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Abstract

Exact string matching in labeled graphs is the problem of searching paths of a graph G = (V,E) such
that the concatenation of their node labels is equal to the given pattern string P [1..m]. This basic
problem can be found at the heart of more complex operations on variation graphs in computational
biology, of query operations in graph databases, and of analysis operations in heterogeneous networks.

We prove a conditional lower bound stating that, for any constant ε > 0, an O(|E|1−εm)-time,
or an O(|E|m1−ε)-time algorithm for exact string matching in graphs, with node labels and patterns
drawn from a binary alphabet, cannot be achieved unless the Strong Exponential Time Hypothesis
(SETH) is false. This holds even if restricted to undirected graphs with maximum node degree two,
i.e. to zig-zag matching in bidirectional strings, or to deterministic directed acyclic graphs whose
nodes have maximum sum of indegree and outdegree three. These restricted cases make the lower
bound stricter than what can be directly derived from related bounds on regular expression matching
(Backurs and Indyk, FOCS’16). In fact, our bounds are tight in the sense that lowering the degree
or the alphabet size yields linear-time solvable problems.

An interesting corollary is that exact and approximate matching are equally hard (quadratic
time) in graphs under SETH. In comparison, the same problems restricted to strings have linear-time
vs quadratic-time solutions, respectively (approximate pattern matching having also a matching
SETH lower bound (Backurs and Indyk, STOC’15)).
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1 Introduction

String matching is the classical problem of finding the occurrences of a pattern string
as a substring of a text string [22]. As most of today’s data is linked, it is natural to
investigate string matching in labeled graphs. Indeed, large-scale labeled graphs are becoming
ubiquitous in several areas, such as graph databases [6, 16, 30, 27], graph mining [19, 12], and
computational biology [11]. Applications require sophisticated operations on these graphs,
and often rely on primitives that locate paths whose nodes have labels or types matching
a pattern given at query time. The most basic pattern is a string and, as we will see, this
already poses a challenge when performing string matching in graphs.

Problem Definition

Given an alphabet Σ of symbols, consider a labeled graph G = (V,E, L), where (V,E)
represents a directed or undirected graph and L : V → Σ is a function that defines which
symbol from Σ is assigned to each node as label.1 A node labeled with σ ∈ Σ is called a
σ-node, and an edge whose endpoints are labeled σ1 and σ2, respectively, is called a σ1σ2-edge.
If G is a directed graph, we say that G is deterministic if, for any two out-neighbors of the
same node, their labels are different. In the following, we introduce the acronym 3-DDAG to
indicate a deterministic directed acyclic graph (DAG) such that its nodes are labeled with a
binary alphabet and the sum of indegree and outdegree of each node is at most 3.

Given a pattern string P [1..m] over Σ, we say that P has a match in G if there is a
path u1, . . . , uk such that P = L(u1) · · ·L(uk) (we also say that P occurs in G, and that
u1, . . . , uk is an occurrence of P ).

I Problem 1 (String Matching in Labeled Graphs (SMLG)).
input: A labeled graph G = (V,E,L) and a pattern string P , both over an alphabet Σ.
output: True if and only if there is at least one occurrence of P in G.

Results

We give conditional bounds for the SMLG problem using the Orthogonal Vectors (OV)
hypothesis [34]. The latter states that for any constant ε > 0, no algorithm can solve in
O(n2−εpoly(d)) time the OV problem: given two sets X,Y ⊆ {0, 1}d such that |X| = |Y | = n

and d = ω(logn), decide whether there exist x ∈ X and y ∈ Y such that x and y are
orthogonal, namely, x · y = 0. We observe that it is common practice to use the Strong
Exponential Time Hypothesis (SETH) [20] but, since SETH implies the OV hypotesis [34], it
suffices to use the OV hypothesis in the bounds, as they hold also for SETH.

First, we consider the SMLG problem on directed graphs. Their weakest form is a 3-DDAG,
for which we prove in Section 2 that subquadratic time for exact string matching cannot be
achieved unless the OV hypothesis is false.

I Theorem 1. For any constant ε > 0, the String Matching in Labeled Graphs (SMLG)
problem for a binary alphabet and a labeled deterministic directed acyclic graph (DAG) cannot
be solved in either O(|E|1−εm) or O(|E|m1−ε) time unless the OV hypothesis fails. This
holds even if it is restricted to graphs in which the sum of outdegree and indegree of any node
is at most three (i.e, 3-DDAGs).

1 Note that we can also define the node labels as nonempty strings, but it suffices to use single symbols
to show that string matching in graphs is challenging.
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Table 1 Legend: V = set of nodes, E = set of edges, occ = number of matches for the pattern in
the graph, m = pattern length, N = total length of text in all nodes, (1) errors only in the pattern,
(2) errors in the graph, (3) matches span only one edge. The two rows highlighted in gray report
the best known bounds for exact and approximate string matching, respectively.

State of the art for SMLG
Year Authors Graph Exact/ Time

Approximate
1992 Manber, Wu [24] DAG approximate(1) O(m|E|+ occ lg lgm)
1993 Akutsu [2] tree exact O(N)
1995 Park, Kim [26] DAG exact(3) O(N +m|E|)
1997 Amir et al. [5] general exact O(N +m|E|)
1997 Amir et al. [5] general approximate(2) NP-Hard
1997 Amir et al. [5] general approximate(1) O(Nm lgN +m|E|)
1998 Navarro [25] general approximate(1) O(Nm+m|E|)

2017 Rautiainen,
Marschall [29] general approximate(1) O(N +m|E|)

2019 Jain et al. [21] general
binary alphabet approximate(2) NP-Hard

Next, we consider the SMLG problem on undirected graphs and introduce the zig-zag
pattern matching problem in strings, which models searching a string P along a path of an
undirected graph. While an exact occurrence of P in a text string is found by scanning the
text forward for increasing positions in P , a zig-zag occurrence of P can be found by partially
scanning forward and backward adjacent text positions, as many times as needed (e.g. for an
edge {u, v} with L(u) = a and L(v) = b, all patterns of the form a, ab, aba, abab, . . . occur
starting from u). We prove in Section 3 the following result.

I Theorem 2. The conditional lower bound stated in Theorem 1 holds even if it is restricted
to undirected graphs whose nodes have degree at most 2, where the pattern and the node labels
are drawn from a binary alphabet.

Our results can cover arbitrary graphs in this way. Interpreting the graphs from Theorem 2
as directed, we observe that they have nodes with both indegree and outdegree 2. Looking
at Theorem 1, we observe that it involves directed graphs with both nodes of indegree at
most 1 and outdegree 2, and nodes with outdegree at most 1 and indegree 2. Thus, the
only uncovered case is that of directed graphs with only nodes of indegree at most 1, or
directed graphs with only nodes of outdegree at most 1. For such graphs, we observe that
their edges can be decomposed into forests of directed trees (arborescences), whose roots may
be connected in a directed cycle (at most one cycle per forest). In the extended version of
this work we will show that the Knuth-Morris-Pratt algorithm [22] can be easily extended to
solve exact string matching for these special directed graphs in linear time, thus completing
the full picture.

History and Implications

The idea of extending the problem of string matching to graphs, as given in SMLG, is
not new. If the nodes u1, . . . , uk are required to be distinct (i.e., to be a simple path),
this problem is NP-hard as it solves the well-known Hamiltonian Path problem, so this
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requirement is removed for this reason. The SMLG problem was studied over 25 years ago as
a search problem for hypertext by Manber and Wu [24]. The history of key contributions is
given in Table 1, where a common feature of the reported bounds is the appearance of the
quadratic term m |E| (except for some special cases). The quadratic cost of the approximate
matching in graphs is asymptotically optimal under the Strong Exponential Time Hypothesis
(SETH) [20] as (i) it solves the approximate string matching as a special case, since a graph
consisting of just one directed path of |E|+ 1 nodes and |E| edges is a text string of length
n = |E|+ 1, and (ii) it has been recently proved that the edit distance of two strings of length
n cannot be computed in O(n2−ε) time, for any constant ε > 0, unless SETH is false [7].
This conditional lower bound explains why the O(m|E|) barrier has been difficult to cross
in the approximate case. Specifically, Amir et al. [4, 5], gave a quadratic-time solution for
exact string matching in O(N + m · |E|) time, where N =

∑
u∈V |L(u)|. Rautiainen and

Marschall [29] and Jain et al. [21] recently gave the best bound for errors in pattern only,
O(N +m · |E|) time, same as the exact string matching. The two best results for exact and
approximate pattern matching, both taking quadratic time in the worst case, are highlighted
in Table 1. As allowing errors in the graph makes the problem NP-hard [5], we consider here
errors in the pattern only.

In this scenario and the application domains mentioned at the beginning, our results have
a number of implications discussed below.

While we can explain the complexity of approximate string matching in graphs, not much
is known on the complexity of exact string matching in graphs. The classical exact string
matching can be solved in linear time [22], so one could expect the corresponding problem
on graphs to be easier than approximate string matching. A lower bound (i.e., NP-hard,
as mentioned above) exists only in the case when the pattern is restricted to match only
simple paths in the graph. Extensions of this type of matching for special graph classes
have been studied in [23]. Here we study the general case, where paths can pass through
nodes multiple times. Somewhat surprisingly Theorems 1 and 2 imply that exact and
approximate pattern matching are equally hard in graphs, even if they are 3-DDAGs.
Our results imply that the algorithm for directed graphs by Amir et al. [4, 5] is essentially
the best we can hope for asymptotic bounds unless the OV hyptothesis is false. This
also applies to the case of undirected graphs by the simple transformation so that each
edge {u, v} is transformed into a pair of arcs (u, v) and (v, u). Note that we need also
Theorem 2 to explicitly state that this is the best possible also for undirected graphs of
maximum degree 2. To complete the picture, we show how to get linear time for the
above special case of directed graphs where each node has indegree at most 1, or directed
graphs whose nodes have outdegree at most 1.
Our results also explain why it has been difficult to find indexing schemes for fast exact
string matching in graphs, with other than best-case or average-case guarantees [31, 17],
except for limited search scenarios [32]. They complement recent findings about Wheeler
graphs [17, 18, 3]. Wheeler graphs are a class of graphs admitting an index structure that
can be constructed in linear time and that supports linear-time exact pattern matching.
Gibney and Thankachan [18] claim that it is NP-complete to recognize whether a (non-
deterministic) DAG is a Wheeler graph. Alanko et al. [3] claim a linear-time algorithm
for recognizing whether a deterministic DAG is a Wheeler graph. Theorem 1 shows that
converting an arbitrary deterministic DAG into an equivalent Wheeler graph should take
at least quadratic time unless the OV hypothesis is false. In particular, the 3-DDAG
obtained in the reduction from OV in the proof of Theorem 1 is not a Wheeler graph.
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We observe that, for any given pattern P , the 3-DDAG obtained by our reduction admits
at most one occurrence per node, as it is deterministic and acyclic. When both P and
a node u are given, it takes linear time to search P starting from u. Interestingly, if P
alone is given, we observe that our results imply that an algorithm reporting whether
there exists a node u from which an occurrence of P starts cannot take subquadratic
time unless the OV hypothesis is false. Indeed, this hypothetical algorithm would be able
to solve the SMLG problem also on that 3-DDAG.
In the extended version of this work we will describe a simple transformation so that
we can see our 3-DDAG and the pattern P as two DFAs, so that our SMLG problem
reduces to the emptiness intersection for the string sets recognized by these two DFAs.
In this way we give a quadratic conditional lower bound for the latter problem using OV.
This adds to the results known in the literature for DFAs (tree automata) under SETH
[33] and 3SUM [13]. It is worth noting that our SMLG problem on tree automata takes
instead linear time, as will be discussed in the extended version of this work, and this
seems to suggest that SMLG could be easier than emptiness intersection for two DFAs
under SETH, even though both problems have conditional quadratic lower bounds.

Our reductions share some similarities with those for string problems [7, 10, 1, 8, 9].
The closest connection is with a conditional hardness of several forms of regular expression
matching [8]. Especially, one could start with a non-deterministic finite automaton (NFA)
derived from the regular expression matching of type | · |, and add universal “jolly” gadgets
(see our reduction) to come up with an OV lower bound for exact pattern matching in directed
non-deterministic graphs. (For the interested reader, this is what we have done in an early
version of this work [14].) However, to cover the deterministic and bounded degree cases, we
build our reduction using a different strategy. This strategy yields a graph of small degree
and enables local merging of non-deterministic subgraphs into deterministic counterparts.
This locality feature of our reduction is crucial, since converting an NFA into a deterministic
finite automaton (DFA) can take exponential time [28]. Finally, while this reduction works
also for undirected graphs of small degree, it does not cover undirected graphs of degree two.
For this case (zig-zag matching in a bidirectional string), we need a more intricate reduction
as the underlying graph has less structure.

2 Deterministic Directed Acyclic Graphs

In this section we reduce the OV problem to the SMLG problem for the restricted case of
3-DDAGs. Since any SMLG algorithm for arbitrary directed graphs can be applied also to
3-DDAGs in the same complexity, we will show that a subquadratic-time SMLG algorithm
would make the OV hypothesis false. In this scenario, 3-DDAGs are the most restricted case,
as otherwise the SMLG problem can be solved in linear time.

Given an OV instance with sets X = {x1, . . . , xn} and Y = {y1, . . . , yn} of d-dimensional
binary vectors, we show how to build a pattern P and a 3-DDAG G such that P will have
a match in G if and only if there exists a vector in X orthogonal to one in Y . We first
describe how to build P and how to obtain a directed graph whose nodes are labeled with a
constant-sized alphabet. Then we discuss how to turn such graph into the 3-DDAG G.

2.1 Pattern
Pattern P is over the alphabet Σ = {b, e, 0, 1}, has length |P | = O(nd), and can be
built in O(nd) time from the first set of vectors X = {x1, . . . , xn}. Namely, we define
P = bbPx1e bPx2e . . . bPxnee where Pxi is a string of length d that is associated with xi ∈ X,
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Y = {y1, y2, y3, y4} = {(1 1 0), (0 1 1), (1 0 0), (0 0 1)}

GW = b

0 0 0

1

e

1 1 0

b

0 0 0

1

e

0 1 1

b

0 0 0

1 1

e

1 0 0

b

0 0 0

1 1

e

0 0 1

G
(1)
W G

(2)
W G

(3)
W G

(4)
W

Figure 1 Gadget GW .

for 1 ≤ i ≤ n. The h-th symbol of Pxi
is either 0 or 1, for each h ∈ {1, . . . , d}, such that

Pxi
[h] = 1 if and only if xi[h] = 1.2 We thus view the vectors in X as subpatterns Pxi

s which
are concatenated by placing separator characters eb. Note that P starts with bb and ends
with ee: such strings are found nowhere else in P , marking thus its beginning and its end.

2.2 Directed Graph
The gadget implementing the main logic of the reduction is a directed graph GW =
(VW , EW , LW ), illustrated in Figure 1. Starting from the second set of vectors Y , set
VW can be seen as n disjoint groups of nodes V (1)

W , V
(2)
W , . . . , V

(n)
W (plus some extra nodes),

where the nodes in V (j)
W are uniquely associated with vector yj ∈ Y , for 1 ≤ j ≤ n. The cor-

responding induced subgraph G(j)
W = (V (j)

W , E
(j)
W ) will contain an occurrence of a subpattern

Pxi
if and only if xi · yj = 0. We give more details below.
The nodes in V (j)

W are defined as follows. For 1 ≤ h ≤ d, we consider entry yj [h] of vector
yj ∈ Y . If yj [h] = 1, we place just a 0-node w0

jh to indicate that we only accept Pxi [h] = 0
for this h coordinate. Instead, if yj [h] = 0, we place both a 0-node w0

jh and a 1-node w1
jh

to indicate that the value of Pxi
[h] does not matter. The nodes in V (j)

W are preceded by a
special begin b-node b(j)

W and succeeded by a special end e-node e(j)
W . The overall nodes are

thus VW =
⋃

1≤j≤n(V (j)
W ∪ {b(j)

W , e
(j)
W }), and it holds that |VW | = O(nd).

As for the edges in E(j)
W , they properly connect the nodes inside each group V (j)

W . Specific-
ally, node b(j)

W is connected to w0
j1 and, if it exists, to w1

j1. Also, we place edges connecting
both nodes w0

jd and w1
jd (if this exists) to node e(j)

W . Moreover, there is an edge for every pair
of nodes that are consecutive in terms of h coordinate, for 1 ≤ h < d (e.g., w1

jh is connected
to w0

j h+1). The overall edges are thus EW =
⋃

1≤j≤nE
(j)
W , where |EW | = O(nd).

In this way we define the directed graphGW = (VW , EW , LW ), which can be built in O(nd)
time from set Y and consists of n connected components G(j)

W , one for each vector yj ∈ Y .
We observe that pattern occurrences in GW have some useful combinatorial properties.

The lemma below is an immediate observation, which follows from the fact that each G(j)
W is

acyclic and not connected to any other G(j′)
W .

I Lemma 3. If subpattern bPxi
e has a match in GW then the nodes matching Pxi

share the
same j coordinate and have distinct and consecutive h coordinates.

Lemma 4 (whose proof will be provided in the extended version of this work) relates the
occurrence of a subpattern to the OV problem.

2 Note that 1 is a symbol of Σ while 1 is the truth value in xi.
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b

0 0 0

1 1 1

e b

0 0 0

1 1 1

e · · · b

0 0 0

1 1 1

e

(2n− 2)(2d+ 2) = O(nd) nodes

d d d

Figure 2 Gadget GU .

I Lemma 4. Subpattern bPxi
e has a match in GW if and only if there exist yj ∈ Y such

that xi · yj = 0.

In the following we will also use gadget GU = (VU , EU , LU ), the degenerate case of GW
with 2n − 2 (instead of just n) connected components G(j)

U where, for all 1 ≤ j ≤ 2n − 2
and 1 ≤ h ≤ d, we place both a 0-node and a 1-node: we call these two nodes u0

jh and u1
jh,

respectively, to distinguish them from those in GW . Moreover, every e-node of this gadget is
connected with the next b-node, in terms of j coordinate (see Figure 2). As it can be seen,
any subpattern Pxi

occurs in GU , so it can be used as a “jolly” gadget.

2.3 Non-deterministic Graph
A possible approach is based on suitably combining one instance of gadget GW and two
instances of gadgets GU , named GU1 and GU2. The idea is that, when xi · yj = 0, we want
P to occur in G, so that the three conditions below hold.

Instance GU1: Px1 occurs in G(n−1+j−(i−1))
U1 , . . . , Pxi−1 occurs in G(n−1+j−1)

U1 .
Instance GW : Pxi occurs in G(j)

W .
Instance GU2: Pxi+1 occurs in G(j)

U2, . . . , Pxn
occurs in G(j+n−i−1)

U2 .

On the other hand, when xi ·yj 6= 0, we do not want Pxi
to occur in G(j)

W . We can suitably
link the instances GW , GU1 and GU2 so that we get the above conditions: we connect the
e-nodes in GU1 to b-nodes in GW , the e-nodes in GW to b-nodes in GU2 and we place
additional starting b-nodes and additional ending e-nodes, to properly match the bb and ee
prefix and suffix of P , respectively. However, even if GW , GU1 and GU2 are deterministic,
their resulting composition is not so, because of the out-neighbours of the e-nodes.3 We show
below how to obtain a deterministic graph by suitably merging GW with portions of GU .

2.4 Deterministic Graph
In order to obtain a deterministic DAG, we need to suitably combine one instance of gadget
GW with the two instances GU1 and GU2 (recall that both GU1 and GU2 have instances of
gadget G(j)

U , for all 1 ≤ j ≤ 2n− 2). While GU2 will be used as is, GU1 needs to be partially
merged with GW to obtain determinism. We start building our final graph G from GW by
adding parts of GU1 when needed, obtaining a deterministic graph called GU1W , as shown
in Figure 3. Consider subgraph G(j)

W and assume that the first position in which the 1-node
is lacking is h. We place a partial version of subgraph G(j′)

U1 , j
′ := n− 1 + j, by adding to

the graph the nodes and edges of G(j′)
U1 that are located between position h + 1 and node

3 An e-node can have two b-nodes as out-neighbors when linking GU1 to GW , see [15].
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GW b

0 0 0

1

e b

0 0 0

1

e b

0 0 0

1 1

e b

0 0 0

1 1

e

Partial GU1

0 0

1 1 1

e

0

1 1

e

0 0

1 1 1

e

G
(1)
W G

(2)
W G

(3)
W G

(4)
W

Partial G
(4)
U1 Partial G

(5)
U1 Partial G

(6)
U1

Figure 3 Graph GU1W after merging GU1 (from Figure 2) with GW (from Figure 1).

e
(j′)
U1 (included). If h = d we place only node e(j′)

U1 . We also place 1-node u1
jh and we connect

the 0-node and the 1-node (if any) of G(j)
W in position h− 1 to it (if h > 1), or we connect

b
(j)
W to it (if h = 1). Moreover, we connect node u1

jh to the first 0- and 1-node of partial
G

(j′)
U1 . If h = d we connect u1

jh to e(j′)
U1 . Then we scan G

(j)
W from left to right looking for

those positions h′, h ≤ h′ < d, such that there is no 1-node in position h′ + 1. We connect
the 0-node and the 1-node (if any) of G(j)

W in position h′ to the 1-node of G(j′)
U1 in position

h′ + 1. Finally, we place edge (e(j′)
U1 , b

(j+1)
W ). To complete the merging task, we apply the

above modification to all G(j)
W , for 1 ≤ j ≤ n− 1, and thus obtain gadget GU1W .

At this point, we place gadget GU2 and we connect GU1W to it by placing edges (e(j)
W , b

(j)
U2),

for all 1 ≤ j ≤ n. Also, for every b-node of GU1W we place an additional b-node as in-
neighbor. We do the same for every e-node of GU2, placing an e-node as out-neighbor.
Adding subgraphs G(1)

U1, . . . , G
(n−1)
U1 with one additional b-node as in-neighbor of their b-nodes,

and connecting the e-node of G(n−1)
U1 to the b-node of G(1)

W , completes the transformation
into the wanted deterministic directed acyclic graph, which we call G. Figure 4 gives an
overall picture of G.

It is easy to verify that every b- and e-node in G can have no more than two out-neighbours
and, in such case, they have different labels. This shows that graph G is deterministic.

b G
(1)
U1

e · · · b G
(1)
W

e b · · · e b G
(n)
W

e

eG
(n)
U1

(partial)
v1nh

b G
(1)
U2

e · · · b G
(n)
U2

e · · · b G
(2n−2)
U2

e

b b b b

e e e

e e e

G =

· · ·
· · ·

Figure 4 Final deterministic DAG G. In such graph there are n − 1 instances of G(j)
U1, n − 1

partial instances of G(j)
U1, n instances of G(j)

W and 2n− 2 instances of G(j)
U2.

The deterministic DAG G has a crucial property which, combined with Lemma 3 and
Lemma 4, is key to ensure the correctness of our reduction.

I Lemma 5. Pattern P has a match in G if and only if a subpattern bPxi
e of P has a

match in the underlying subgraph GW of GU1W .
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Proof. For the (⇒) implication, because of the directed eb-edges, each distinct subpattern
bPxi

e matches a path from either a distinct portion of GU1W (or from the G(j)
U1 subgraphs,

1 ≤ j ≤ n− 1, before it) or GU2. Moreover, each occurrence of P must begin with bb and
end with ee. String bb can be matched only in GU1W (or in the G(j)

U1 subgraphs before it),
hence the match must start here. On the other hand, string ee is found either in GU1W
or in GU2. Observe that, by construction, once a match for pattern P is started in GU1W
(or in the G(j)

U1 subgraphs before it), the only way to successfully conclude it is either by
matching ee within GU1W , or by matching also a portion of GU2 and then ee. Because of
the structure of the graph, in both cases a subpattern bPxi

e of P must match one of the
subgraphs G(j)

W that are present in GU1W .
The (⇐) implication is trivial. In fact, if bPxi

e has a match in one subgraph G(j)
W , then

by construction we can match bPx1e . . . bPxi−1e possibly in the G(j)
U1 subgraphs before GU1W ,

then possibly in the partial G(j)
U1 subgraphs of GU1W . We can then match bPxi+1e . . . bPxne

in GU2, and thus have a full match for P in G. J

We are now ready to prove our main result.

Proof of Theorem 1. First, we prove that the reduction is correct. Then we analyze its cost
and show how a subquadratic-time algorithm for SMLG would contradict the OV hypothesis.
Then, we explain how the graph can be modified to become a 3-DDAG using a binary
alphabet.

Correctness. We need to ensure that pattern P has a match in G if and only if there
exist vectors xi ∈ X and yj ∈ Y which are orthogonal. This follows from Lemma 5, which
guarantees that P has a match in G if and only if a subpattern Pxi

has a match in GW , and
the fact that, by Lemma 4, this holds if and only if xi · yj = 0.

Cost. As observed during the construction in Section 2.1 and Section 2.2, both pattern
P and graph G have size O(nd). Indeed, for each one of the n vectors xi ∈ X we place in P
characters b and e plus d characters that can be either 0 or 1. In graph G, the size of each
subgraph is proportional to the dimension d of the vectors and we place O(n) of them.

Using the OV hypothesis. The last step is to show that any O(|E|1−εm)-time or
O(|E|m1−ε)-time algorithm A for SMLG contradicts the OV hypothesis. Given two sets of
vectors X and Y , we can perform our reduction obtaining pattern P and graph G in O(nd)
time, by observing that |E| = O(nd) and m = O(nd). No matter whether A has O(|E|1−εm)
or O(|E|m1−ε) time complexity, we will end up with an algorithm deciding if there exists
a pair of orthogonal vectors between X and Y in O(nd · (nd)1−ε) = O(n2−εpoly(d)) time,
which contradicts the OV hypothesis.

Maximum sum of indegree and outdegree 3. Observe that every node in G can have
at most 2 in-neighbours and 2 out-neighbours. An emblematic case is that of four nodes, say
v, w, v′, and w′, with edges (v, w), (v, w′),(v′, w), and (v′, w′). To reduce to 1 the outdegree
of v and v′, and the indegree of w and w′, the idea is to add two dummy nodes v̄ and w̄
connected by an edge (v̄, w̄), and then replace the four edges above with (v, v̄), (v′, v̄), (w̄, w),
and (w̄, w′). The dummy nodes can be labeled e.g. with 0 and then one can do a symmetric
modification in the pattern. One needs to apply such transformations between any two
consecutive columns of G.

Alphabet size. Our alphabet is of size 4. One can reduce the alphabet size to binary
using the encoding α(0) = 0000, α(1) = 1111, α(b) = 10, and α(e) = 01 for both the pattern
and the graph. (That is, we replace each σ-node with a path of as many nodes as characters
in α(σ).) Observe that, after small adjustments that do not weaken our results, there is a
bijection from matches before and after applying the encoding. J
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As discussed in the Introduction, G has both nodes of indegree at most 1 (and outdegree
more than 1), and nodes of outdegree at most 1 (and indegree more than 1). In the extended
version of this work we will give a linear-time algorithm for directed graphs with nodes of
only one such type.

3 Undirected Graphs: Zig-zag Matching

The lower bound given for the SMLG problem can cover the special case of an undirected
graph with maximum degree 2. To this end, we need to modify the reduction defining a
new alphabet, pattern and graph. The original alphabet Σ = {b, e, 0, 1} is replaced with
Σ′ = {b, e, A, B, s, t}. Characters 1 and 0 are encoded in the following manner:

1 = ABA and 0 = ABABABA .

When such encoding is applied, character s will be used as a separator marking the beginning
and the end of the old characters. As an example, the subpattern

Pxi = 1 0 1 will be encoded as P ′xi
= s ABA s ABABABA s ABA s .

A new pattern P ′ is built applying this encoding to each one of the subpatterns Pxi
,

thus obtaining new subpatterns P ′xi
. We then concatenate all the subpatterns P ′xi

by placing
the new character t to separate them, instead of eb. Finally, we place characters bt at the
beginning of the new pattern, and te at the end. Here follows an example:

P = bb 100 e b 101 ee

1 0 0
P ′ = b t s ABA s ABABABA s ABABABA s

1 0 1
t s ABA s ABABABA s ABA s t e

Note that for each subpattern we are introducing a constant number of new characters,
hence the size of the entire pattern P ′ still is O(nd).

An analogous encoding will be applied to the graph. The strategy is to encode GW in an
undirected path by concatenating subpaths representing each G(j)

W , one after another.
The positions h in which both a 0- and a 1-node are present in G(j)

W are replaced by a
path that can be matched both by 0 = ABABABA and 1 = ABA. Positions h with only a 0-node
and no 1-node are encoded instead with a path that can be matched only by 0 = ABABABA
(see Figure 5). We use s-nodes to separate these paths. We denote by LG(j)

W (Linear G(j)
W )

this linearized version of G(j)
W . Moreover, given subgraph G(j)

W , two new t-nodes will mark the
beginning and the ending of its encoding. Figure 6 illustrates this transformation for G(j)

W .
In a similar manner, GU is also encoded as a path. We do not need to encode all its

2n− 2 subgraphs: since the matching path can go through nodes more than once, we only
need to encode one of these subgraphs, in the same manner as done for G(j)

W . Let LGU be
the linearized version of only one of the “jolly” gadgets that were composing the original GU .

Then, for each 1 ≤ j ≤ n, we build structure LG(j) by placing t-nodes, LGU instances,
LG

(j)
W , a b-node on the left and an e-node on the right, as in Figure 7. In such structure the

b-node and the e-node delimit the beginning and the end of a viable match for a pattern.
The t-nodes are separating the LGU structures from LG

(j)
W and, in general, they are marking

the beginning and the end of a match for a subpattern P ′xi
. The idea behind LG(j) is that

a match of P can traverse LGU from beginning to end, backwards and forwards as many
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⇓

0

1 · · ·

· · ·

· · ·

· · ·

BAs· · · A s · · ·

(a)

⇓

0· · · · · ·

BABAs· · · A B A s · · ·

(b)

Figure 5 New substructures. (a) The old substructure is replaced by an undirected path that
can match either sABAs (which represents 1) by going forward only, or sABABABAs (which represents
0), by going forward, backward, and forward again. (b) The an undirected path replacing a 0-node
can match only the string sABABABAs.

00 0

1

O(d)

A

B

A B A

B

At s A

B

A B A

B

As A

B

A

s ts

G
(j)
W =

⇓

LG
(j)
W

Figure 6 A subgraph G(j)
W is converted into a linear structure LG(j)

W using s as separator.

times as needed, before starting a match of some subpattern P ′xi
inside LG(j)

W . Notice also
that this allows only subpatterns on even positions i to match inside LG(j)

W . We will address
this minor issue at the end (see page 12).

b t LGU t LG
(j)
W

t LGU t e

O(d) O(d) O(d)

LG(j) =

Figure 7 The LG(j)
W structure surrounded by two instances of LGU . The t-nodes establish the

beginning and the end of a match for a subpattern tP ′xi
t while the b- and e-nodes are the starting

and ending point for a match of the whole pattern P ′.

In order to construct the final graph LG we concatenate all LG(1), LG(2), . . . , LG(n)

into a single undirected path. Figure 8 gives a picture of the end result.
No issues arise regarding the size of the graph, since we are replacing every 0-node, or

every pair of a 0-node and a 1-node, with a constant number of new nodes. By construction,
the two gadgets LGU and LGW both have size O(d), since for each one of the d entries of a
vector we place one of the two possible encodings. In LG there are n instances of LG(j)

W , each
one surrounded by two LGU instances. Hence the total size of the graph remains O(nd).

In order to prove the correctness of the reduction, we will show some properties on LG
by introducing the following lemmas, whose formal proofs will be available in the extended
version of this work. We use tlLG(j)

W tr to refer to LG
(j)
W extended with the t-nodes on

its left and on its right. When referring to the k-th s-character in P ′xi
we mean the k-th

s-character found scanning P ′xi
from left to right; in the same manner we refer to the k-th

s-node in LG(j)
W .
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LG(1)b e LG(2)b e · · · LG(n)b e

O(d) O(d) O(d)

LG =

Figure 8 The final graph LG.

I Lemma 6. If subpattern tP ′xi
t has a match in tlLG(j)

W tr starting at tl and ending at tr,
then the k-th s-character in P ′xi

matches the k-th s-node in LG(j)
W , for all 1 ≤ k ≤ d+ 1.

I Lemma 7. Subpattern tP ′xi
t has a match in tlLG(j)

W tr starting at tl and ending at tr if
and only if there exist yj ∈ Y such that xi · yj = 0.

The main difference with the original proof resides in assuming that a match for P ′xi

starts at tl and ends at tr. This feature is crucial for the correctness of the reduction and
can be safely exploited since, as shown in the following, the b- and e-nodes guarantee that in
case of a match for P ′ we will cross the LG(j)

W gadget from left to right at least once.

I Lemma 8. Pattern P ′ has a match in LG if and only if there exist i and j such that i is
even and subpattern tP ′xi

t has a match in tlLG(j)
W tr starting at tl and ending at tr.

Proof. For the (⇒) implication, first observe that the b- and e-nodes in LG are forcing a
direction to follow. Let LG(j)

Ul and LG(j)
Ur be the LGU gadgets to the left and to the right

of LG(j)
W , respectively. Since pattern P ′ starts with a b and ends with an e, a match can

only start at the b-node on the left of LG(j)
Ul and end at the e-node on the right of LG(j)

Ur, for
some j. Hence LG(j)

W needs to be crossed by a match from left to right at least once. Thus,
there must exist a subpattern tP ′xi

t that has a match starting at tl and ending at tr. For
such a pattern Lemma 7 applies. Moreover, because of our construction, only a subpattern
on even position can achieve such a match.

The (⇐) implication is immediate since given a subpattern tP ′xi
t which has a match in

tlLG
(j)
U tr one can match btP ′x1

t . . . tP ′xi−1
t in LG(j)

Ul and tP ′xi+1
t . . . tP ′xn

te in LG(j)
Ur and

have a full match for P ′ in LG. J

Since Lemma 8 gives us a property which holds only if a subpattern is in even position,
we need to tweak pattern P ′ to make the reduction work. Indeed, we define two patterns.
The first pattern P ′(1) is P ′ itself; the second pattern P ′(2) is obtained by swapping the
subpatterns P ′xi

on odd position with the next subpatterns P ′xi+1
on even position, for every

i = 1, 3, . . .. For example, if n is even, we will have:

P ′(1) = bt P ′x1
t P ′x2

t P ′x3
t P ′x4

t . . . t P ′xn−1
t P ′xn

te = P ′

P ′(2) = bt P ′x2
t P ′x1

t P ′x4
t P ′x3

t . . . t P ′xn
t P ′xn−1

te

While P ′(1) checks the even positions of P ′, P ′(2) checks the odd ones. If n is even then the
last subpattern would not have the chance to be matched against any G(j)

W . In such case
we can simply add a dummy subpattern P̄ = s ABA s ABA s . . . s ABA s (with d repetitions
of ABA) at the end of P as it were its last subpattern, so that the number of subpatterns
becomes odd. Indeed, observe that P̄ corresponds to vector x̄ = (11 . . . 1), which has null
product only with vector ȳ = (00 . . . 0). Hence if ȳ 6∈ Y then P̄ does not have a match in any
LG(j), while if ȳ ∈ Y every subpattern P ′xi

has a match in the LG(j) built on top of ȳ. This
means that P̄ does not disrupt our reduction.

Now we are ready to present the end result.
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I Lemma 9. Either P ′(1) or P ′(2) has a match in LG if and only if there exist vectors
xi ∈ X and yj ∈ Y which are orthogonal.

Proof. For (⇒) we assume that either P ′(1) or P ′(2) have a match in LG. By Lemma 8 this
means that there exists a subpattern P ′(q)

xi , q ∈ {1, 2} which has a match in LG(j)
W , for some

j. Lemma 7 then ensures that xi · yj = 0, thus xi and yj are orthogonal. For the other
implication (⇐) we assume that there exists two orthogonal vectors xi ∈ X and yj ∈ Y .
Thanks to Lemma 7 we find a subpattern P ′xi

matching LG(j)
W . By construction, P ′xi

has to
be in even position either in P ′(1) or in P ′(2). By Lemma 8 this means that either P ′(1) or
P ′(2) has a match in LG. J

Theorem 2 follows directly from the correctness of these constructions, except for the
alphabet size reduction to binary, which will be covered in the extended version of this work.
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