and digitization noise as well as natural light that reaches102

the detector. The energy captured by an aperture that is located in the footprint center, and focuses light to the retina, cannot103

exceed critical values, which in turn limits Pt and/or beam divergence. Eye-safety is a more severe concern at 532 nm than at104

1064 nm or 1550 nm. Regarding multi-band sensors, we can note that the reflectance of foliage at 532 nm is one tenth of that at105

1064 nm. Given the same aperture, divergence and output power, the green band signals will thus be 10 times lower. In order to106

improve the SNR of well-defined targets (at 532 nm), it is possible to increase both the transmitted power and/or beam107

divergence, where the latter may be needed for eye-safety. Because multiple scattering in vegetation is weak in visible bands,108

the returning 532 nm pulses are probably less extended compared to NIR pulses of the same beam divergence, which may be109

exploited in target classification using multi-band LiDAR.110

Radiometric observables in LIDAR data include intensity and WF amplitude data. The instantaneous spectral irradiance is111

captured by the aperture, reflected to a collimating lens that directs it to the photon detector through a band-pass filter. The112

detector and the circuits that follow, i.e. the receiver, have certain noise characteristics, impulse response and bandwidth (BW)113

properties. The latter two determine how the dynamics of the photon surge are captured. Receiver bandwidth is inherently114

limited and rapid changes in the photon surge are low-pass filtered in the WF. As long as the transmitted pulses are stable,115

minor deficits in bandwidth are not critical for reliable ranging, which is also shown in this study. Receiver performance may116

depend on signal strength and for example very strong echoes can temporarily increase the noise level or cause 'ringing', i.e.117

'ghost echoes’, in the WF (e.g. Armston et al., 2010). If the internal signal levels are too high, i.e., outside the linear (dynamic)118

range of the receiver circuits, the sensor of this study performs erroneous discrete ranging and the intensity data are distorted.119



A one-nanosecond sampling interval is typical in WF-recording sensors, and the length (full width at half maximum, FWHM) of120

the transmitted pulse is below 10 ns. The power goes up to several kWs in some nanoseconds only, but the exact power121

envelope of the transmitted pulse is usually not known. Any within- or between-pulse variation directly influences the122

convolution of the transmitted pulse with the backscatter cross-section profile of the targets. Some sensors provide a digitized123

sample of the transmitted pulse to enable exact ranging and echo attribute retrieval in post processing (Wagner et al., 2006;124

Roncat et al., 2014)125

Radiometrically quantitative analyses require that the properties of the transmitted pulse (directional target illumination) and126

the receiver’s response to instantaneous at-sensor irradiance (measurement of reflected radiance) are known, in addition to the127

properties of the medium. Such absolute calibration is typically unattainable for LiDAR sensors and vicarious calibration with128

reflectance targets becomes the only option (cf. Wagner, 2010). This in turn is challenging because reference measurements of129

zero phase-angle reflectance are hard to establish and are rarely done. A linear response of the receiver is usually assumed (with130

gain and offset), or alternatively a look-up-table is used. Some sensors have two receivers and the model is needed for both. DR131

sensors can have individual circuits for the detection of echoes and the intensity values can have different calibration. The132

sensor used in this study has a single receiver, in which the gain of the signal chain is dynamically adjusted up to 3 dB by an133

automatic gain control (AGC) circuit. In order to draw conclusions about the influence of footprint size, using the WF data, it is134

vital to establish a mapping between the amplitude data and the at-sensor power. Such mapping was performed in this study.135

This study examines the relatively unconventional concept of multi-footprint LiDAR to investigate how such data characterize ca-136

nopy structure, and in general augment our understanding of LiDAR data. Specific objectives were:137

1. Plan and carry out WF LiDAR data acquisition with a fixed beam divergence sensor that results in radiometrically138

comparable multi-footprint data in well-defined targets.139

2. Carry out radiometric normalization of peak amplitude data using well-defined surfaces to remove the effects of the140

AGC circuit, to estimate the offset of the amplitude scale and to identify any deficits in the acquisition.141

3. Validate the normalization across the study site to ensure that the data qualifies for analyses on the influence of the142

footprint size.143

4. Acquire independent data using the same sensor to investigate and verify whether the amplitude scale of the receiver144

is in linear dependence with the instantaneous at-sensor power.145

5. Investigate the impulse response of the receiver to assure that WF attributes are influenced only by the pulse-target146

interaction.147

6. Carry out empirical tests to show that the hypotheses presented in the introduction are confirmed by the measured148

real data.149



2. Experiment and results150

2.1 Research site151

The experiments were carried out in Hyytiälä (61°50'N, 24°17'E), southern Finland. The area is mostly covered by forest, but152

there are also fields, open and forested peatlands, built environment and a network of forest roads. Aerial photographs cover153

the time period of 1946-2015 and there are 19 airborne LiDAR datasets acquired in 2004-2015. Geometric reference data inc-154

lude close-range photogrammetric images, surveying points and profiles. These data as well as the redundant airborne image155

and LiDAR data were used for geometric quality control of the LiDAR data sets used here. (Hovi, 2015).156

2.2 Waveform-recording LiDAR data157

Objective #1 was to acquire multi-footprint data, in which the same energy was transmitted by varying the beam divergence.158

Sensors with the option of changing divergence were not available. To produce the same effect, a Leica ALS60 sensor was used159

at different heights as its transmitted power can be adjusted by almost 20 dB (1-100%). The nadir 1/e2 footprint diameters were160

11, 22, 44 and 59 cm from the acquisition heights of 0.5, 1.0, 2.0 and 2.7 km, respectively. The pulse power was set to nominal161

levels of 100, 55, 14 and 4% (Tables 1 and 2) to account for the spherical losses in well-defined surfaces. Strip overlaps were162

increased for the higher altitudes to reach comparable pulse density. According to the manufacturer, the FWHM of the163

transmitted pulses is 4 or 9 nanoseconds, which showed as 7 and 10 ns in the recorded data (Fig. 1). The wavelength is 1064 nm,164

and Fig. 2 shows the difference of intensity data in different targets between the ALS60 and a Riegl LMS-Q680i sensor, which165

operates at 1550 nm. The Riegl data was acquired in 2013 (not tabulated) and was used for illustrations only. The same ALS60166

sensor was used for datasets 2012_## and 2013_## (Table 2). The acquisition in 2013 was carried out to verify the linear167

response of the receiver, objective #4. It comprised three flying heights: 700 m, 800 m and 900 m. The sensor was operated in168

an unorthodox manner by deliberately fixing both the transmitter power and the receiver gain (AGC, see later). Appropriate gain169

and power settings were found by first acquiring the 700-m data with the AGC on. These datasets have ±12.5% range variation.170

The receiver front-end in the ALS60 implements an AGC and the gain can vary by 0-3.2 dB (typically less) in response to scene171

brightness so that the internal signal levels are kept in the linear region of the range detection circuits. As said, the gain can also172

be fixed (2013_## datasets). The influence of the AGC can largely be removed, using an 8-bit 'voltage value' that is stored for173

each pulse, shown first in Korpela (2008).174

175



176

Table 1. Sensor parameters.177

Wavelength, nm 1064

Pulse length, FWHM, ns 4, 9

System WF, FWHM, ns 7.8, 10.2

WF of transmitted pulse No

Divergence, mrad, 1/e2 0.22

Mirror Oscillating

Front-end amplifier Automatic Gain Control

Triggering of WF-recording Discrete-return circuit

WF-recording sequence Single, 256 samples

WF Sampling rate, ns 1 or 2

LiDAR position, XYZ yes

Discrete-return echoes on-the-fly; 1, 2, 3 or 4

Echo attributes range, XYZ, intensity

Acquisition height, m 500, 1000, 2000, 2700

178

179

Table 2. Characteristics of the experimental LiDAR acquisitions. See also Table 1.180

Dataset 2012_ (05, 10, 20, 27) 2013b_ (07, 08, 09)

Purpose Multi-footprint data Linearity tests

Date, local July 5, 2012 June 15-16, 2013

Time, GMT 19-22 21-00

Phenology mid-season early season

Sensor ALS60 ALS60

Altitude, m 500, 1000, 2000, 2700 700, 800, 900

WF density per m2 5, 5, 3, 2 6, 6, 5

Scan angle, degrees ±15 ±15

PRF, kHz 152, 99, 59, 45 106

System WF, FWHM, ns 7.8, 10.1, 10.3, 10.4 7.8

Footprint, 1/e2, m 0.11, 0.22, 0.45, 0.59 0.15, 0.18, 0.20

AGC on off

181

ALS60 is primarily a DR sensor and the WF storage calls for an optional digitizing module. The storage is triggered by the first DR182

echo. A sequence of 256 amplitude (A) values is recorded including a buffer of 30 samples (Fig. 1). Two oscilloscopes take turns183

in digitizing the pulses at 1 GS/s. Their bandwidth (BW) is 300 MHz and the rise time for a square signal from 10% to 90% is 1.2184

ns. The BW and linearity of the preceding circuits, including the impulse response of the photon detector are unknown, as is the185



exact stability of the transmitter. However, the large difference in the FWHM of the transmitted and received 4 ns pulses clearly186

suggests bandwidth deficits.187

188

189

Fig. 1. The x-axis shows the range in meters centered (0 m) at the first echo. In the left figure there are three single-echo WFs.190

The 500-m echoes are from the ground, while the 1000-m echo was triggered 2 m above the ground despite the strong ground191

signal. Weak backscattering from the signs is seen even for the 500-m pulses in the preceding buffer. In the figure on the right192

there are three pulses that gave rise to an echo from the top of the chimney. The 1000-m pulse reflected 'entirely' from the top,193

while the 2/2.7 km pulses have scattered from the chimney and the roof. The 'Sum WF' is the 1000-m WF summed with its194

shifted (6 ns, 90 cm) copy.195

196

Fig. 2. Averaged and normalized peak amplitude values (asphalt=100) in 1064 and 1550 nm pulses (not tabulated, Riegl LMS-197

Q680i sensor, 700 m AGL, amplitude data linearized using a look-up-table) in different surfaces. Major reflectance differences of198

green vegetation are seen between 1064 and 1550 nm. Backscattering from tree crowns is not only influenced by the199

reflectance properties but also by footprint size and the foliage orientation and crown structure. Footprint diameters here are200

comparable, 0.44 m and 0.40 m.201

2.3 Waveform attributes202



The WF attributes were computed in a straightforward way for what were called noise-exceeding amplitude sequences (NEAS,203

also referred to as an echo). More advanced methods for detecting individual echoes that may contribute to a NEAS, and for the204

derivation of echo attributes such as amplitude and width are discussed in e.g. Roncat et al. (2014). A detailed description of the205

calculations is given in Hovi et al. (2015). In Hovi et al. (2015) these were found important in tree species identification.206

Noise was defined as the variation around a baseline signal, during which the receiver recorded background illumination only.207

The AGC was a particular challenge in defining the baseline, as the gain influenced both the baseline and the noise. The baseline208

varied by up to 0.3 amplitude units, which is only 0.25% of the maximum amplitude and neglecting it did not influence the209

results. The threshold for the start and end of a NEAS was three standard deviations of the observed variation around the210

baseline (Fig. 3).211

In brief, the WF is first moderately low-pass filtered. The NEAS is found by tracing the (interpolated) points where the signal212

arises from and falls into the noise. The highest amplitude in a NEAS is the peak amplitude, pA, which is in strong dependence213

with discrete-return intensity, but only in well-defined targets. The sum of the amplitude values is energy, E. The width214

attributes were FWHM and L. FWHM was computed for the highest peak (defining the half maximum) and L is the total length of215

a NEAS. The rise speed, riS, was assumed to describe 'the porosity' of the illuminated target, and was defined as the ratio of the216

rise time and that of a pulse reflecting from a well-defined surface having the same pA. The normalization is needed as the217

above-the-noise rise time depends on the signal strength (c.f. constant fraction discriminator in range detection).218

219

Fig. 3. WFs of two adjacent and collinear pulses in a pine forest. The 59-cm WF is shifted up by one unit to be visible. The first220

echoes have reflected from a branch 24.7 m high and had an XYZ separation of 0.16 m, while the ground intersection points had221

an XY separation of 0.17 m. The scan zenith angle was 8 degrees. Ground echo can be seen for the wider pulse. The attribute222

values for the first NEASs are 50 and 37 for pA, 8.3 and 12.6 for FWHM, 1.16 and 1.16 for RiS, and 486 and 518 for E.223

224



225

2.4 Radiometric normalization of the multi-footprint data226

As stated, the AGC amplifier is a particular property of the receiver in the ALS60. In the datasets used, the relative gain was227

1-2.1, i.e. 0-3.2 dB in power, assuming that the intensity and amplitude values are in linear dependence with at-sensor power.228

The influence of the AGC was the same on amplitude and intensity data. The AGCvoltage × gain relationship resembles a sigmoid,229

and the parameters of a normalization function (fAGC, a 2nd-degree polynomial) were estimated using homogenous surfaces of230

varying reflectance (Fig. 4). These surfaces were bitumen roof, old asphalt, fine sand and grass. Fig. 4 shows the uncorrected231

data for grass.232

233

Fig. 4. Uncorrected peak amplitude x AGCvoltage distributions of pulses reflecting from grass in the four 2012_## datasets. The234

sigmoid shape is seen in the 500 m data.235

The normalizing model (Eq. 2) of a pulse i, acquisition height j and sensor k, used the explanatory variables R, AGCvoltage and the236

scan zenith angle. The parameters to be solved were the offset of the amplitude, the parameters of fAGC, as well as coefficients dj237

for each acquisition height that absorb possible deviations of the transmitted power, recalling that the power could only be set238

at 1% nominal intervals.239
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The estimation of fAGC was carried out by first minimizing a weighted sum of coefficients of variation and trend coefficients of241

univariate regression, indicating removal of trends, over all surfaces and datasets. At this phase 80-95% of the within-surface242

variance was removed. Parameters offset and dj were finally estimated by minimizing per surface mean amplitude differences of243

different acquisition heights in each surface (Fig. 5). In the solution, dj were 1.00, 3.56, 12.94, and 22.03 and the offset of the A244



scale was 11.4. If the power had been set perfectly and atmospheric attenuation was zero, the expected values for dj are 1, 4,245

16, and 29.16. Unfortunately, it was realized at this phase that the flight planning software did not account for atmospheric246

losses. Using the dj values, attenuation was assessed to be 0.22 ±0.06 dB/km, which is realistic for 1064 nm. The 0.06 dB/km247

residual standard deviation shows that losses explain the deviations only partly. Power adjustment was done at 1% intervals,248

which corresponds to 25% relative accuracy in the 500 m data. Overall, the data showed an approximately 1 dB trend from 0.5249

to 2.7 km, which is also visible in Fig. 4 as 'vertical layers'.250

Parameter estimation (vicarious calibration) of Eq. 2 could not be done by constraining with the absolute reflectance differences251

of the calibration surfaces, as only HCRF (hemispherical-conical reflectance factor) measurements at 900 nm by a field252

spectrometer were available. These measurements were shown to match the 2012 AGC-corrected data reasonably well in253

Korpela et al. (2013). However, the between-surface differences in Fig. 5 are in the instrument scale. Thus, the linearity of the A254

data, with respect to power entering the aperture, had to be tested (Section 2.5).255

256

Fig. 5. Normalized mean (peak) amplitude values of the four acquisition heights in six calibration surfaces. The (dotted) 500-m257

data deviated in two cases more than 5%, which could be due to strip-level variations of the low output power.258

2.5 Evaluation of the receiver’s compliance with the radar equation259

Concerning the linearity of the ALS50/60 sensors, Korpela et al. (2010) compared the intensity data of Optech ALTM3100 and260

Leica ALS50-ii sensors to assess the influence of vegetation structure in range correction, i.e., the value of pwr in the range261

normalization coefficient (R/Rref)pwr. The results with ALTM3100 were in line with those by Gatziolis (2011) and the optimal pwr262

term was 2.1-2.8 for trees and could be logically linked to species-specific structure and echo type. Thus, the pwr term was263

close to 2 for ‘only’ echoes that are strong and was highest, nearly 2.8, for ‘first-of-many’ echoes in Scots pine that have the264

most ‘diffuse’ crowns. However, the ALS50-ii intensity data did not comply with the radar equation, and the optima were265



unclear with the pwr term even below 2. A simple linear model with zero offset was used, which for ALS50-ii (which is similar to266

ALS60) is now known to be incorrect (Fig. 6), while in ALTM3100 the zero intensity was closer to the no-signal level.267

The amplitude and intensity values in ALS60 were stored as 8-bit signed integers. 'No-signal sections’ of the WFs, i.e., the front268

and tail parts of the 256-sample-long WFs, showed variance, which also responded to the AGC. The no-signal amplitude values269

were about 10-12, while the first-return intensity data was 'truncated' at zero (Fig. 6). The zero point (offset) of the first-return270

intensity was negative, and was estimated to be about −24 using Eq. (2), while the offset of A was 11.4 (Section 2.4). The271

estimation of the offset of the intensity scale was almost ill-posed, probably because the linear model (response to at-sensor272

power) is inaccurate, which is also indicated by Fig. 6.273

The 2013_## datasets were acquired to verify the linear response of the ALS60 receiver. In these data, the receiver gain and274

transmitted power were fixed. The pwr term of the R-normalization coefficient was again estimated using surfaces of varying275

reflectance. Fig. 7 implies that the peak amplitude data (restricted to pulses that had triggered a DR echo) are in a non-linear276

dependence with the power entering the aperture. Fig. 8 shows a power ® A mapping that creates the pattern in Fig. 7. It277

deviates only slightly from a linear model. The component(s) that cause this modest non-linearity in the fixed receiver gain mode278

remain unidentified. Possibilities include the Avalanche photodiode and its transimpedance amplifier, other amplifiers and the279

digitizer. Furthermore, the non-linearity of low and high signals (Figs. 6, 7, 8) may be due to different components.280

281

Fig. 6. The relationship between first-echo WF peak amplitude and DR intensity in a scene comprising bitumen, tile and metal282

roofs, short grass, concrete and asphalt. Echo triggering requires a pA of approximately 20.283



284

Fig. 7. Estimated power term of range normalization (y-axis) for the pA data (x-axis) in the 2013_ datasets. In a linear sensor the285

power factor is two. Analyses apply to horizontally aligned surfaces of varying reflectance in pulses that gave rise for an286

observation in 700/800, 700/900 and 800/900 m pulses. The optimal power term minimized the squared sum of normalized287

differences for a particular surface and data pair. The observation is placed at the pA value corresponding to the 800 m288

acquisition.289

290

Fig. 8. A non-linear sensor response curve that produces the pattern in Fig. 7. The x-axis depicts the power entering the291

aperture, while the y-axis shows the corresponding peak amplitude value.292

2.6 Variation of the received waveforms due to sensor effects293

294

The mean FWHMs in well-defined targets were 10.1-11.3 ns and 6.8-7.9 ns in the 22-59 cm and 11 cm footprint data,295

respectively. The dependence of FWHM on pA was different for the 4 and 9 ns pulses. FWHM increased moderately with pA in296

the 9 ns data, while it decreased considerably with increasing pA in the 4 ns data (Fig. 9).297



298

299

Fig. 9. Averaged, centered and normalized WFs of 4 (7) and 9 (10) ns pulses (transmitted, received). The response of FWHM to300

surface brightness differs with pulse length. In 4 ns pulses the recorded WF rises in 5-7 ns. The shape difference of the rising301

part of the 4 ns pulses is caused by the receiver's impulse response, which differs for weak and strong signals. The shape of the 9302

ns pulses is retained better in bright and dark targets.303

These findings imply that the receiver's response to the fast rising 4 ns pulses differed slightly between weak and strong signals.304

The CV (coefficient of variation) of FWHM was 1-1.5%. To compare, in some low (300 m) altitude datasets that were acquired in305

Hyytiälä with the Riegl LMS-Q680i sensor, the FWHM depends strongly on the signal strength, because of the saturation of the306

amplitude scale due to the low altitude, while 700 m data with the same sensor showed practically no FWHM × pA dependence.307

The echo width should depend only on the target properties, which was not exactly true in the ALS60 data used here.308

2.7 Evaluation of the radiometric normalization309

310

Radiometric normalization (Eq. 2) was validated across the landscape, using surfaces that were known from the field and/or311

identified in large-scale aerial images. Each surface was represented by more than 100 pulses per footprint size. The relative312

differences in Table 3 are normalized with respect to the 11-cm data. The differences were correlated between the 22, 44 and313

59 cm data with R2 of 0.74, 0.86 and 0.89, which implies that the 11 cm data did have offsets due to the within- or between-strip314

fluctuation of the low (4% of maximum) transmitted power. Using 9% of the maximum would have been at the eye-safety limit.315

Some of the 11-cm strips were repeated the following day with a 20% (0.8 dB) higher pA. Table 3 also shows that the relative316



deviations were negatively correlated with the surface brightness, i.e., the pA values in dark surfaces and in the 22-59 cm data317

were modestly higher than in the 11 cm data. This can be caused by the different receiver response as the 11-cm data had318

shorter pulses with a fast rise in the WF.319

As stated, the 2012_## acquisitions unintentionally did not account for atmospheric losses. The at-sensor threshold320

backscattering that triggers an echo depends on the instrument, not the acquisition height as such. The atmospheric losses321

however caused this threshold to be higher, in terms of the required target backscatter cross-section, in the high-altitude data.322

The effect was estimated to be 1.0 dB or 26% between the 500-m and 2700-m data (Section 2.4). Based on the 900-nm field323

HCRF measurements of different bitumen surfaces that were carried out in 2008/2009 (Korpela et al. 2011), the minimal echo-324

triggering ‘reflectance’ was about 0.03 in 11 cm data and 0.038 in 59 cm data. For this study I found an even darker bitumen325

roof, in which most of the 500 m pulses had produced an echo, while the probability reduced with acquisition height (** in Table326

3).327

This 0-1 dB ‘echo-triggering bias’ was thus present in all data. It could be observed in comparable (same LiDAR strips, adjacent328

targets) data that covered a dark and gently sloping bitumen roof and an adjoining meadow (** in Table 3). In comparison to the329

11 cm data, the pA in the 22-59 cm data were 15% lower in bitumen, while the values for meadow were 1-4% higher. The roof330

had a reflectance variation due to litter (nearby trees), mosses and lichens (north vs. south exposure). The 11-cm data had more331

no-echo pulses, which means that the 11 cm samples were biased towards brighter roof patches, while the larger footprints332

averaged the variation. Overall, the validation in different surfaces showed that apart from very dark surfaces, the mean pA was333

not affected much by the footprint size (Table 4). Furthermore, the differences in the dark validation surfaces were in all334

likelihood caused by small scale reflectance variation. One of the dark surfaces was a pond with dense canopies of sub-emergent335

mosses next to a sedge fen. The same scale-related phenomenon was observed here. The mosses did not always give rise to an336

echo and the 11-cm targets probably comprise small, dense and drier moss patches.337

338



339

Table 3. Relative differences (%) in peak amplitude in different validation surfaces. Values are normalized to the 11 cm data340

except for the first row. Values in which the peak amplitude was lower than in the 11 cm case are positive. Surfaces marked with341

* or ** are adjacent and qualify for pair-wise comparisons. Surfaces #1, #2 and #3 are presented in Section 2.10.342

Surface pA 11 22 44 59

Field 107 - 0.0 -2.2 1.5

115 0.0 2.1 1.6 3.8

Sedge fen 98 0.0 -4.2 -6.7 -5.2

Low-sedge bog 108 0.0 0.7 -5.8 -4.5

Sedge fen * 107 0.0 -1.9 -1.6 -2.0

Sub-emergent mosses * 24 0.0 12.4 10.9 17.3

Fine sand 87 0.0 0.5 1.4 2.1

Dark bitumen roof ** 17 0.0 12.9 15.2 15.1

Meadow ** 115 0.0 -4.2 -3.3 -1.2

Forest roads 66 0.0 -2.0 -2.4 -1.9

77 0.0 0.9 2.0 2.6

#1 80 0.0 0.5 3.0 2.9

#2 70 0.0 3.0 3.2 3.4

73 0.0 1.1 -4.4 2.2

42 0.0 3.7 3.2 5.9

#3 50 0.0 3.2 2.5 4.3

77 0.0 -3.1 -5.7 -5.2

Asphalt roads 51 0.0 4.8 4.2 6.4

49 0.0 2.5 2.8 4.6

42 0.0 0.5 0.4 2.9

343

2.8 Scale-dependent reflectance variation344

345

Table 4 shows the CV of pA in surfaces of varying small-scale variation. Asphalt and bitumen (different from that in Table 3)346

showed a stable CV. The between-pulse variation reduced with increasing footprint size in hay and in the mire surfaces owing to347

their decimeter-scale spatial variation. The mire was a mosaic of 20-60-cm wide dry hummocks surrounded by wetter white348

mosses and sedges. The multi-footprint data provided logical results. The lowest CV was 2.8%. Bitumen showed relatively high349

CVs, because of the low relative measurement accuracy of weak signals. A comparison between the AGC on (and normalized)350

and AGC off acquisitions could be made with the 2013_07 dataset. The CVs were slightly lower in the AGC off data: 8.9®8.6%,351

6.9®6.7%, 5.4®4.9% and 4.9®4.0% in bitumen, asphalt, sand and grass, respectively. These results suggest that the AGC352



normalization was effective and, conditioned on the stability of the targets, that the precision of the instrument was comparable353

between 2012 and 2013.354

Table 4. Coefficient of variation (CV, %) of peak amplitude in different man-made and natural surfaces. Surfaces are in dec-355

reasing order of brightness (About 0.45®0.04 in reflectance).356

Surface
Footprint, cm

11 22 44 59

Hay, < 50 cm  7.0 5.8 4.6 3.6

Short grass 4.9 4.3 4.0 3.5

Mire surface 9.7 8.3 6.3 5.4

Fine sand 4.5 3.5 3.0 2.8

Asphalt, old 7.4 7.3 6.9 7.2

Asphalt, new 5.1 4.9 5.0 5.1

Gravel road 11.4 9.7 7.7 6.9

Bitumen 9.4 9.4 9.0 8.6

357

2.9 Transmission losses in wires and tree crowns358

359

Next, the data was evaluated using careful measurements of transmission losses caused by three parallel (1.2 m separation, 152360

m in total) power line cables 11 m above a spring barley field. The (bright) insulators in the poles were positioned using forward361

ray-intersection point estimates obtained in large-scale aerial images and the LiDAR points and constrained by the 1.2 m362

separation. Line-to-line distances were used to find pulses that had potentially intersected a cable. The limiting distance was the363

95% point of the footprint diameter, i.e. 0.83, 0.62, 0.31 and 0.16 m for the 59, 44, 22 and 11 cm footprint diameters,364

respectively. Assuming that the pulse (intersection, 3D LiDAR positions were available) geometry was correct, that the irradiance365

profile of pulse cross-section is Gaussian, that the intersection probabilities were equal and that the cables had a 1.2 m366

separation, the theoretical losses for a cable of 1 cm thickness are 2.8, 1.5, 0.7 and 0.8%. The observed relative differences of pA367

were 2.6, 1.6, 0.7 and 1.1% for the footprint sizes of 11, 22, 44 and 59 cm. The results were thus in line with expectations.368

The transmission losses were next examined in an approximately 100-year-old barren pine stand having one dominant canopy369

layer only. Fig. 10 shows results of relative transmission losses measured by the peak amplitude of ground returns (of single370

return pulses) as a function of the 2D trunk-pulse distance at the 60% relative tree height, which approximates crown base371

height rather well in this stand. The crown width estimates (N=213) were obtained by fitting a surface of revolution to the LiDAR372

point cloud as in (Korpela et al., 2011; Hovi et al., 2015). The ground flora comprises three moss species and patches of reindeer373

lichens. Tree heights are 15.9-26.5 m. In Korpela (2008), the ground flora in this stand was mapped using a 960 m2 photo mosaic374

and no correlation was found in the spatial distribution of the bottom flora and the trees, i.e., the reflectance properties of the375



forest floor are spatially stationary. The pA of ground returns of pulses that had passed through the crown decreased with376

increasing footprint size (Fig. 10). Thus, less energy reached the ground when the footprint became larger and the single ground377

echo was weaker. Fig. 11 shows how the losses, as measured by energy of the first echo, correlate negatively with the peak378

amplitude of the ground return in two pine bogs. The other site has Sphagnum species and tussock cottongrass in the379

understory, while the ground flora of the other bog comprises a dense canopy of 30-60-cm-high wild rosemary. The reflectance380

differences of the low vegetation are reflected by the peak-amplitude values of the second echoes.381

382

Fig. 10. Relative peak amplitude of (single) ground returns below a Scots pine canopy as a function of the pulse-trunk distance383

(m) at the crown base height. The amplitudes were normalized to data 3-5 m away from the trunks. A distance of zero384

corresponds to the case in which the pulse intersected the crown perimeter at the crown base height. A negative value means385

that the intersection was inside the crown model.386

387

Fig. 11. Joint distributions of the energy of the first echo and the peak amplitude of the second echo in 9 ns pulses (1, 2 and 2.7388

km data) from two barren pine bogs that differ in understory flora. The pulses had a single WF peak in each of the two echoes.389

390



391

2.10 WF features in single-species tree canopies392

393

Next, the response of WF attributes to the varying footprint diameter was evaluated in tree canopies. Three 30-year-old planted,394

non-thinned, pure and dense stands of Scots pine, Norway spruce and Silver birch adjacent to a forest road were chosen. The395

road surface was essential for controlling between-dataset offsets in pA. The roads are marked as #1, #2 and #3 in Table 3. The396

small relative offsets of pA were eliminated from the pA and E differences in Table 5. The energy (E) attribute varied least with397

footprint size. The relative variance was also lowest in E with CVs ranging from 10 to 20%. Interestingly, E increased by 8, 6 and398

7% with footprint size in pine, spruce and birch, respectively. The differences between species were largest in pA and E, which is399

in line with the findings in Hovi et al. (2015). The relative decrease of pA with increasing footprint size is interesting, as it was400

lowest for birch (16.6%), followed by pine (19.4%) and spruce (25.9%). An extra stand of Black alder showed a decrease of401

12.6%, but this stand did not have a control surface. These findings indicate weak species-specific ‘signatures’.402

Table 5. Mean values and CV (%) of first-echo WF attributes in 30-year-old pure pine, spruce and birch stands. The LiDAR plots403

(1300 m2) contained approximately 70 trees. FWHMs were normalized to the mean values from well-defined surfaces. The E404

attributes of 11 cm (4 ns pulses) were multiplied by 1.307, which is the average ratio between 11 cm (4 ns) and 9 ns data in well-405

defined surfaces of varying reflectance.406

Species Footprint FWHM RiS pA Energy

Birch

11 1.51 (38) 1.35 (28) 66.1 (34) 1141 (19)

22 1.49 (38) 1.30 (25) 67.9 (30) 1163 (14)

44 1.68 (40) 1.51 (26) 58.7 (29) 1205 (13)

59 1.77 (39) 1.63 (25) 55.2 (28) 1235 (12)

Spruce

11 1.33 (40) 1.21 (26) 60.2 (33) 941 (20)

22 1.40 (41) 1.25 (28) 57.2 (32) 935 (16)

44 1.66 (47) 1.45 (30) 49.6 (34) 982 (15)

59 1.84 (47) 1.60 (30) 44.6 (33) 995 (15)

Pine

11 1.45 (37) 1.30 (27) 53.4 (30) 869 (16)

22 1.49 (35) 1.32 (24) 51.8 (25) 875 (12)

44 1.68 (34) 1.53 (23) 46.1 (22) 916 (10)

59 1.77 (37) 1.63 (23) 43.1 (25) 932 (13)

407

FWHM increased as footprint diameter increased, which is according to expectations. When the footprint size increased from 11408

to 59 cm the relative increase in FWHM was 17% in birch, 38% in spruce and 22% in pine. The rise time attribute showed a409

similar pattern with smaller differences between species, compared to echo width, i.e. FWHM. Depending on the range410

detection algorithm, the increase of rise time can influence the height distribution of canopy echoes such that the wide footprint411



points have lower heights. This phenomenon was not tested here, because it would have required the implementation of a412

range detection algorithm and careful geometric calibration of the LiDAR data. It can also be seen that while pA decreases413

(dampens) with footprint size, E increases moderately as return pulses stretch.414

3. Discussion415

416

This study was a largely successful attempt to acquire multi-footprint LiDAR data in which the SNR was fixed for well-defined417

surfaces, and to carry out radiometric analyses with these data. Basic hypotheses concerning the influence of footprint diameter418

were verified, although comprehensive testing in tree canopies was left to the future. The datasets that have been acquired are419

unique as are the investigations performed using those data. Hopkinson (2007) studied the influence of footprint size and420

acquired dual-footprint data using a sensor in which the divergence could be altered. He reports that while all other parameters421

remained constant, the intensity values, instead of not changing in well-defined surfaces or changing by a factor of 0.38 in linear422

targets, reduced by a factor of 0.22 when the divergence was changed from 0.3 to 0.8 mrad.423

The ALS60 sensor had a fixed beam divergence, but owing to the adjustable output power, footprint diameters ranging from 11424

to 59 cm could be realized. The used power level was a compromise as over 50% more could have been used. The use of full425

power would have increased the signals by 3 dB, but in that scenario, only 11 dB of power adjustment margin would have been426

available and the maximum acquisition height would have been less than 2 km.  Furthermore, it was recommended to reduce427

the power of the lowest acquisition height.428

Unexpectedly the campaign planning software did not account for atmospheric losses and a 1 dB trend remained in the data. It429

caused the minimal echo-triggering target backscatter cross-section to increase with acquisition height and footprint size. A430

fairly realistic estimate of the atmospheric losses, 0.22 dB/km, was derived as a sub product of the radiometric normalization.431

Yet, it could not be ruled out that the observed trend was partially caused by systematic errors in the adjustment of the432

transmitted power.433

Backscatter reflectance or peak amplitude normalization was done using natural surfaces assuming that the peak amplitude434

observations are in a linear relationship with the peak at-sensor power (irradiance). The linearity assumption had to be435

validated, using a separate multi-height LiDAR dataset, which was acquired for that purpose. The validation was based on the436

dependence between the power received and the spherical losses from well-defined surfaces. Fixed pulse power and receiver437

gain were applied and the signals from well-defined surfaces were, according to the radar equation, 1.6 (2 dB) times stronger438

from 700 m compared to 900 m. Setting the output power and receiver gain correctly was crucial. While operating, the AGC439

circuit in the receiver can adjust and compensate the internal signal levels by up to 3 dB. The brightest targets had pulses that440

were saturated and distorted in the 700 m DR intensity data. These targets were omitted from the calibration (Fig. 7), because it441



remained unclear if the saturation applied to the WFs as well. For example, dense canopies of (planophile) raspberry showed442

saturated intensity data. Because of the 2-dB difference in power received, the darkest objects that still triggered an echo in the443

700 m data would not show in the 900 m data, and the brightest targets were rejected as the dynamic range of the receiver was444

exceeded in the 700 m acquisition. Natural and man-made surfaces were used in testing the linear response. The theoretical445

differences in power received are 23.4% and 26.5% between 700 m vs. 800 m and 800 vs. 900 m, respectively. The within-446

surface CVs of peak amplitude ranged from 3 to 15%, which means that the estimation of the power term of the range447

normalization coefficient was susceptible to random errors. A 2% error the mean peak amplitude (of a surface, e.g. in 800 m448

data) results in a coefficient estimate that is off by 0.2. The influence of the incidence angle, or rather, the scan zenith angle, was449

weak and could be omitted in all analyses.450

The resulting normalized peak amplitude data (Eq. 2) could be described as interval-scale observations of backscatter cross-451

section or reflectance in well-defined targets, at 1064 nm. The smallest values corresponded to a reflectance of about 0.03,452

which was observed in one very dark bitumen roof. This estimate was based on previous field measurements of HCRF carried453

out for research in the reflectance calibration of aerial images (Korpela et al., 2011). If full power had been applied (eye-safety, 3454

dB higher), the echo-triggering reflectance would have been approximately 0.015-0.02. In Korpela et al. (2013) it was found,455

using the 2012_10 (22 cm) data, that the minimum relative silhouette area in pine and spruce branches that produced an echo456

was about 10%. Fig. 2 suggests that the ratio of mean peak amplitude in bitumen and pine crowns is about 2.5 and the 900 nm457

HCRF reference for the bitumen roof in Fig. 2 was 0.05. If the reflectance of pine needles is 0.3-0.4, the relative silhouette of 0.1458

corresponds to a ‘well-defined-surface reflectance’ of about 0.03-0.04. These calculations are coarse and inaccurate, but459

suggest that some coherence exists between earlier findings in canopies and those that were made here about well-defined460

surfaces.461

The observations were shown to be influenced by instability of the transmitted power, in the low-power, low-altitude, small-462

footprint data. The sensor manufacturer also pointed out this possibility and the repeated 500 m acquisitions in the following463

day also suggested this. It remained unclear what kind of temporal patterns these variations had, but at least a campaign-level464

offset was found. It may well be that the power fluctuations are smaller in sensors that apply a few fixed power levels and dual-465

channel receivers.466

The impulse response and bandwidth characteristics were analyzed and only minor signal-strength dependent deformations of467

the WFs were observed in the 4 ns pulses. The deformations were neglected in the analyses here. Our experience with the Riegl468

LMS-Q680i sensor (cf. Armston et al., 2010) is worth noting here. The output power of LMS-Q680i has fixed levels and is tightly469

coupled with the pulse repetition frequency (PRF). Some low altitude (300 m) WF data were ‘overexposed’ and mapped to the470

non-linear part of the amplitude scale, which created an unwanted dependence of the echo width on signal strength, which was471

not present in a 700-m dataset acquired using the same PRF. LMS-Q680i has two receivers, and WF samples are stored from472



both receivers when necessary. Such dual-receiver, high- and low-gain designs are common and for example the new Leica473

ALS80-series sensors employ such a design. The gain difference of the channels is much larger than the 3 dB gain range of the474

AGC in ALS60. Compared with having two gain levels, the AGC in ALS60 could be considered a nuisance. In all, managing the475

wide dynamic range of LiDAR data acquisitions calls for different solutions, which are implemented in the transmitter and/or in476

the receiver. It would be better for radiometric analyses of LiDAR data if the sensor properties, i.e., an absolute calibration, were477

known. The reverse-engineering type of analyses that were carried out in this study would then not be needed for carrying out478

radiometrically quantitative LiDAR remote sensing.479

The presented analyses revealed that the peak amplitude data in ALS60 was not in a very exact linear relationship with the480

power entering the aperture. However, this finding was obtained with the AGC-amplifier set at fixed gain and it cannot be ruled481

out that the AGC amplifier, when operating, causes further problems. However, this is unlikely, because the BW of such482

amplifiers can be expected to be larger than the BW of the digitizers or the photon detector. In Hovi et al. (2015), no evidence483

was found of systematic differences in peak amplitude or WF shape that were due to the two oscilloscopes behaving differently.484

As said, the oscilloscopes take turns in processing pulse pairs into WF data.485

The dependence of ‘unregistered’ transmission losses on footprint size, preceding the triggering of waveform recording, was486

shown in power line cables and in pine crowns. The losses were from 2.6 to 0.5% in the cables and from 5 to 16% in the trees,487

for the footprint diameters of 11-59 cm. Canopies are comprised of gaps and clumped scatterers, while the cable is a single488

reflector obstructing the energy from reaching the ground, where the losses were detected as reductions in the average peak489

amplitude of hundreds of pulses. The sites used for loss detection had low and homogenous or at least spatially stationary490

ground reflectance variation. The influence of canopy transmission losses can be compensated to some degree in discrete-491

return (Korpela et al., 2012) and WF data (e.g. Richter et al., 2015) by imposing constraints such as constant reflectance or492

configuration of needles in a tree crown, which reduces the ambiguities related to backscatter cross-section. This was493

demonstrated by the comparison of the two bogs494

The relative variation of peak amplitude was assessed in surfaces of varying small-scale structure (Section 2.8). Fine sand, which495

has a HCRF of about 0.2 at 1064 nm, showed the lowest CV, 4.5% in 11-cm data, and as low as 2.8% in the 59-cm data. The496

target was a volleyball field with a ‘moderately bumpy’ surface and a few dry leafs blended in the sand. Bitumen was least497

influenced by footprint size, but the CVs were higher, on the order of 9%, because of the low reflectance. The results were498

logical, concerning the influence of the footprint size and the averaging effect in large footprint data. The observed CVs suggest499

that the instrument is rather stable or precise as there were always data from two or more strips per test surface and footprint500

size.501

Regarding the influence of the footprint size on the tested first-echo WF attributes in tree canopies, there were minor species-502

specific differences or ‘signatures’. For example, the peak amplitude decreased most in Scots pine stand, the structure of which503



is less clumped or ‘more diffuse’ compared to Norway spruce. The reduction in peak amplitude with increasing footprint size504

was smallest in the case of birch, which have compact crowns at the age of 30 years. Actually these findings that relate to505

canopy structure are line with those concerning the response of intensity data to R variation (Korpela et al., 2010a; Gatsiolis,506

2011), because the decrease of power received that is due to an increase of divergence is also dependent on the structure507

(Section 1). As hypothesized, the echo width increased with footprint size and the relative increase was largest in the canopy of508

spruce, which is reasonable, given the ‘clumped structure’ and ‘layered compact branches’. The energy was the largest in birch,509

and this could possibly be due to the slightly higher reflectance of the leaves. Then again, backscattering in birch is strongly510

influenced by leaf arrangement as well (Hovi and Korpela, 2014). The tests in forest canopies were hampered by the remaining511

between-dataset SNR differences, which were subtracted using the roads adjacent to the test stands as control surfaces.512

4. Conclusions513

514

This study showed that it is possible to acquire multi-footprint data that is radiometrically comparable for well-defined surfaces,515

using a commercial topographic LiDAR sensor. The study has shown how to carry out careful analyses to verify that the WF516

amplitude observations are on the interval scale. The impulse response and bandwidth characteristics of the sensor were tested517

in a simple manner to verify that the WF features depend only on the target-pulse interaction, in order to draw correct518

conclusions from observations concerning the influence of the footprint size. Many of the outlined hypotheses regarding the519

influence of footprint size could be confirmed in real data. These included the widening of the echoes, the increase of return520

energy, and the decrease of maximal amplitude in tree canopies, all with increasing footprint size. These effects had species-521

specific traits. Transmission losses as small as 0.5% could be detected by an appropriate selection of the test site and by using a522

large amount of pulses to cancel out the random variation. In conclusion, multi-footprint data may offer some advances in the523

estimation of tree or forest canopy structure. However, the species-specific differences are likely quite weak. A thorough524

investigation is needed to see if multi-footprint LiDAR can enhance forest remote sensing. For example, the estimation of525

canopy closure might benefit from dual-footprint data. The experience that was gained here constitutes a good starting point.526

Acknowledgements527

528

Advice about the ALS60 sensor by Dr. Ron Roth at Leica Geosystems was indispensable. I also thank the personnel at Finnmap in529

Helsinki, especially Mr. Jonne Davidsson, Mr. Felix Rohrbach and Mr. Jussi Havia, who arranged the unique data acquisitions with530

the ALS60. Dr. Aarne Hovi wrote the original WF attribute extraction code. Dr. Kyle Eyvindson, Dr. Reija Haapanen and Dr. Kim531

Östman kindly revised the text. The Academy of Finland provided the funding for this work.532



References533

534

Armston, J., Disney, M., Lewis, P., Scarth, P., Phinn, S., Lucas, R., Bunting, P. & Goodwin, N. (2013). Direct retrieval of canopy gap535

probability using airborne waveform lidar. Remote Sensing of Environment 134:24-38.536

Disney, M.I., Kalogirou, V., Lewis, P., Prieto-Blanco, A., Hancock, S. & Pfeifer, M. (2010) Simulating the impact of discrete-return537

lidar system and survey characteristics over young conifer and broadleaf forests, Remote Sensing of Environment 114(7):538

1546-1560.539

Gatziolis, D. (2011). Dynamic range-based intensity normalization for airborne, discrete return LiDAR data for forest canopies.540

Photogrammetric Engineering & Remote Sensing. 77(3): 251–259.541

Goodwin, N.R., Coops, N.C. & Culvenor, D.C. (2006). Assessment of forest structure with airborne LiDAR and the effects of542

platform altitude. Remote Sensing of Environment 103(2): 140-152.543

Hopkinson, C. (2007). The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return544

intensity and canopy frequency distribution. Canadian Journal of Remote Sensing 33: 312-324.545

Hovi, A. & Korpela, I. (2014). Real and simulated waveform-recording LiDAR data in juvenile boreal forest vegetation. Remote546

Sensing of Environment 140: 665–678.547

Hovi A., Korhonen L., Vauhkonen J. & Korpela I. (2015). LiDAR waveform features for tree species classification and their548

sensitivity to tree- and acquisition related parameters. Remote Sensing of Environment 173: 224-237.549

Hovi, A. (2015). Towards an enhanced understanding of airborne LiDAR measurements of forest vegetation. Dissertationes550

Forestales 200. 69 p.551

Korpela, I. (2008). Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment552

112(10): 3891-3897.553

Korpela, I., Ørka H.O., Heikkinen V., Tokola T., & Hyyppä J. (2010a). Range- and AGC normalization of LIDAR intensity data for554

vegetation classification. ISPRS Journal of Photogrammetry and Remote Sensing 65(4): 369-379.555

Korpela, I., Ørka, H.O., Maltamo, M., Tokola, T. & Hyyppä, J. (2010b). Tree species classification using airborne LiDAR – effects of556

stand and tree parameters, downsizing of training set, intensity normalization and sensor type. Silva Fennica 44(2): 319–339557

Korpela, I., Heikkinen, V., Honkavaara, E., Rohrbach F. & Tokola, T. (2011). Variation and anisotropy of reflectance of forest trees558

in radiometrically calibrated airborne line sensor images – implications for species classification in digital aerial images. Remote559

Sensing of Environment 115(8): 2062–2074.560



Korpela I., Hovi A. & Morsdorf F. (2012). Understory trees in airborne LiDAR data - Selective mapping due to transmission losses561

and echo-triggering mechanisms. Remote Sensing of Environment 119: 92–104.562

Korpela I., Hovi A. & Korhonen L. (2013). Backscattering of individual LiDAR pulses explained by photogrammetrically derived563

vegetation structure. ISPRS journal of photogrammetry and remote Sensing 83: 81–93.564

Maltamo M. & Packalén P. (2014). Species-specific management inventory in Finland. In: Maltamo M., Næsset E., Vauhkonen J.565

(eds.). Forestry applications of airborne laser scanning: Concepts and case studies. Springer, The Netherlands, p. 241–252566

Mallet, C. & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art, ISPRS journal of photogrammetry and remote567

sensing 64(1):1–16.568

Ørka, H-O., Næsset, E., Bollandsås, O., M. (2010). Effects of different sensors and leaf-on and leaf-off canopy conditions on echo569

distributions and individual tree properties derived from airborne laser scanning. Remote sensing of environment 114(7): 1445–570

1461.571

Richter, K., Blaskow, R., Stelling, N., & Maas, H. G. (2015). Reference Value Provision Schemes for Attenuation Correction of Full-572

Waveform Airborne Laser Scanner Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1: 65–72.573

Roncat, A., Briese, C., Jansa, J. & Pfeifer, N. (2014). Radiometrically calibrated features of full-waveform lidar point clouds based574

on statistical moments. IEEE Geoscience and remote sensing letters, 11(2): 549–553575

Wagner W., Ullrich A., Ducic V., Melzer T., Studnicka N. (2006). Gaussian decomposition and calibration of a novel small-576

footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 60: 100–112.577

Wagner, W. (2010). Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic578

physical concepts, ISPRS Journal of Photogrammetry and Remote Sensing  65 (6): 505–513.579

Vauhkonen, J., Maltamo, M., McRoberts, R.E., & Naesset, E. (2014). Introduction to forestry applications of airborne laser580

scanning. In: Maltamo M., Næsset E., Vauhkonen J. (eds.). Forestry applications of airborne laser scanning: Concepts and case581

studies. Springer, The Netherlands, p. 1–16.582


