Identification and characterization of a novel subtype of Tula virus in Microtus arvalis obscurus voles sampled from Xinjiang, China

Jin-Tao Chen, Jing Qin, Kun Li, Qi-Yi Xu, Xiao-Ping Wang, Alexander Plyusnin, Wei Hou, Yong-Zhen Zhang

PII: S1567-1348(19)30239-4
DOI: https://doi.org/10.1016/j.meegid.2019.104012
Article Number: 104012
Reference: MEEGID 104012
To appear in: Infection, Genetics and Evolution

Received date: 8 June 2019
Revised date: 16 August 2019
Accepted date: 19 August 2019

Please cite this article as: J.-T. Chen, J. Qin, K. Li, et al., Identification and characterization of a novel subtype of Tula virus in Microtus arvalis obscurus voles sampled from Xinjiang, China, Infection, Genetics and Evolution, https://doi.org/10.1016/j.meegid.2019.104012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Identification and characterization of a novel subtype of Tula virus in Microtus arvalis obscurus voles sampled from Xinjiang, China

Jin-Tao Chen⁹, Jing Qin⁻, Kun Li⁻, Qi-Yi Xu⁻, Xiao-Ping Wang⁻, Alexander Plyusnin⁴, Wei Hou**, houwei@whu.edu.cn, Yong-Zhen Zhang⁹,⁴, zhangyongzhen@icdc.cn

¹State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206 Beijing, China

²State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China

³Yili Prefecture Center for Disease Control and Prevention, Yili 835000, China

⁴Department of Virology, Haartman Institute, University of Helsinki, 00014, Helsinki, Finland

⁵Shanghai Public Health Clinical Center & Institute of Biomedical Sciences, Fudan University, Shanghai, China

*Correspondence to: Yong-Zhen Zhang, State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping Liuzi 5, 102206, Beijing, China.

**Correspondence to: W. Hou, State Key Laboratory of Virology/Institute of Medical Virology/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China.

Abstract

Although most of Arvicolinae associated hantaviruses can not cause disease in humans, hemorrhagic fever with renal syndrome (HFRS) cases caused by Tula virus (TULV) have

These authors contributed equally to this work.
been described in Europe since 2002. In addition to Europe, TULV was also identified in the *Microtus arvalis obscurus* voles sampled from Kazakhstan, which shares borders with China. To gain more insight into the molecular epidemiology of TULV, a total of 365 rodents representing 7 species of 4 subfamily (*Arvicolinae, Murinae, Gerbillinae, and Cricetinae*) were captured in Qapqal county, Xinjiang, northwest China. Hantavirus RNA was recovered from 40 lung tissue samples of *M. arvalis obscurus*, with the prevalence of 10.96%. Genetic analysis revealed that all recovered viral sequences were most closely related to those of TULV, but exhibited > 11% nucleotide differences from all currently known TULV, suggesting that they may represent a new subtype of TULV. In the S tree, the newly identified viruses formed a distinct lineage and showed a close evolutionary relationship with those sampled from Southwestern Siberia and Kazakhstan. However, they exhibited a different clustering pattern in both the M and the L trees, suggesting the possibility of genetic reassortment. Finally, the recombination event was also observed in Xinjiang TULV viruses. In sum, all these data reveal a complex evolutionary history of TULV in Central Asia.

Keywords: Tula virus, *Microtus arvalis obscurus* vole, Recombination, Evolution, China.

1. **Introduction**

Orthohantaviruses (genus *Orthohantavirus*, family *Hantaviridae*) are characterized by a tripartite single-stranded RNA genome including small (S), medium (M), and large (L) segments, which encode a nucleocapsid protein (N), two external glycoproteins (Gn and Gc) and an RNA-dependent RNA polymerase, respectively (King et al., 2018). As an important zoonotic pathogen, rodent-borne orthohantaviruses cause two severe human diseases: hemorrhagic fever with renal syndrome (HFRS) in the Old World, and hantavirus pulmonary
syndrome (HPS) in the New World, with case fatality rates up to 15% and 40%, respectively (Holmes and Zhang, 2015; Schmidt-Chanasit et al., 2010; Watson et al., 2014). In the Old World, Dobrava-Belgrade virus (DOBV), Hantaan virus (HTNV), Seoul virus (SEOV) and Puumala virus (PUUV) are the major pathogens of HFRS (Nikolic et al., 2014; Plyusnin et al., 1995; Zhang et al, 2010). These viruses are primarily hosted by yellow-necked mouse (Apodemus flavicollis), striped field mouse (Apodemus agrarius), Norway rats (Rattus norvegicus), and bank vole (Myodes glareolus), respectively. However, to date, for the majority of Arvicolinae associated hantaviruses [e.g. Prospect Hill virus (PHV), Bloodland Lake virus (BLLV), Isla Vista virus (ISLAV) and Khabarovsk virus (KHAV)], no serious illness or death in humans caused by them has been described (Jiang et al., 2017; Schmidt-Chanasit et al., 2010). Tula virus (TULV) was first identified in European common voles (M. arvalis and M. rossiaemeridionalis) sampled from Tula region of Central Russia in 1994 (Plyusnin et al., 1994). Currently, TULV has been found in both Europe and Central Asia (Polat et al., 2019). In addition to M. arvalis and M. rossiaemeridionalis, TULV has also been found in multiple species of rodents, e.g. M. subterraneus, M. agrestis, M. gregalis, Arvicola amphibiaus and Lagurus lagurus (Schmidt-Chanasit et al., 2010). In sum, all these data indicate a wide geographic distribution and a broad range of animal hosts of TULV. Importantly, HFRS cases caused by TULV have been described in Europe since 2002 (Clement et al., 2003; Klempe et al., 2003; Reyes et al., 2015; Schultze et al., 2002; Zelená et al., 2013), revealing the implication of TULV for the public health.

Xinjiang, which is a provincial-level autonomous region of China, is located in the northwest of the country (Fig. 1). Although the numbers of HFRS cases and death in China
remain the highest in the world, no HFRS cases have been described in Xinjiang so far (Zhang et al., 2010; Jiang et al., 2017). To date, SEOV harbored by the brown rat has been described in Xinjiang province, and is considered to have been originated from other Chinese endemic regions of hantaviruses following the migration of its host (Guo et al., 2016). Recently, one study described the detection of TULV in *Microtus arvalis obscurus* voles sampled from Xinjiang (Guo et al., 2019). However, rodents in Xinjiang exhibit a high diversity, with more than 68 species (Wang et al., 1983). Among those rodents, 19 species belong to the subfamily *Arvicolinae* (Wang et al., 1983), suggesting the possible presence of other hantaviruses in native rodents in Xinjiang. Herein, we performed a molecular epidemiologic investigation in Qapqal county, which is located in the western part of Xinjiang (Fig. 1) and borders Kazakhstan. Consequently, a new subtype of TULV was identified in *M. arvalis obscurus* voles sampled from Xinjiang and its genetic features were characterized in this study.

2. Materials and methods

2.1. Collection of animals

During 2016, 365 rodents were trapped in Qapqal county of Yili prefecture of Xinjiang Uygur Autonomous Region, China (Fig. 1). All captured rodents were firstly identified by experienced biologists, and then determined by analyzing sequence of mitochondrial cytochrome *b* (mt-cyt b) gene (Guo et al., 2013). To minimize suffering, animals were anesthetized with ether before surgery as previously described (Guo et al., 2013), and then lung tissue samples were collected and stored at -80 °C.

2.2. Extraction of DNA and RNA, RT-PCR and sequencing
According to the manufacturer’s instruction, total DNA and RNA were extracted from each of 365 lung tissue samples using DNA or RNA isolation kit respectively (Omega biotek, USA). Total RNA was reverse transcribed using one step RT-PCR kit (TaKaRa, Dalian, China). Hantaviral RNA was detected by nested RT-PCR as described previously (Klempa et al., 2006; Wang et al., 2014). To recover the complete genomes, primers were designed based on several known and related genome sequences of hantaviruses (Guo et al, 2013), and were described in Table S1. The entire coding sequences of S, M, and L segments were obtained by nested RT-PCR, while the 5’ and 3’ ends were obtained by 5′ and 3′ rapid amplification of cDNA ends (RACE) using a RACE kit (TaKaRa, Dalian, China). Simple PCR was used to amplify mt-cyt b gene as described previously (Guo et al, 2013).

QIAquick Gel Extraction kit (Qiagen, Valencia, USA) was used to purify the PCR products before sequencing. Purified DNA with < 700bp was sequenced directly, while those with >700 bp was firstly cloned into pMD18-T vector (TaKaRa, Dalian, China), and then transformed into JM109-143 competent cells. For each sample, at least three clones were selected for sequencing.

Complete viral genome (strains Xinjiang-7, -10, -33, and -198) and mt-cyt b gene sequences have been deposited in GenBank under accession numbers MN052670-MN052673 for the S segment, MN183137- MN183140 for the M segment, MN183133-MN183136 for the L segment, and MN183141- MN183144 for mt-cyt b, respectively.

2.3. Recombination analysis

To find possible recombination events in S segment of TULV sampled from Xinjiang, the
RDP, GENECONV, bootscan, maximum chi square, Chimera, SISCAN, and Distance Plot recombination detection methods in RDP4 (Martin et al., 2015) were used to detect potential recombinant viral sequences, identify likely parental viral sequences, and localize possible recombination breakpoints (Lin et al., 2012). The analyses were performed with default settings for the different test methods and a Bonferroni corrected P value cutoff of 0.05. In addition, Simplot version 3.5.1 (Lole et al., 1999) was also used to analyze sequence alignment with similarity plot and bootscan analysis methods, with a window size of 250 nt and a step size of 20 nt. Finally, when events were found with two or more methods and with significant phylogenetic support, the hantaviral sequences were considered recombinant in this study.

2.4. Phylogenetic analysis

Hantaviruses sequences (53 S, 26 M and 20 L segment sequences) and mt-cyt b gene (52 sequences) obtained in this study, as well as those retrieved from GenBank (Table S2-S3), were aligned using the Clustal W method implemented in the MEGA program, version 6.0 (Tamura et al., 2013). Sequences identities of nucleotide (nt) and amino acid (aa) were calculated by MegAlign program available within the DNASTAR Lasergene package, version 5 (DNASTAR, Inc., Madison, WI).

Phylogenetic trees were reconstructed by using the maximum likelihood (ML) method available within the IQ-TREE program under the best-fit substitution model (Kalyaanamoorthy et al., 2017; Trifinopoulos et al., 2016), with ultrafast bootstrap support values calculated from 1,000 replicate trees. Bootstrap values higher than 70% were considered significant. In addition, the MCMC method was used to estimate the Bayesian
trees of mt-cyt b gene via MrBayes software (Huelsenbeck and Ronquist, 2001), and the best-fit model was determined by jModelTest (Posada, 2008).

3. Results

3.1. Detection of hantavirus in rodents.

During 2016, a total of 365 rodents were captured in Qapqal county of Yili prefecture of Xinjiang Uygur Autonomous Region, northwest China (Fig. 1). These rodents represent 7 species of 4 subfamily (Arvicolinae: 259 M. arvalis obscurus, 2 Ellobius talpinus; Cricetinae: 5 Cricetulus migratorius; Gerbillinae: 14 Rhombo mysopinus, 6 Meriones tamariscinus, 5 Meriones libycus; and Murinae: 74 A. sylvaticus) (Table S4). Nested-RT-PCR targeting the partial L segment sequence (Guo et al., 2011; Klempa et al., 2006) was performed to screen hantaviral RNA in 365 lung tissue samples. Consequently, PCR products of the expected size (396 nt) were recovered from 40 M. arvalis obscurus. Genetic analysis revealed that all recovered sequences are most closely related to TULV (see below), with an overall positive rate of 15.44 % in M. arvalis obscurus voles, indicating the circulation of TULV in Xinjiang.

3.2. Genetic analysis of the newly-identified TULV

To characterize the hantaviruses harbored by M. arvalis obscurus voles sampled from Xinjiang, the complete S, M and L segments were successfully recovered from 4 positive vole samples (designated strains as ‘Xinjiang-7, -10, -33, -198’). Genetic analysis of the complete S, M and L segments of these four newly identified viruses revealed that they were closely related each other respectively, with less than 3% nt divergence. Comparison with all known hantaviruses revealed that all newly identified viruses belong to TULV. Their genetic features of the S, M and L segments were described in Table S5. The complete S segment sequences
comprises 1,830 nt, including 43 nt in the 5’NCR, 1,293 nt of ORF encoding the N protein of 430 aa residues, and 494-nt-long 3’NCR. Notably, the coding region of the S segment sequences were particularly close to the strain xj4, which was also identified in *M. arvalis obscurus* voles sampled from Xinyuan county of Yili prefecture (Guo et al., 2019), close to Qapqal county, with 88.5-88.9% nt and 98.0-98.3% aa identities. However, all Xinjiang viruses identified here and previously exhibited more differences (82.9-92.2% nt and 95.2-98.2% aa identities) from those discovered in Europe and Kazakhstan (Table S6). A putative 90 aa long nonstructural protein (NSs) was found at the nt position 83-355 as the second ORF in the S segment sequences of Xinjiang viruses. Specific aa motif V253 was observed in Xinjiang-7, -10, -33, and -198 strains and aa motif T383 in Xinjiang-33, -198 strains, respectively. However, pairwise comparison with all known M and L segment sequences revealed that the newly identified TULV strains were far distant from those sampled from Central Europe and Turkey, with 80.1-81.9% and 78.6-81.1% nt identities and 95.7-97.8% and 95.4-96.4% aa identities for the coding region of the M and the L segment sequences, respectively (Table S7 and Table S8). In sum, these data suggested that the viruses identified in the *M. arvalis obscurus* voles from Xinjiang may represent a new subtype of TULV.

3.3. Phylogenetic analysis of novel TULV subtype

To gain more insights into TULVs in China, phylogenetic trees were reconstructed using ML methods based on the entire coding region of the S, M, and L segment sequences (Fig. 2). In all three phylogenetic trees, Xinjiang TULV sequences recovered in this study formed a distinct lineage, supporting newly identified strains as a new subtype. In the S tree (Fig. 2A),
all known TULVs were divided into ten lineages according to their geographic origins. Viral sequences within Chinese lineage showed the closest evolutionary relationship with those sampled from Southwestern Siberia (AF442621) and then Kazakhstan (AM945877) respectively. In addition, they were more closely related to those identified in *M. arvalis* and *M. rossiaemeridionalis* voles sampled from Central Russia (Z30942- Z30945). Remarkably, they showed a close evolutionary relationship to those sampled from central Europe in the M segment tree (Fig. 2B), while they showed a close relationship with the viral sequences sampled from Turkey (MH649271) in the L segment tree (Fig. 2C), suggesting the possible occurrence of genetic reassortment of these Xinjiang viruses.

3.4. Recombination analysis of TULVs discovered in Xinjiang

Both RDP4 and Simplot methods were used to perform recombination analysis of TULVs sampled from Xinjiang. No recombination events were found in the newly identified strains (strains Xinjiang-7, -10, -33, and -198). However, a significant recombination event was observed in the S segment sequence of the strain xj4 identified in Xinjiang previously (Guo et al., 2019) (Fig. 3). Two recombination breakpoints were observed at positions nt 552 and 924 of the S segment sequence (with reference to the Xinjiang-33 sequence), so that the S segment sequence were divided into three regions (Fig. 4), grouped as two putative “parental regions”. In parental region A (nt 552 to 924), the strain xj4 had 90.0% nt similarity to those of the newly-identified Chinese strains, as opposed to 80.0% nt similarity to Kazakhstan strains. However, in other two regions (nt 1 to 551 and nt 925 to 1233), the strain xj4 has higher similarity (97.6% nt) to Kazakhstan strains than to Chinese strains (87.6% nt). Phylogenetic analyses also provided a strong evidence for the recombination event (Fig. 4), suggesting the
occurrence of the recombinant event for the strain xj4.

3.5. Phylogenetic analysis of rodent hosts sequences

M. arvalis voles are widespread across Eurasia and include several subspecies. *M. arvalis obscurus* vole is considered as a subspecies of *M. arvali* (Wilson and Reeder, 2005). To better understand the association between the newly identified variant of TULV and their hosts, complete coding sequences of mt-cyt b gene were amplified from four Xinjiang voles from which complete viral genome sequences were recovered. Phylogenetic analysis of the mt-cyt b gene sequences revealed that *M. arvalis obscurus* voles are clearly different from *M. arvalis* voles circulating in Europe (Fig. 5). In addition, *M. arvalis obscurus* voles are divided into two groups. One is comprised of the voles from China and Kazakhstan, while another is comprised of those from Turkey. Notably, the voles from Kazakhstan were closely related to those from Xinjiang of China (Fig. 5).

4. Discussion

Although rodents exhibit a high diversity in Xinjiang, hantaviruses were identified just in the brown rats sampled from Tulufan city in 1980s and Ürümqi city (the capital of Xinjiang) in 2016 (Guo et al, 2016). Notably, both cities are linked each other and to Chinese inland regions by Lanzhou-Xinjiang Railway line. It is believed that the brown rats in Xinjiang were migrated from the Chinese inland regions following the Lanzhou-Xinjiang Railway line (Guo et al, 2016). Therefore, SEOV identified in Xinjiang (Guo et al, 2016) might have been originated from the neighboring epidemic areas of HFRS. Notably, TULV also was found in Xinjiang recently (Guo et al, 2019). This study demonstrates the circulation of a novel variant of TULV in *M. arvalis obscurus* voles in Yili prefecture of Xinjiang Uygur Autonomous
Region of China. In addition to the hosts of TULV, there are other 68 rodent species including 7 species of the subfamily Murinae and 19 species of the subfamily Arvicolinae in Xinjiang (Wang et al., 1983). Of these rodents, A. agrarius, M. rufoucanus and M. rutilus, are known to harbor Hantaan virus and Hokkaido virus, respectively, tentatively suggesting that both viruses may also be present in Xinjiang. In sum, all these data are suggestive of considerable genetic diversity of hantaviruses in Xinjiang. Due to the important geography of Xinjiang in Eurasia, more efforts are needed to investigate the diversity of hantaviruses of Xinjiang.

TULV was initially identified in European common voles M. arvalis and M. rossiaemeridionalis sampled from Tula region of Russia (Plyusnin et al., 1994). Since then, the virus has been identified in a broad range of Microtus voles, and even in other genera (A. amphibious and L. lagurus) (Plyusnina et al., 2008; Song et al., 2002; Schmidt-Chanasit et al., 2010; Schlegel et al., 2012). Thus, it is considered that TULV is less host-specific (Schmidt-Chanasit et al., 2010; Schlegel et al., 2012). Such multi-host association is also observed in SEOV and their rat hosts (Zhang et al, 2010; Lin et al, 2012). However, like other hantaviruses, TULVs cluster according to their geographic origins (Plyusina et al., 2008; Schmidt-Chanasit et al., 2010). In this study, the viruses identified in M. arvalis obscurus formed a distinct lineage in the S tree (Fig. 2A), and showed a closer evolutionary relationship with those identified in M. gregalis sampled from Omsk of Russia (AF442621) rather than those identified also in M. arvalis obscurus sampled from Karatal of Kazakhstan (Plyusina et al., 2008), even though Qapqal county is closer to Karatal of Kazakhstan than Omsk of Russia (Fig. 1). More importantly, the Xinjiang viruses were more closely related to those sampled from Central Europe in the M tree (Fig. 2B), but to those sampled from Turkey.
in the L tree (Fig. 2C). All these data are suggestive of a complex evolutionary history of TULV in Xinjiang and neighboring regions.

Both recombination and reassortment play a significant role in shaping patterns of genetic diversity in RNA viruses (Holmes, 2009). They have been found in different families of RNA viruses (Shi et al, 2016). The first evidence of homologous recombination within the S segment of hantavirus was identified in TULV viruses sampled from East Slovakia, where mosaic-like structure of the S segment was observed, corresponding to several recombination events (Sibold et al., 1999). Evidence for TULV recombination was also observed in two Serbian lineages (Nikolic et al., 2014). Moreover, the recombinant TULVs within the S segment was also generated in experimental conditions (Plyusnin et al., 2002). As shown in Fig. 3 and Fig. 4, the strain xj4 (KX270414), which was identified in Narat grassland of Xinyuan county of Yili prefecture seems to be a recombinant between the TULV variant described here and those found in Kazakhstan (Plyusnina et al., 2008). Although Qapqal county and Xinyuan county are close to each other, and are far from Karatal of Kazakhstan, two regions of the S segment of the strain xj4 are closely related to the Kazakhstan strain rather than the newly identified viruses sampled from Qapqal county. These data strongly support the occurrence of genetic recombination the virus. Finally, the different clustering patterns of the newly identified TULVs in Xinjiang also suggest the genetic reassortment. In sum, all these data support a complex evolutionary history of TULV in the Central Asia.

Hence, more efforts will be helpful to better understand the diversity and evolution of TULV.

Conflict of interest statement

The authors declare no conflict of interest.
Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Table S1. Primers used in this study.

Table S2. Reference sequences used for phylogenetic analyses in this study.

Table S3. Cytochrome b gene sequences of Microtus arvalis obscurus, M. arvalis and Myodes glareolus.

Table S4. Prevalence of hantavirus in rodents by species in Xinjiang, China.

Table S5. Genome organization of Tula virus (TULV) strains identified in this study and the corresponding prototype strains.

Table S6. Percentage similarities of S segments among the newly identified hantaviruses and known hantaviruses.

Table S7. Percentage similarities of M segments among the newly identified hantaviruses and known hantaviruses.

Table S8. Percentage similarities of L segments among the newly identified hantaviruses and known hantaviruses.

Acknowledgment

This study was supported by the National Natural Science Foundation of China (grants 81861138003 and 81672057).
References

Lin, X. D., Wang, W., Guo, W.P., Zhang, X.H., Xing, J.G., Chen, S.Z., Li, M.H., Chen, Y., Xu,

doi:10.1128/jvi.00021-12

doi:10.1093/ve/vev003

Plyusnin, A., Cheng, Y., Vapalahti, O., Pejcoch, M., Unar, J., Jelinkova, Z., Lehväslaiho, H.,

Schmidt-Chanasit, J., Essbauer, S., Petraityte, R., Yoshimatsu, K., Tackmann, K., Conraths,

doi:10.1644/06-MAMM-R-422.1

doi:10.3201/eid1911.130421

Fig. 1. A map of Eurasia including China, Kazakhstan and Russia. The geographic locations in which rodents were captured and TULV was identified in this study (●) and (●) previously, and SEOV (●) identified previously in Xinjiang.

Fig. 2. ML phylogenetic trees of TULV based on the entire coding sequences of the S (A), M
(B) and L (C) segment. Only bootstrap values greater than 70% are shown.

Fig. 3. (a) Sequence similarity plot revealing two recombination breakpoints with the locations (shown by the red numbers on the x-axis). The plot shows genome scale similarity comparisons of the sequence of the strain xj4 (query) against the strains Taldykorgan343, Karatal340 and Karatal322 (parental group 1; blue) and the stains Xinjiang-7, -10, -33 and -198 (parental group 2; red). (b) Bootscan analysis of 1233 nt long of the S segment of TULV, as analyzed in Simplot (Window: 250 bp, Step: 20 bp, GapStrip: On, Reps: 100, Kimura (2-parameter), T/t: 2.0, Neighbor-Joining); The peak values exceeding 70% were considered to be significant.

Fig. 4. Phylogenies of parental region A (nt 552 to 924) and region B (nt 1 to 551 and 925 to 1233). Phylogenetic trees were reconstructed by using the maximum likelihood (ML) method available within the IQ-TREE program under the best-fit substitution model. The numbers (>70) above branches indicate percent bootstrap values.

Fig. 5. Bayesian phylogenetic tree of rodents based on mt-cyt b gene sequences. Posterior node probabilities greater than 0.7 are shown.

Highlights

- A new subtype of Tula virus was identified in *Microtus arvalis obscurus* from China.
- Recombination event was observed in the S segment of TULV from China.
- Phylogenetic analysis reveals a complex evolutionary history of TULV in Central Asia.
Host Species:
- Microtus arvalis
- Microtus arvalis obscurus
- Microtus agrestis
- Microtus gregalis
- Microtus rossiaemeridionalis
- Microtus subterraneus

Central Europe and Croatia

East Slovakia and Serbia

Germany and Poland

France

China

Southwestern Siberia

Kazakhstan

Central Russia

Northwest Germany

Turkey

Central Europe

China

Turkey

Figure 2
Figure 3
Figure 4