DR. IVES CAVALCANTE PASSOS (Orcid ID: 0000-0001-6407-8219)
DR. ELISA BRIETZKE (Orcid ID: 0000-0003-2697-1342)
DR. TOMAS HAJEK (Orcid ID: 0000-0003-0281-8458)
DR. MARTIN ALDA (Orcid ID: 0000-0001-9544-3944)
MR. BARTHOLOMEUS C.M. HAARMAN (Orcid ID: 0000-0002-9006-8863)
PROF. ROGER S MCINTYRE (Orcid ID: 0000-0003-4733-2523)
DR. LARS KESSING (Orcid ID: 0000-0001-9377-9436)
PROF. ANNE DUFFY (Orcid ID: 0000-0002-5895-075X)
DR. FLAVIO KAPCZINSKI (Orcid ID: 0000-0001-8738-856X)

Article type: Review

TITLE PAGE
Machine learning and big data analytics in bipolar disorder: A Position paper from the International Society for Bipolar Disorders (ISBD) Big Data Task Force

Authors: Ives Cavalcante Passos, MD, PhD; Pedro Ballester, PhD; Rodrigo Coelho Barros, PhD; Diego Librenza-Garcia, MD; Benson Mwangi, PhD; Boris Birmaher, MD; Elisa Brietzke, MD, PhD; Tomas Hajek, MD, PhD; Carlos Lopez Jaramillo, MD, MSc, PhD; Rodrigo B. Mansur, MD, PhD; Martin Alda, MD; Bartholomeus C.M. (‘Benno’) Haarman, MD; Erkki Isometsa, MD, PhD; Raymond W Lam, MD, MD; Roger S. McIntyre, MD, FRCP; Luciano Minuzzi, MD, PhD; Lars Vedel Kessing, MD, DMS; Lakshmi N. Yatham, MBBS; Anne Duffy, MD, MSc; Flavio Kapczinski MSc, MD, PhD, FRCP.

1. Laboratory of Molecular Psychiatry and Bipolar Disorder Program, Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
2. School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Rio Grande do Sul, RS, Brazil.
3. Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
4. UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/bdi.12828
This article is protected by copyright. All rights reserved.
5. Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.

6. Department of Psychiatry, Queen's University, Kingston, ON, Canada.

7. Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.

8. Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, University of Antioquia; Mood Disorders Program, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

9. Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada.

10. National Institute of Mental Health, Klecany, Czech Republic

11. Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

12. Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland

13. Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.

14. Department of Psychiatry, University of Toronto, Toronto, ON, Canada

15. Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Denmark.

Corresponding author:
Flávio Kapczinski, MD, PhD
Full Professor at McMaster University
Director of MINDs – Graduation Program in Mental Health (McMaster University)
Email: flavio.kapczinski@gmail.com

Email for authors:
Ives Cavalcante Passos: ivescp1@gmail.com
Pedro Ballester: pedro.ballester@acad.pucrs.br
Rodrigo Coelho Barros: rodrigo.barros@pucrs.br
Diego Librenza-Garcia: diegolibrenzagarcia@gmail.com
Benson Mwangi: benson.mwangi@gmail.com
Boris Birmaher: BirmaherB@upmc.edu
Elisa Brietzke: elisabrietzke@hotmail.com
Tomas Hajek: Tomas.Hajek@dal.ca
Carlos Lopez Jaramillo: carloslopezjaramillo@gmail.com
Rodrigo Mansur: rodrigo.mansur@uhn.ca

This article is protected by copyright. All rights reserved.
Abstract

Objectives: The International Society for Bipolar Disorders (ISBD) Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD.

Method: A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD.

Results: The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding.

Conclusion: Machine learning based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.

Keywords: bipolar disorder, big data, machine learning, deep learning, data mining, personalized psychiatry, risk prediction, predictive psychiatry.
Introduction

Bipolar disorder (BD) has a worldwide prevalence of about 2% with subclinical variants affecting another 2% of the population.\(^1\) According to the World Health Organization, BD is among the top 10 leading causes of disability-adjusted life years in young adults.\(^2\) Rates of completed suicide in patients with BD are 7.8% in men and 4.9% in women.\(^3\) These patients commonly endure prolonged periods of trial and error before an effective treatment among the possible options is found. Although interventions to treat and prevent mood episodes are available and detailed in Guidelines,\(^4,5\) unselected treatment or guideline drive treatment is frequently suboptimal, and about 60% of the patients relapse into depression or mania within two years of treatment initiation.\(^6,7\) Early intervention is critical in BD to prevent progression and complications such as suicide attempts,\(^8–10\) however, current approaches to diagnosing BD leave room for improvement, since there is an average delay of ten years between the first symptoms and a formal diagnosis.\(^11\)

Randomized clinical trials (RCTs) and meta-analyses have helped to find effective treatments for BD, such as lamotrigine\(^12\) and quetiapine,\(^13\) by using traditional statistical methods, which primarily provide average group-level results based on measures of central tendency and variance. This approach allows us to make broad generalizations about patients with BD in regard to specific treatments. However, it fails to detect nuances related to an individual patient, and significant results may not represent a real benefit for individuals.\(^14\) Indeed, subjects included in clinical trials do not consistently reflect patients with BD from real-world clinical scenarios – in fact, the very idiosyncrasies that characterize most of these patients, such as the multi-morbidity profiles, are often exclusion criteria in clinical trials.\(^15\) In addition, evidence suggests that BD is a heterogeneous disorder with valid subgroups, each with a specific responsiveness to prophylactic treatment.\(^16,17\) Big data analysis by machine learning techniques provides the means to move beyond group level statistics into individual subject classification based on accuracy, sensitivity, specificity, and area under the ROC curve (AUC).

Another elusive goal in the current study of BD is the prediction of prognosis in individuals already affected and transition to full-blown illness in those ones at risk.\(^18\) The linear association between risk factors and clinical outcomes is important to understand BD,\(^19\) however, they do not objectively stratify which subjects will develop BD or, when affected, what will be their prognosis.\(^20,21\) The integration of a huge number of risk factors necessarily requires new analytical tools. To fill these gaps, big data analytics is being used in psychiatry to provide predictive models for both clinical practice and public health systems.\(^22\)

In this manuscript, the Big Data Task Force of the International Society for Bipolar Disorder (ISBD) will explore the role of machine learning techniques and big data in improving outcomes prediction in prevention, diagnosis, and treatment of individuals with BD. Specifically, we will 1) define big data and machine learning techniques and outline the issues that need to be considered in machine-learning-based studies; 2) update a systematic review of published studies on machine learning and big data in BD to illustrate where the field is at right now; and 3) identify the obstacles for application of these methodologies in BD and propose strategies to overcome them.
Methods

A Task Force was convened to examine, discuss, and integrate findings from the scientific literature related to machine learning based studies and big data to clarify terminology and to describe challenges and potential applications in the field of BD. We also updated a systematic review published by our group.23

Search strategy

For the systematic review, we searched PubMed, Embase, and Web of Science for articles published between January 1960, and January 2019 by using the following keywords: (“Big data” OR “Artificial Intelligence” OR “Machine Learning” OR “Gaussian process” OR “Cross-validation” OR “Cross validation” OR “Cross validation” OR “Regularized logistic” OR “Linear discriminant analysis” OR “LDA” OR “Random forest” OR “Naïve Bayes” OR “Least Absolute selection shrinkage operator” OR “elastic net” OR “LASSO” OR “RVM” OR “relevance vector machine” OR “pattern recognition” OR “Computational Intelligence” OR “Computational Intelligences” OR “Machine Intelligence” OR “Knowledge Representation” OR “Knowledge Representations” OR “support vector” OR “SVM” OR “Pattern classification”) AND (“Bipolar Disorder” OR “Bipolar Disorders” OR “Manic-Depressive Psychosis” OR “Manic Depressive Psychosis” OR “Bipolar Affective Psychosis” OR “Manic-Depressive Psychoses” OR “Mania” OR “Manic State” OR “Manic States” OR “Bipolar Depression” OR “Manic Disorder” OR “Manic Disorders” OR “Bipolar euthymic”). We also searched the reference lists to find potential articles to include. There were no language restrictions.

Eligibility criteria

This systematic review was performed according to the PRISMA statement.24 Articles met the inclusion criteria if they assessed patients with BD using machine learning techniques. Technical and theoretical studies that used machine learning techniques but did not assess patients with BD were excluded. We also excluded studies that included only individuals below 18 years of age.

Data collection, extraction, and statistical analysis

Two researchers (DLG and PB) independently screened titles and abstracts of the identified articles. They also obtained and read the full texts of potential articles, supervised by ICP who made the final decision in cases of disagreement. Data extracted from the articles included year of study publication, data used in the machine learning model (i.e., neuroimaging, blood biomarkers, clinical and demographical characteristics, among others), sample size, diagnoses assessed in the study, machine learning algorithm, and statistical measure of performance (i.e., accuracy, sensitivity, specificity, area under the curve, true positive, false positive, true negative and false negative). When this data was not available, we requested it from the authors.
Definitions

Big Data

The first definition of big data focuses on the 3 Vs - velocity, volume, and variety. “Velocity” refers to the speed at which the data is generated, while “Volume” refers to the amount of data, and is readily demonstrated by for example the storage space needed. “Variety” refers to the diverse nature of data collected from many sources. For healthcare, this means that data for understanding one’s behaviour should not be collected only from anamnesis, exams, and clinical questionnaires. Instead, data should be pervasive and gathered in multiple modalities, including patient behavior and social relationships. A more recent definition adds veracity and value as two additional Vs.25 “Veracity” concerns whether or not we can trust the data we gather, and “Value” refers to the fact that we must integrate all of the aforementioned pillars of big data towards improvement on how we treat and monitor patients, thus generating value for families, caregivers, and patients suffering from the BD.26

One example of a big data application is ecological momentary assessment, which refers to the continuous collection of data by smartphones or personal devices. Its potential is based on the assumption that traditional clinical approaches in assessment of mood symptoms are unsatisfactory since they require that the patient summarize their symptoms over a defined time framework (e.g. one month) in one sentence: Over the past month I felt: “good”, “not so good”, “very depressed”, or “a little bit manic”. Therefore, there is no granularity in mood reporting and no reliable information about variability or association with other symptoms or exposures, which would be putatively more in line with neurobiology. Additionally, there is no ecological validity to this kind of reporting (patients behave differently when they are in our offices). We need a comprehensive, ecologically valid, precise and passive collection of data as proposed in some studies.27,28 However, such rich data collection will generate millions of data points that will require specific approaches for analysis.

Machine Learning

Most of the process for finding useful patterns in data that have translational meaning and can be incorporated in day-to-day practice is possible through machine learning approaches - a powerful tool for pattern recognition and responsible for most of the recent advances in artificial intelligence. Through almost no pre-assumptions and a nonlinear function canvas, we can model complex patterns that can identify relationships between large amounts of and diverse data.29 This change in perspective introduces more flexibility in our groups (we may include fewer constraints in inclusion/exclusion criteria from clinical trials), while providing important information on a clinical outcome by taking into account heterogeneity. Furthermore, by incorporating feature selection in the process, we can automatically select subgroups of predictors that are most relevant for a model, providing simpler and more clinically useful results.30

But how does machine learning operate? Usually, machines receive data from a certain scenario, ranging from simple online surveys responses to complex biomarkers measurements, such as genetics or neuroimaging, and approximate a function that best fits the predictors.31 This process is called training and it represents the process of learning. In the context of healthcare, the learning method is usually contained in one of two paradigms, supervised or unsupervised learning. In supervised learning, the user feeds the machine with predictors and expected outcome. The machine thus learns a mapping $X \rightarrow Y$ from the predictor space X to the outcome space Y. This paradigm includes tasks such as predicting

This article is protected by copyright. All rights reserved.
suicide attempts in patients with mood disorders based on prior clinical or demographic variables. However, unsupervised learning does not depend on Y and has clustering as its most common class of algorithms. Clustering can find hidden groups underlying the predictors’ variance and help users explain phenomena. This type of learning includes finding subgroups of patients that share underlying characteristics, such as suicidality or neurocognitive impairment in a proportion of patients with BD.

To make easier the transition for practitioners to the lingo introduced in this new field, we provide a quick terminology reference in Table 1. Additionally, Table 2 provides important points to be considered in machine-learning-based studies and Figure 1 shows how a machine learning experiment should be conducted. It is important to note that machine learning is but one of several methods that can be used to analyze big data. For instance, discriminant analysis or various methods of principal component analysis, cluster analysis, factor analysis can all be used with various assumptions being met for analyzing large data sets and for differentiating either pre-defined groups ("supervised") or hypothesis-free (data-generated) subgroups ("unsupervised"). We chose machine learning techniques in the present review because of its ability to model complex patterns, including non-linear relationships.

How will machine learning and big data analytics contribute to the field of bipolar disorder?

We found 1124 potential abstracts and included 91 articles in the present review, with one of these added after reference screening (Figure S1). We found 37 additional articles compared to the prior systematic review. We briefly described below how machine learning and big data will contribute to the field of BD by highlighting some of the included articles. The most relevant characteristics and findings of each of the 89 included studies are described in the supplemental material (tables S1, S2, S3, and S4).

Diagnostic studies

Structural and functional neuroimaging, as well as diffusion tensor imaging (DTI), have been widely used in classification studies. A recent large study applied support vector machines to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 patients with BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. Authors found an AUC of 0.71 in differentiating BD from controls. Additionally, a recent meta-analysis showed an AUC of the summary ROC curve of 0.70 for structural and of 0.75 for functional neuroimaging studies. We found one study that used DTI and included 67 unmedicated depressed patients, including 31 patients with BD and 36 with major depressive disorder (MDD). Authors found that the fractional anisotropy (FA) tract profile of the left anterior thalamic radiation can be used to differentiate between the BD and MDD patients at an accuracy of 68.33%. Other sets of data, such as genetics, electroencephalogram, neuropsychological tests, blood biomarkers, text, facial expressions, and speech were also used to classify patients with BD from healthy controls or from other psychiatric disorders (Table S1). It is worth mentioning that a study used the concept of ecological momentary assessment to distinguish patients with BD from patients with borderline personality disorder and healthy controls by using daily mood ratings from a smartphone app. Authors reported that the methodology classified 75% of participants into the correct diagnostic group compared with 54% using standard approaches.
These studies may provide a more objective diagnosis for BD in the near future. However, some limitations should be addressed to allow translation of these findings to the clinical practice. First, the initial AUC of the predictive models should be improved by including other layers of data and applying a multimodal data approach. Second, most of the studies lack external validity since they were built by using only patients with BD and controls. Therefore, population and largely representative studies, including other psychiatric or neuropsychiatric disorders, should be conducted to ensure generalization of the proposed models. Third, we still do not know how these models will perform in face of patients from different stages of the disorder. In this sense, a recent study found that a machine learning model developed by using the relevance vector machine algorithm and white matter from structural MRI was more accurate in identifying patients with BD at the late stage.

Prediction of poor clinical outcomes

Some studies used machine learning techniques to predict suicidality and mood episode relapse. A study tested a set of machine learning algorithms coupled with clinical and demographic variables to develop a clinical signature of suicidality in 144 patients with mood disorders, including BD. The study reported a balanced accuracy of 72% and an AUC of 0.77 in predicting suicide attempts. Prior hospitalizations for depression, comorbid post-traumatic stress disorder, cocaine dependence, and history of psychotic symptoms were the most robust variables in the model. Other studies also predicted suicidality by using machine learning coupled with a combined genomic and clinical risk assessment approach and built models with an AUC of 0.98 and 0.82 in patients with BD. It is also worth mentioning that a recent text classification study used letters and diaries of Virginia Woolf to identify written patterns associated with suicide. Authors found an AUC of 0.80 and a balanced accuracy of 80.45% by using Naïve-Bayes machine-learning algorithm.

Another study used demographic and clinical features, including follow-up variables, to assess depression relapse in 108 patients with BD and achieved an accuracy of 85%, and a sensitivity of 92%. Furthermore, a study using voice features collected in phone calls to classify patients' affective states, achieved an AUC of 0.78 (depressed vs. euthymic) and 0.89 (manic/mixed vs. euthymic). These proof-of-concept and experimental protocols illustrate machine learning’s potential to aid in the clinical assessment of BD patients, yielding models with sufficient accuracy to monitor mood states in real time which may help assess disease activity and advance early intervention. Although promising, most of these studies included small samples, and, therefore, need to be interpreted with caution requiring adequate model validation in different settings and populations. Table S2 in the supplemental material presents studies that used machine learning methods to predict clinical outcomes in BD.

Selection of treatment

The incorporation of tools from machine learning to guide trials for better-tailored interventions is a necessary next step to move beyond current group-based approaches. These models can be displayed as user-friendly calculators, and incorporated into the clinical workflows of electronic medical records. For instance, if a calculator predicts that a given patient is unlikely to respond to an intervention, the clinician could then consider alternatives. Accordingly, patients would benefit from more precise treatment plans with less delay avoiding the associated burden of untreated illness. These calculators estimate the probability of a particular outcome and are ideal for assessing the multimorbidity profile and other nuances found in patients with BD - as long as their heterogeneity is represented.
in the training dataset. In the field of BD, a pilot study developed a treatment response calculator for lithium. Authors included 20 subjects with first-episode bipolar mania who received lithium over 8 weeks. A machine learning model coupled with fMRI and 1H-MRS scans data at baseline pretreatment was trained and validated. The model was able to predict post-treatment symptom reductions at 8 weeks with 80% accuracy in the validation phase.

Machine learning guided interventions will not only facilitate the selection of treatment based on efficacy but also aid in the prevention of side effects. In this sense, a study with more than 5700 patients undergoing lithium treatment built a predictive algorithm to renal insufficiency by using logistic regression and electronic medical records. Authors found an AUC of 0.81 in an independent testing set. Use of lithium more than once daily, lithium levels greater than 0.6mEq/l, and the use of first-generation antipsychotics were independently associated with risk. These findings suggest that risk stratification can be expanded to other treatments and interventions. Moreover, estimating the risk of certain side effects could allow more informed decisions and facilitate the development of prevention strategies.

Finally, machine learning guided trials may have a different design compared to RCTs. First, it is not necessary to have a control group since the aim is to stratify the already known evidence from RCTs among patients with BD. Second, inclusion criteria should not be restrictive since the heterogeneity, multimorbidity profile and other nuances found in patients with BD from real-world clinical scenarios should be represented in the sample. These types of trials will shift the focus from group-level averages to individuals and will ultimately leverage each person’s unique clinical and biological profile to improve selection of treatment. Table S3 shows machine learning studies predicting treatment response and adverse effects.

Prediction of transition to bipolar disorder

Another elusive goal in the field of BD is the prediction of transition to full-blown illness and its prognosis. The risk to first degree relatives of a patient suffering from BD is estimated at 10-fold that of the general population. Additionally, several risk factors for bipolar and related mood disorders have been identified in those at confirmed familial risk including the presence of subthreshold mood symptoms (hypomanic, depressive and anxiety symptoms), antecedent non-mood childhood diagnoses (i.e., anxiety and sleep disorders), experiences of childhood abuse and neglect, increased exposure to unstable parental BD and temperament factors. However, the relative contribution of these independent risk factors and the interaction among them in predicting mood disorders is unclear. In addition, it is unlikely that a single biomarker can predict who will develop BD since multiple and complex bio-psychosocial pathways lead to these disorders. However, no study has used machine learning techniques to predict conversion to BD in those at identified risk as yet. Two studies have built risk calculators for illness development using other mathematical approaches. One of these assessed the probability that an offspring of a parent with BD will develop a new-onset bipolar spectrum disorder within the next 5 years. Authors found an AUC of 0.76 by using Cox proportional hazards regression. Another similar study built a risk calculator to predict the individual risk of transition from subthreshold bipolar symptoms to bipolar I or II in youth and reported an AUC of 0.71.
Data clustering using unsupervised and semi-supervised machine learning

BD and other psychiatric disorders are all extremely heterogeneous, in terms of their clinical presentation (which we refer to as ‘clinical heterogeneity’), underlying biological causes (‘biological heterogeneity’) and environmental exposures (‘environmental heterogeneity’). These sources of heterogeneity remain a substantial barrier to better understanding the causative mechanisms of psychiatric disorders and to developing optimal treatments and diagnostic tools. It has long been recognized that we must look beyond simple case-control comparisons to be able to deconstruct the heterogeneous phenotype of BD. Unsupervised and semi-supervised machine learning techniques may aid to digest the heterogeneity; however, few studies used these techniques in the field of BD (Table S4). In addition, replication remains a major challenge for these approaches. Indeed, none of the studies we have reviewed have been independently replicated.

Obstacles and ethical issues

Although we have a plethora of studies using machine learning and big data approaches to tackle complex questions in BD, knowledge translation to clinical practice is still under-developed. Obstacles, including model validation, computational power, multimodality, assessment of rare events, cost and non-stationary distribution of the data, heterogeneity both phenotypically and etiologically, phenomenological diagnosis, lack of a uniform pipeline for machine learning studies, lack of appropriate funding, and lack of interpretability, need to be addressed.

Model Validation

When training a model, machines can either fit the training data incredibly well or not find a function that suits the data properly. In the former, we should be careful whether the machine is not performing overfitting. In that case, when performing inferences on new data (unseen during the training process), the machine will probably lead to suboptimal results. In the latter case, when the machine underfits the data, it can be easily seen during training. Most of the time we refer to such challenge as a variance and bias tradeoff. Essentially, the goal is to develop a model with enough variance to model complex shapes but not too much to overfit the data.

An additional point related to overfitting is that it can also lead to false conclusions on data behavior. By observing the variables that contribute to the result, the researcher could wrongfully declare a new finding for an outcome not able to be replicated in another trial. For that reason, one must follow a protocol to ensure that the findings are robust. There are several approaches here, including Bootstrap, Cross-Validation, and Holdout. The gold standard is debatable but usually consists of performing Cross-Validation to find the best fitting model in the training data and finally evaluating once in a Holdout set. The Holdout set should be totally unseen during the process and ultimately should be collected on an entirely new sample at a different institution when possible.

Computational Power and Quality of Data

There is a clear tradeoff between how much data you have and the quality of the models you can develop. Usually, the more data you gather, the more your model will generalize for unseen instances. Additionally, you lessen the chances of overfitting and it gets easier to properly use the validation protocols. Two other facets of machine learning research in healthcare are challenging. First, collecting large amount of data can be costly and often associated with logistical challenges. Second, the computational power required
to address large databases grows exponentially with the data complexity/size. Performing proper feature selection and hyperparameter optimization in big data can also be challenging.30 Some studies on unstructured data such as images, text, video, and others, can also approach the problem of using deep learning. Convolutional neural networks, the standard framework for systems in this kind of data, depend on dedicated graphic cards to train due to computational requirements. Computers that can train such models are not widely available for researchers and purchasing capable computers adds a significant cost to the experiments.

It is important to emphasize the need to share and harmonize data. It is crucial to have good quality data, to handle missing data adequately, and to utilize at least few instruments in common and apply them similarly across sites. These strategies will not only facilitate the task of building big datasets but also allow replication of positive findings. Another important point regarding BD is the assessment of rare events, such as suicide. Because of statistical rarity of suicide deaths in the short term, even models with good accuracy would result in a poor risk stratification tool.95 In this case, resampling strategies should be applied in the training phase.

Multimodality

Working with multimodal data can provide another challenge. There is no standard way of integrating information from multiple sources, such as using both text and image for predicting an outcome. By using features extracted from each modality, the model could possibly use the data, but this kind of approach usually diminishes the potential of information that could be extracted. This happens because feature extraction algorithms most of the time depend on human knowledge, decreasing the potential for data-driven approaches to find hidden patterns.

However, deep learning poses a possible solution for such task. By learning the feature extraction process, deep learning models tend to properly find most of the important information for solving the task. This includes finding the potentially hidden patterns that could be used for clinical practice or leveraging our knowledge on a disorder. To handle multimodal data, the models learn a joint latent space where semantically similar data from any of the modalities presented are close.

This type of analysis does not come without drawbacks. By performing analysis on raw data, deep learning is very susceptible to domain shift. By training with almost no preprocessing, the data can follow very different distributions when varying equipment. A good example could be the range of distributions that the same slice of a brain scan can assume based on which MRI protocol and equipment was used. When changing modalities such as MRI or CT, the distribution shifts even more drastically, generally completely invalidating using the model without further training. For that reason, when deploying for clinical practice, the researchers should be careful to guarantee that the scenario in which the model is being applied follows the same distribution from the training data. If this is not maintained, there is no way to assure a good predictive performance.

Non-stationary distribution of the data

Researchers should be careful with non-stationary distributions to use their models. These are cases where the data distribution changes over time, and thus the moment in which the data was collected heavily influences the model's behavior. An example could be a model to predict suicide attempts in patients with BD through their posts in social media. In that case, the relationship between the words and suicide attempts may change in part

This article is protected by copyright. All rights reserved.
because the writing style shifts over time. This is one of the most challenging problems in machine learning, as the variables that could impact the model’s predictive power are most of the time hidden from our perspective. This also happens very often in companies trying to bring machine learning to production. A real case in healthcare research dates back to 2009 when a model trained for predicting flu epidemics was found by 2011 to consistently overestimate flu prevalence in subsequent years.96,97

Heterogeneity and phenomenological diagnosis

Current psychiatric diagnosis is based on clinical judgment of patient’s narratives and behavior. Specifically, BD illustrates the dilemma of diagnostic systems solely based on clinical judgment. Clinical observations are subjective in nature, often incomplete, and prone to inconsistencies between evaluators. This scenario hampers the training process in machine learning studies since both outcomes and predictors may be subject to these inconsistencies. As abovementioned, heterogeneity could also complicate this scenario. Also, machine learning, almost by design is suited better for detection of aggregates of multiple small effects. This could be the underlying reality of psychiatric disorders, but it could be also a “diluting effect” of heterogeneity.98

Funding agencies and lack of interpretability

Due to their disruptive nature, data-driven approaches are still encountering some acceptance barriers in the healthcare community. Unlike other fields, such as computer science, there is no clear consensus among researchers as to whether such methods are reliable. The main concern is that not fully depending on hypothesis leads to fishing expeditions, and thus the risk of false positive findings. Funding agencies, consequently, are still concerned and conservative in their investment in such approaches. This will probably be overcome as the machine learning protocols for healthcare become more widespread, and the results are more convincing.

Yet another concern about such approaches is the lack of interpretability that the resulting models usually possess. There is no clear way of interpreting complex non-linear models. However, if a phenomenon is presented in a non-linear pattern, the ability to model its function surpasses the need for understanding its behavior. In many clinical applications, it can be expected that the clinician does not need to fully comprehend how the machine is processing information. In that case, the main concern is how effectively the model can predict a specific outcome. Although visualization and interpretation are important, perhaps we should not be too limited by human capabilities of pattern recognition, and instead, be open and interested in how we can improve practice using proven and reliable predictions.

Ethical issues

Big data analytics and machine learning do not come without ethical worries. First, regarding the privacy and anonymity of the data.99 Hospitals and institutions need to establish clear policies to determine who is granted access to collected information, to avoid sensitive data to be inadequately exposed and analyzed. At the same time, it is our opinion that the lack of data sharing is one of the main obstacles, which hinders the full realization of the potential of machine learning. Without large sample sizes and multi-site data, it will not be possible to build reliable machine learning algorithms applicable to heterogeneous psychiatric disorders. Thus, developing ethico-legal framework, which would facilitate safe data sharing is a key and critical component of the machine learning field. The cost of data sharing to participant needs to be carefully weighted against the potential benefits to this
approach to the society. In case of brain imaging data, for instance, the benefit of data sharing, which could yield new diagnostic/prognostic tools, markedly outweighs the risk to the participant whose anonymized data are shared.

Second, the impact those predictive models may have for individuals. If we can predict that a patient with BD will have a more pernicious illness course, that would mean he will make more use of health services, and therefore, may be charged more for a health plan. The argument that subjects identified as at risk of suicide, for instance, could suffer psychosocial prejudice is indeed a major concern, however, this issue can be in part handled by fostering medical confidentiality, which is possible provided that these subjects are not at acute risk of suicide. Additionally, if an individual is predicted to develop bipolar disorder or attempts suicide, how this information influences his quality of life? How will it influence his relationships with his peers? It is possible that the stressful burden of knowing may incur in speeding the disorder installment or even lead to another disorder, such as substance abuse. An important question, therefore, is how our patients may cope with such predictions about their future, and weigh harm and benefit of its use. Future guidelines in the field of bipolar disorder may have to address the problem of “potential patients” not only in terms of therapeutic preventive strategies but also in terms of how to handle the harm related to this prediction.

Conclusion

The high morbidity and mortality related to BD provides the impetus for research into more sophisticated computational approaches for risk prediction, individualized treatment, and prognosis. In this manuscript, we summarized how machine learning techniques and big data analysis may help the field by providing predictive models at the individual level. It is important to note that some of the studies included used machine learning techniques but not big datasets. Additionally, some of the most intriguing results derive from small studies that have yet to be independently replicated. The field of machine learning and big data in BD is still in its infancy and replication of the findings is required. However, technology made available by machine learning and big data analytics gives us the unique opportunity to study the “real patient” and all of the inherent complexity. It is also important to mention that in universal health systems, a wealth of untapped and yet available, person-specific information is attached to every single patient and could be used to build diagnostic tools. Currently, the full scope of individual information is under-utilized and the information value of the sequence and timeframe of events is underdeveloped. Until recent times one major constraint for the use of such wealth of information was the lack of means to analyze it in a coherent way with standard statistical techniques. The emerging field of big data and machine learning provides a framework to deal with such broad and complex datasets in real-time to advance our understanding and treatment of BD.
Acknowledgements:

Ives Cavalcante Passos was supported by funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and CAPES (Brazilian Government) and FIPE (Hospital de Clínicas de Porto Alegre). Tomas Hajek was supported by funding from the Canadian Institutes of Health Research (103703, 106469 and 142255), Nova Scotia Health Research Foundation, Dalhousie Clinical Research Scholarship, Brain & Behavior Research Foundation (formerly NARSAD) 2007 Young Investigator and 2015 Independent Investigator Awards, the Ministry of Health, Czech Republic (grants number 16-32791A, 16-32696A). Flávio Kapczinski has received grants or research support from Brain & Behavior Research Foundation (formerly NARSAD), the Stanley Medical Research Institute, CNPq, and CAPES (Brazilian Government).

References

13. Young AH, McElroy SL, Olausson B, Paulsson B. A randomised, placebo-controlled 52-week trial of continued quetiapine treatment in recently depressed patients with

34. Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M. Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning

This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Dipping</td>
<td>Circular analysis of the test data set. The researcher uses the test data twice, overestimating the predictive power</td>
</tr>
<tr>
<td>Overfitting</td>
<td>Model too adjusted to the training set. This leads to problems of generalization</td>
</tr>
<tr>
<td>Underfitting</td>
<td>Model not well adjusted to the data. This usually implies that a more complex model is required</td>
</tr>
<tr>
<td>Feature Selection</td>
<td>Selecting the most important predictors, either by domain experts or in a data-driven manner</td>
</tr>
<tr>
<td>Hyperparameter Tuning</td>
<td>Model induction algorithms usually rely on hyperparameters. These are chosen by the user and can be optimized for better results</td>
</tr>
<tr>
<td>Kernel</td>
<td>Kernel is a way of computing the dot product of two vectors "x" and "y" in some (possibly very high dimensional) feature space. Kernel methods are a class of algorithms for pattern analysis, whose best-known member is the support vector machine</td>
</tr>
<tr>
<td>Internal Validity</td>
<td>Validating results in the same context (data from the same trial, institution, and others)</td>
</tr>
<tr>
<td>External Validity</td>
<td>Validating results from different contexts. This shows that the model is able to handle other scenarios (different trials, institutions, and others)</td>
</tr>
<tr>
<td>Multimodal Data</td>
<td>Combining data from multiple heterogeneous sources. This includes combining text, audio, video, and others.</td>
</tr>
<tr>
<td>Unstructured Data</td>
<td>Data that does not follow a specific organization, such as text and images.</td>
</tr>
<tr>
<td>Curse of dimensionality</td>
<td>When multiple features are present, separating data in the multidimensional space becomes easier. Consequently, overfitting data is a common occurrence.</td>
</tr>
<tr>
<td>Holdout</td>
<td>Subset of the data that is kept away from the analysis for posterior testing.</td>
</tr>
<tr>
<td>Cross-validation</td>
<td>Validation protocol that involves splitting data into k-folds to verify if the model is able to generalize from training</td>
</tr>
<tr>
<td>Bootstrap</td>
<td>Alternative validation protocol that creates multiple randomized subsets of training data</td>
</tr>
</tbody>
</table>
Table 2. Important points to be considered in machine-learning-based studies.

<table>
<thead>
<tr>
<th>Methodological feature</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representativeness of the sample</td>
<td>Was the study truly representative of the target population heterogeneity or included a selected group of users?</td>
</tr>
<tr>
<td>In the case of supervised machine learning studies, the subjects in different groups are comparable based on the study design or analysis.</td>
<td>Did the study control for the most important confounding factors?</td>
</tr>
<tr>
<td>Assessment of the outcome</td>
<td>Independent blind assessment, medical record or self-report?</td>
</tr>
<tr>
<td>Machine learning approach</td>
<td>Was the machine learning algorithm used to analyze data clearly described and appropriate? Were metrics of performance presented?</td>
</tr>
<tr>
<td>Class Imbalance</td>
<td>How did authors address the class imbalance problem?</td>
</tr>
<tr>
<td>Test Dataset</td>
<td>Was the test dataset "unseen"?</td>
</tr>
<tr>
<td>Feature Selection and Hyperparameter Tuning</td>
<td>Did the study describe both feature selection and hyperparameter tuning?</td>
</tr>
<tr>
<td>Missing Data</td>
<td>Did the study describe how authors handled missing data, including if they were inputted or removed?</td>
</tr>
</tbody>
</table>
Figure 1. Essential steps to conducting machine learning models. A) The patient data comes from multiple sources and biological levels. B) The most important features should be selected in order to reduce the dimensionality of the problem. This step is done mainly in two different forms. One way is through feature selection algorithms that automatically extract information (data driven). The other is by domain experts that identify which features should be kept through their knowledge on the subject (hypothesis driven). C) Candidate models generated by the induction algorithm. D) Final model chose from the candidate pool by a performance metric, such as the area under the ROC curve or accuracy. E) Model validation with external data, potentially from different institutions to avoid bias. F) Translate the knowledge to generate risk calculators.