
17

Simplified Two-level
Morphophonology
Kimmo Koskenniemi

17.1 Introduction

Writing two-level grammar rules and entire two-level grammars is some-
times consider difficult as in (Beesley and Karttunen, 2003, pp. 12–
13):

twolc rules conceptually apply simultaneously; this avoids the or-
dering problems but means that sets of twolc rules must be carefully
written to avoid nasty and often mysterious conflicts among rules. Cor-
rect, non-conflicting twolc rule sets are notoriously difficult to write
when some of the rules perform deletion or, especially, epenthesis.

This paper elaborates a simplified version of the two-level model which
appears to avoid most of the sources of the complexity that some users
of the standard model have experienced.1 In the simplified model, sepa-
rate morphophonemes are used more freely for alternations which have
different causes or patterns. Generally, there is less need for creative
or artistic solutions when using the new model. A technical difference
is that in the present model, all rules are strictly conjunctive as they
were in Koskenniemi (1983). Rules are also usually written for each
morphophoneme separately.

In the simplified model, some tasks can be done automatically for the
linguist. It is claimed here that building morphophonological grammars

1An earlier version of the simplified two-level morphology was presented in
Koskenniemi (2013b). That version contained some of the features presented in
this paper.

399

Tokens of Meaning: Papers in Honor of Lauri Karttunen.
Cleo Condoravdi and Tracy Holloway King (eds.).
Copyright 2018, CSLI Publications.

400 / Kimmo Koskenniemi

is easier when using the simplified model. Even if one needs more rules,
each rule is simpler.

The simplified model is expected to be best suited for languages
which have morphophonemic alternations and use a phonemic or near-
phonemic alphabet. Therefore, the terms ‘letter’ and ‘phoneme’ are
sometimes used interchangeably in this paper.

The proposed method consists of a number of steps:

1. A linguist collects a relevant set of examples of inflected word
forms from a grammar or a dictionary and lays them out as a table
together with some grammatical information. The word forms
that are collected are plain surface forms, see Section 17.2.

2. The linguist inserts boundary symbols manually between the
morphs in the word forms, see Section 17.2.

3. An algorithm aligns the morphs belonging to each morpheme
by inserting some zero symbols (Ø) as necessary. The letters in
corresponding positions of the aligned allomorphs form the raw
morphophonemes, see Section 17.3.

4. The linguist labels the raw morphophonemes implied by the
alignment. Many raw morphophonemes are usable as morpho-
phonemes as such. Some raw morphophonemes may be so similar
that they can be unified by giving them the same label. In other
cases, somewhat similar raw morphophonemes are better kept
apart because the triggering conditions or alternation patterns
are quite different, see Section 17.4.

5. The lexical representations of morphemes are mechanically estab-
lished according to the alignment and the labeling of the morpho-
phonemes,2 see Section 17.4.

6. A set of positive examples is produced mechanically by combin-
ing the lexical representations and the aligned examples, see Sec-
tion 17.4.

7. A tentative raw two-level rule is computed for each morpho-
phoneme by using the set of examples and a set of negative exam-
ples produced for that morphophoneme. Such raw rules always
work correctly with the given examples, but they may not be
general enough to handle all other words and forms correctly, see
Section 17.5.

2In (Beesley and Karttunen, 2003, p. 21) the importance of first setting up
examples and only thereafter writing the rules is pointed out. It is not easy to
establish the lexical representations in advance. The method presented here provides
a method and guidelines for finding useful lexical representations in an objective
manner.

Simplified Two-level Morphophonology / 401

8. Raw rules are refined into final rules by performing the following
steps separately for each morphophoneme as defined above, see
Section 17.6:

(a) Tune the raw rule for this morphophoneme by generalizing
its contexts as appropriate to simplify the rule.

(b) Compile the rule into a finite-state transducer using a rule
compiler and let a program check whether this rule accepts
all positive examples.

(c) Let a program produce the set of negative examples for this
morphophoneme and check whether this rule rejects all these
negative examples.

(d) Proceed to the next rule if checks were successful. Improve
the rule if some checks failed. Repeat with a revised version
of the rule.

17.2 Examples and Morph Boundaries

Grammars and dictionaries often describe the inflection of words (i.e.
declension and conjugation) by defining a number of classes of lex-
emes so that within each class the words are inflected in a similar way.
The classes are presented using a selection of characteristic inflectional
forms (so called principal parts) which determine the rest of the forms.
In this way, all different forms of the stems and the affixes (i.e. their
allomorphs) are explicitly included in the examples. Examples in this
article are partly from the Reverse Dictionary of Modern Standard
Finnish Tuomi (1980).

The information given in such sources is usually compact and use-
ful. Such lists and tables are available for many languages which have
a grammar or a dictionary, and they provide good starting point for
building a morphophonological analyzer. Of course, one has to be pre-
pared to augment the set of examples in order to cover all relevant
morphophonemic alternations.

The linguist has to add some information into the plain example
word forms in order to make the material suitable for the present
method. Firstly, one must indicate what lexemes and what grammat-
ical forms each example consists of. One could produce a two-column
list where the left column has the inflected word form and the right col-
umn lists some names identifying the morphemes. Secondly, one must
mark the boundaries between the morphs, e.g. as in Table 1.3 Note

3Methods for automatically finding the places for the boundaries has been dis-
cussed at least in Theron and Cloete (1997). It is an interesting topic and would
deserve more attention. The assumption that the boundaries are already placed
makes the process much simpler.

402 / Kimmo Koskenniemi

katu KATU
kadu+lla KATU+ADE
kadu+i+lla KATU+PL+ADE
katu+j+en KATU+PL+GEN

TABLE 1 Segmented word forms with morpheme identifiers.

that only the morphemes that are actually present in the examples are
segmented and listed by their name. In the examples, there is no overt
morpheme for singular, thus neither a boundary nor an identifier for
singular number is needed.

The dictionaries often give the inflectional information as a table
so that each row represents a lexeme and each column represents a
form. So, each cell in the table has one stem morph for that row and
inflectional morphs for that column. Table 2 presents a small table of
that type with appropriate column and row labels.

ID STEM STEM+ADE STEM+PL+ADE STEM+PL+GEN
KATU katu kadu+lla kadu+i+lla katu+j+en
HIIRI hiiri hiire+llä hiir+i+llä hiir+i+en
NIEMI niemi nieme+llä niem+i+llä niem+i+en
KALA kala kala+lla kalo+i+lla kalo+j+en
RIITA riita riida+lla riido+i+lla riito+j+en

TABLE 2 Example words as a table

One must include relevant examples of the phenomena to be de-
scribed. Otherwise, it is unlikely that the rules will perform correctly
when applied to further data. For Finnish, one ought to include exam-
ple words not only for each inflectional class but also take care that
there are examples of different types of consonant gradation and exam-
ples of stems and endings with front and back harmony. Typically, a
few hundred examples are needed.

17.3 Phoneme by Phoneme Alignment of Allomorphs

From the segmented examples, one can automatically collect the differ-
ent allomorphs (morphs representing the same morpheme). E.g. katu,
kadu are the two stem allomorphs of the lexeme KATU and lla and llä
are the allomorphs of ADE. In this step, the morphs for each morpheme
will be aligned by adding zero symbols Ø where that is necessary or
desirable to make the phonemes in corresponding positions match prop-
erly. It is assumed that consonant may not be aligned with vowels or
vice versa, except that semivowels may correspond to some consonants

Simplified Two-level Morphophonology / 403

or vowels. Otherwise, identical phonemes match perfectly, and similar
ones better than those differing in several features.

One may align the allomorphs of each stem and each affix using a
finite-state algorithm which weights the similarity of different phonemes
and the inserted zeros, and finds the optimal places where to insert the
zeros, see e.g. Koskenniemi (2017) for the method and an experiment
with aligning Estonian noun stems. As a result, we have the morphs
aligned letter by letter so that the correspondences of letters in the
same position is optimal in some sense. From Table 2 we would get the
morphs for each morpheme as in Table 3

KATU: katu, kadu
HIIRI: hiiri, hiire, hiirØ
NIEMI: niemi, nieme, niemØ
KALA: kala, kalo
RIITA: riita, riida, riido
ADE: lla, llä
PL: i, j
GEN: en

TABLE 3 Aligned morphs of the morphemes.

The linguist might check the result of the alignment in order to
find mistakes in the examples or in the positioning of the boundaries.
Boundaries in wrong positions would show up as excessive zeros in the
alignment.

17.4 Morphophonemic Representations

The alignment was made so that the phonemes in each position corre-
spond to each other as closely as possible, e.g. for KATU:

k a t u
k a d u

The first, second and fourth phonemes are identical in the two
morphs. The third position contains t and d and gives rise for a mor-
phophoneme. The only task here is to give a name for the morpho-
phoneme, and here we call it {td}. Similarly, the illative morpheme
ILL consists of aligned morphs where the third letter is either a or
ä which is a morphophoneme which we decide to denote with {aä}.
After such decisions, we have morphophonemic representations for all

404 / Kimmo Koskenniemi

morphemes:

KATU: k a {td} u
HIIRI: h i i r {ieØ}
NIEMI: n i e m {ieØ}
KALA: k a l {ao}
RIITA: r i i {td} {ao}
ADE: l l {aä}
PL: {ij}
GEN: e n

After the alignment and the adding of some zero symbols, our ex-
amples consist of equal length morphemes. Thus, we can combine the
aligned examples with the morphophonemic representations and get
examples which consist of pairs, where each of them consists of either
identical phonemes or a morphophoneme and a phoneme as in Table 4.
Note that pairs of identical symbols are abbreviated, e.g. k stands for
k:k.

k a {td}:t u
k a {td}:d u l l {aä}:a
k a {td}:d u {ij}:i l l {aä}:a
k a {td}:t u {ij}:j e n
h i i r {ieØ}:i
h i i r {ieØ}:e l l {aä}:ä
h i i r {ieØ}:Ø {ij}:i l l {aä}:ä
h i i r {ieØ}:Ø {ij}:i e n
n i e m {ieØ}:i
n i e m {ieØ}:e l l {aä}:ä
n i e m {ieØ}:Ø {ij}:i l l {aä}:ä
n i e m {ieØ}:Ø {ij}:i e n
k a l {ao}:a
k a l {ao}:a l l {aä}:a
k a l {ao}:o {ij}:i l l {aä}:a
k a l {ao}:o {ij}:j e n
r i i {td}:t {ao}:a
r i i {td}:d {ao}:a l l {aä}:a
r i i {td}:d {ao}:o {ij}:i l l {aä}:a
r i i {td}:t {ao}:o {ij}:j e n

TABLE 4 Examples as sequences of pairs.

Simplified Two-level Morphophonology / 405

17.5 Raw Rules

The method presented here resembles somewhat that of Theron and
Cloete (1997). In that article, there is a brief survey of other relevant
approaches, and see also (Koskenniemi, 2013a, pp. 159–161) for a short
survey of discovering morphophonological rules.

The examples which have been augmented with morphophonemes
are positive examples which all rules must accepted. For each morpho-
phoneme-symbol pair, one can start with a set of rules where each
example (where that pair occurs) forms a context. A program then
checks step by step whether the contexts can be truncated by one or
more symbols without any loss of accuracy within the set of examples.

Rules with truncated context still accept the positive examples, but
they might fail to reject some cases which they are expected to reject.
A good approximation for the negative examples for a morphophoneme
can be produced from the original examples by substituting each oc-
currence of the morphophoneme by all possible pairs of the morpho-
phoneme and subtracting the original examples from these corrupted
examples. Suppose we are working on a morphophoneme {ao} which
can correspond to a or o, and there are (positive) examples as in Ta-
ble 5.

k a l {ao}:a
k a l {ao}:a l l {aä}:a
k a l {ao}:o {ij}:i l l {aä}:a
k a l {ao}:o {ij}:j e n
r i i {td}:t {ao}:a
r i i {td}:d {ao}:a l l {aä}:a
r i i {td}:d {ao}:o {ij}:i l l {aä}:a
r i i {td}:t {ao}:o {ij}:j e n

TABLE 5 Positive examples for {ao}.

406 / Kimmo Koskenniemi

The program starts with rules as in Table 6.

{ao}:a =>
.#. k a l _ .#. ;
.#. k a l _ l l {aä}:a .#. ;
.#. r i i {td}:t _ .#. ;
.#. r i i {td}:d _ l l {aä}:a .#. ;

{ao}:o =>
.#. k a l _ {ij}:i l l {aä}:a .#. ;
.#. k a l _ {ij}:j e n
.#. r i i {td}:d _ {ij}:i l l {aä}:a .#. ;
.#. r i i {td}:t _ {ij}:j e n

TABLE 6 Initial raw rules.

These rules clearly accept all positive examples but they would not
accept any other words with the same inflection classes. Thus, the pro-
gram tries to truncate the context parts in order to make the rules
more general. In order to constrain the truncation, the program builds
a set of negative examples for this morphophoneme. First, it creates all
variations of the correspondences of the current morphophoneme as in
Table 7.4

When the original correct examples are subtracted, the incorrect
examples remain as in Table 8.

The program tries to truncate the left context parts which initially
have a maximum length of four. By shortening them to three, two, one
and zero lengths does not change the fact that even the truncated rules
reject all of the negative examples of {ao}. Thus, we get a somewhat
simpler raw rule as in Table 9.

We can eliminate identical copies of contexts and simplify the rule
further as in Table 10.

When trying to truncate the right hand contexts, we notice that
reducing the length to three, two and finally one, all negative examples
are still rejected. There the program5 stops and produces the following

4One might consider corrupting the correspondences for all morphophonemes,
not only those of the current morphophoneme. A problem in that approach is that
the raw rules for this morphophoneme would not discard all bad examples even if
some other raw rule would. In that setup, the raw rules could not be processed
separately.

5Producing the raw rules is simple, if we have the examples available in their
morphophonemic form. No finite-state technology is necessary. One may represent
both the positive and negative contexts as pairs of strings. Accepting negative ex-
amples is manifested as non-empty intersections of sets of truncated positive and
negative contexts.

Simplified Two-level Morphophonology / 407

k a l {ao}:a
k a l {ao}:o
k a l {ao}:a l l {aä}:a
k a l {ao}:o l l {aä}:a
k a l {ao}:o {ij}:i l l {aä}:a
k a l {ao}:a {ij}:i l l {aä}:a
k a l {ao}:o {ij}:j e n
k a l {ao}:a {ij}:j e n
r i i {td}:t {ao}:a
r i i {td}:t {ao}:o
r i i {td}:d {ao}:a l l {aä}:a
r i i {td}:d {ao}:o l l {aä}:a
r i i {td}:d {ao}:o {ij}:i l l {aä}:a
r i i {td}:d {ao}:a {ij}:i l l {aä}:a
r i i {td}:t {ao}:o {ij}:j e n
r i i {td}:t {ao}:a {ij}:j e n

TABLE 7 Example with corrupted {ao}.

k a l {ao}:o
k a l {ao}:o l l {aä}:a
k a l {ao}:a {ij}:i l l {aä}:a
k a l {ao}:a {ij}:j e n
r i i {td}:t {ao}:o
r i i {td}:d {ao}:o l l {aä}:a
r i i {td}:d {ao}:a {ij}:i l l {aä}:a
r i i {td}:t {ao}:a {ij}:j e n

TABLE 8 True negative examples for {ao}.

{ao}:a =>
_ .#. ;
_ l l {aä}:a .#. ;
_ .#. ;
_ l l {aä}:a .#. ;

{ao}:o =>
_ {ij}:i l l {aä}:a .#. ;
_ {ij}:j e n
_ {ij}:i l l {aä}:a .#. ;
_ {ij}:j e n

TABLE 9 Left truncated raw rules for {ao}.

408 / Kimmo Koskenniemi

{ao}:a =>
_ .#. ;
_ l l {aä}:a .#. ;

{ao}:o =>
_ {ij}:i l l {aä}:a .#. ;
_ {ij}:j e n

TABLE 10 Left truncated raw rules for {ao} without duplicate contexts.

raw rules as in Table 11.

{ao}:a =>
_ .#. ;
_ l ;

{ao}:o =>
_ {ij}:i ;
_ {ij}:j ;

TABLE 11 Final raw rules {ao}.

One can readily see that the raw rules we get depend on the examples
we have selected. If we would have had more case endings, we would
have had more context parts in the first raw rule. The raw rules are
not perfect but they serve as a useful starting points for refining them
into a general and correct final rules.

The procedure succeeded well in the above example. Some other
morphophonemes end up having plenty of long contexts. E.g. the raw
rule for vowel harmony lists almost the full left context of each word
where the morphophoneme occurs. Some linguistic knowledge is needed
for refining such rules.

If the morphophoneme has free variation, one ought to prepare the
collection of examples so that it contains examples of both variants.
Otherwise the program cannot find useful raw rules. In general, free
variation or optional alternations cause no problems when producing
the raw rules. Raw rules are all right-arrow rules and in such cases,
their contexts just happen overlap.

No raw left-arrow rules are proposed. Instead, right-arrow rules are
proposed for all realizations of each morphophoneme. Often one of those
right-arrow rules has an apparently complex contexts which often turns
out to be a complement of the other context (or the union of other
contexts). Note that in traditional two-level grammars, one uses mostly
double-arrow rules.

Simplified Two-level Morphophonology / 409

17.6 Refining Raw Rules into Two-level Rules

The strategy in refining the raw rules is to generalize some contexts to
accept also other similar examples. Each raw context consists of the left
context and the right context and initially both of these parts consist
of sequences of symbol pairs. The first step is to generalize the con-
text by replacing some symbol pairs with expressions which stand for
several distinct pairs of symbols as long as the rule rejects all negative
examples. A common expression can represent a set of symbol pairs
e.g. by using brackets parenthesis and vertical bars, e.g. [l|n|s|{Øt}:t].
Typically, vowels are combined with vowels and consonants with con-
sonants. Generalizing one context may make it include some other con-
texts. Such other context are obviously redundant and they can be
discarded.

The alphabets or lexical and surface characters and their feasible
pairs are not explicitly declared in the present approach. The examples
define them implicitly. Let Pair denote the expression which allows any
of those feasible symbol pairs (but just one). In two-level rule expres-
sions a colon : (separated by space from neighboring symbols) denotes
Pair.

Quite often, one can generalize a symbol pair, e.g. {ao}:a into an
expression that corresponds to all pairs which have the second symbol
i.e. a as their second part. Let :a denote the set of such pairs and the
set is defined as the composition Pair .o. a. Similarly, {aä}: denotes the
set of all pairs which have e.g. {aä} as their first part and the set is
defined as {aä} .o. Pair.

With a slightly larger set of examples one could get the following
two raw rules:

{ao}:a =>
_ {Øt}:Ø ;
_ .#. ;
_ {Øh}:Ø ;
_ {Øt}:t ;
_ {i}:i ;

{ao}:o =>
_ {ij}:i ;
_ {ij}:j ;

One could generalize the second rule into the following by substitut-
ing {ij}:i and {ij}:j both with {ij}: and removing the second context as

410 / Kimmo Koskenniemi

an identical copy of the first:

{ao}:o => _ {ij}: ;

Because this context is not overlapping with the contexts in the
first raw rule and there are just these two pairs, one can generalize
the contexts of the first rule so that {ao}:a can occur anywhere except
before {ij}::

{ao}:a /<= _ {ij}: ;

Together these two refined sub-rules results in a final double-arrow
rule:

{ao}:o <=> _ {ij}: ;

Let us study a slightly more complicated raw rule which accounts
for the form of the plural ending:

{ij}:j =>
e _ e ;
e _ {Øt}:Ø ;
{iieØ}:e _ {Øt}:Ø ;
{iiØeØ}:e _ {Øt}:Ø ;
{ØieØ}:e _ {Øt}:Ø ;
{ao}:o _ {Øt}:Ø ;
o _ e ;
{ao}:o _ e ;
o _ {Øt}:Ø ;
{aoØ}:o _ {Øt}:Ø ;
u _ e ;
u _ {Øt}:Ø ;

One could substitute the pairs with a vowel with surface vowels and
remove duplicate contexts:

{ij}:j =>
:e _ :e ;
:e _ {Øt}:Ø ;
:o _ :e ;
:o _ {Øt}:Ø ;
:u _ :e ;
:u _ {Øt}:Ø ;

From the symbols of our original examples we have a vowelsVowel =
[a | e | i | . . .], consonants Consonant = [b | c | d | f | . . .] and
semivowels, e.g. Glide = [j | . . .]. Two-level rules operate in the domain
of symbol pairs. Therefore all relevant sets must be expressed using
symbol pairs and as regular expressions which construct sets out of

Simplified Two-level Morphophonology / 411

elementary pairs or other sets. As opposed to the traditional two-level
formalism, the simplified model uses no definitions for the alphabet nor
any character sets.

The the content of following sets are implicitly defined by the col-
lection of examples:

1. The set SurfV consisting of symbol pairs that are called surface
vowels is defined by the composition: [[:] .o. Vowel] (where .o.
stands for composition operator as in the XFST regular expres-
sions). Note that Ø was not a vowel and therefore pairs such as
{ieØ}:Ø do not belong to SurfV.

2. The set SurfC consisting of symbol pairs that are called surface
consonants is the composition: [[:] .o. Consonant].

3. The set Cons consisting of symbol pairs which are called morpho-
phonemic or underlying consonants is defined as [SurfC.u .o. [:]]
(where .u is the unary operator for the input, upper or left side
of the relation or transducer).

Using such sets one can still generalize the above rule without losing
any accuracy:

{ij}:j =>
SurfV _ SurfV ;
SurfV _ {Øt}:Ø ;

This is how far one can go blindly without looking the examples
and using some linguistic knowledge. One notes that {tØ}:Ø always
precedes a vowel. So the final form for the rule could be:

{ij}:j => SurfV _ (:Ø) SurfV ;

17.7 Rule Compilation

Simplified two-level grammars can be compiled using the Xerox twolc
or hfst-twolc rule compiler. The larger number of morphophonemes
causes some more work when maintaining various sets and keeping them
consistent with the increasing set of examples. Writing yet another
two-level rule compiler is not difficult any more, especially because the
finite-state calculus can now be used also from higher level languages
like Python. In order to integrate the rule compiler with the processing
of positive and negative examples the author wrote an entirely new
two-level rule compiler using the formulas presented in Yli-Jyrä and
Koskenniemi (2006). The linguist can compile and test single rules (or
bunches of rules) against the examples and get immediate feedback
after the compilation of each rule. The compiler reports any rejected
positive examples or accepted negative ones.

412 / Kimmo Koskenniemi

The compiler is simpler than the Xerox twolc or hfst-twolc by
omitting definitions of the alphabet and character sets. Only definitions
are used. Four types of rules (=>, <=, <=> and / <=) are supported
but neither where clauses nor conflict resolution is included. They are
not needed when following the principles of simplified two-level gram-
mars where one proceeds morphophoneme by morphophoneme and
each morphophoneme gets its own rule(s).

One could expect that with such tools, even less experienced linguists
could have a fairly smooth start and a reasonable learning curve when
writing comprehensive morphological analyzers.

17.8 Testing Rules

Not only the writing of two-level rules is claimed to be difficult. Also the
testing of them has been considered difficult: (Beesley and Karttunen,
2003, p. 13):

A system of replace rules is relatively easy to check and modify because
each rule can be applied individually. The output from one rule can be
typed as input to the next rule and the effect of a whole cascade of re-
place rules can be checked step by step. When we move to twolc rules,
however, the semantics of the rules demand that we conceive of them
always as simultaneously applied constraints on the relation between
the lexical language and the surface language. Because twolc rules are
designed to apply in parallel, it is difficult to test them individually.

In the simplified model, the compilation of a rule and its testing are
integrated so that after the compilation of a rule, the program tests the
rule against all positive examples as a FST, then builds a FST which
corresponds to the negative examples for this rule, and finally tests
those against the compiled rule.

One can see that corrupting one morphophoneme at a time when
producing negative examples might not be sufficient. Let us, thus, as-
sume that the set of examples contains all possible surface correspon-
dences that can be correctly generated out of the lexical representa-
tions of the examples. Under this assumption, all multiply corrupted
negative examples will be rejected by some rule, i.e. if not a rule for
every morphophoneme, anyway at least by some. Building such a mul-
tiply corrupted set of negative examples with finite-state calculus is
easy, and the test can be made by intersecting that FST with all rules.
Admittedly, this final check can be made only after we have all rules
available.

There is also another way of making this total test. One can extract
the lexical side of the examples and compose-intersect it with the com-
bination of all rules. The surface side of that operation ought to be

Simplified Two-level Morphophonology / 413

equivalent with the surface side of the original examples.
One can reduce the need for such testing of all rules simultaneously

by choosing context expressions which refer to the lexical symbols alone,
or sets which can be expressed as unions of such, e.g. use Cons rather
than SurfC.

Epenthesis does not exist in a technical sense within simplified two-
level grammars. The lexical representations never contain plain zeros.
Where a linguist sees epenthesis, the method sees an alternation be-
tween zero and e.g. e. This ends up as a morphophoneme {Øe} which
must be present in the lexicon entry of that morpheme.

One may speculate that the most crucial part of building a two-
level rule grammar will be the selection and preparation of relevant
examples. While a set of examples is established, the later steps such
as the alignment and building raw and refined rules probably are fast
and easy but they are likely to trigger revisions in the set of examples
and in the positioning of the morph boundaries.

Moving any boundaries slightly left or right might cause significant
changes in the morphophonemes and the results. Similarly important
are the initial decisions about grammatical morphemes, e.g. whether
one postulates one affix for a grammatical form or perhaps several if the
morphs are substantially different. Comprehensive testing is probably
needed in order to find guidelines for such decisions.

17.9 Future

One could establish a measure of the goodness of a collection of morpho-
phonemes as they are produced by the insertion of the morph bound-
aries. This measure would evaluate the success of those steps. One could
test different choices for the boundary positions and choose the best of
them. Ultimately, this might lead to the automation of that step.

One could establish a measure of the complexity of individual rules
on the basis of the number of contexts, the lengths of the context and
naturalness of the sets present in the contexts. A measure could be
used for guiding the refinement of raw rules more or less automatically.
The total sum of such measures could be used as a further measure of
the success of the whole grammar. It could also be used for deciding
between the earlier alternative steps of the procedure including the
naming or merging of morphophonemes.

A permissive full scale morphological analyzer for Early Modern
Standard Finnish ought to be built. Such an analyzer could be applied
to classical literature and 19th century newspapers etc. In addition and
more importantly, it could be used as a component in comparing mod-

414 / Kimmo Koskenniemi

ern language and historical texts, and also when comparing Finnish
with other Uralic languages, cf. Koskenniemi (2013a).

The simplified two-level model could be applied to build a mor-
phological analyzer for Inari Saami, a language with particularly com-
plex morphophonemics including vowel and consonant quantity alter-
nations.

References
Beesley, Kenneth R. and Lauri Karttunen. 2003. Two-Level Rule Compiler .

Xerox PARC. https://web.stanford.edu/∼laurik/.book2software/.

Koskenniemi, Kimmo. 1983. Two-level Morphology: A General Computa-
tional Model for Word-Form Recognition and Production. No. 11 in Pub-
lications. University of Helsinki, Department of General Linguistics.

Koskenniemi, Kimmo. 2013a. Finite-state relations between two historically
closely related languages. In Proceedings of the workshop on computa-
tional historical linguistics at NODALIDA 2013; May 22-24; 2013; Oslo;
Norway , no. 87 in NEALT Proceedings Series 18, pages 53–53. Linköping
University Electronic Press; Linköpings universitet.

Koskenniemi, Kimmo. 2013b. An informal discovery procedure for two-level
rules. Journal of Language Modelling 1(1):155–188.

Koskenniemi, Kimmo. 2017. Aligning phonemes using finite-state methods.
In Proceedings of the 21st Nordic Conference on Computational Linguis-
tics, pages 56–64. Gothenburg, Sweden: Association for Computational
Linguistics.

Theron, Pieter and Ian Cloete. 1997. Automatic acquisition of two-level
morphological rules. In Proceedings of the Fifth Conference on Applied
Natural Language Processing , ANLC ’97, pages 103–110. Stroudsburg, PA,
USA: Association for Computational Linguistics.

Tuomi, Tuomo. 1980. Suomen kielen käänteissanakirja / Reverse Dictio-
nary of Modern Standard Finnish. No. 274 in Toimituksia. Suomalaisen
Kirjallisuuden Seura, 2nd edn.

Yli-Jyrä, Anssi and Kimmo Koskenniemi. 2006. Compiling generalized two-
level rules and grammars. In T. Salakoski, F. Ginter, S. Pyysalo, and
T. Pahikkala, eds., Advances in Natural Language Processing, Proceedings
of the 5th International Conference on NLP, FinTAL 2006, Turku, Fin-
land, August 2006 , vol. 4139 of Lecture Notes in Computer Science, pages
174–185. Springer.

