Brief Report

Title: No Correlation Between Nasopharyngeal Human Bocavirus 1 Genome Load and mRNA Detection or Serology in Adeno-/tonsillectomy Patients

Running title: HBoV1 in Nasopharynx and Tonsils

Lotta E. Ivaskaa, Andreas Christensenb,c, Matti Warisd, Tuomo Puhakkaa, Tytti Vuorinend, Tobias Allandere, Maria Söderlund-Venermof, Tuomas Jarttig

aDepartment of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, 20521 Turku, Finland

bDepartment of Laboratory Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway

cDepartment of Clinical Microbiology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway

dDepartment of Virology and Clinical Virology, University of Turku and Turku University Hospital, 20521 Turku, Finland

eDepartment of Clinical Microbiology, Karolinska University Hospital, 17176 Stockholm, Sweden

fDepartment of Virology, University of Helsinki, 00014 Helsinki, Finland

gDepartment of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland

Corresponding Author

Lotta E. Ivaska, MD, Fax: +358 2 313 3525, Tel: +358 2 3130000, E-mail: lesaar@utu.fi
Summary

Relatively high loads of HBoV1 DNA can be detected in the nasopharynx of asymptomatic subjects, which are negative for mRNA and/or serodiagnostic markers. HBoV1 DNA quantitative PCR may have lower specificity than HBoV1 mRNA detection for diagnosing symptomatic infection.
Conflict of interest

Dr. Allander has a patent Human bocavirus and methods of diagnosis and treatment licensed to Karolinska Institutet Innovations AB. Other authors report no potential conflicts of interest, including relevant financial interests, activities, relationships and affiliations.

Funding

This work was supported by Turku University Hospital Foundation, Turku [to L.E.I.], Turku University Foundation, Turku [to L.E.I.], the Sigrid Jusélius Foundation, Helsinki [to T.J.], and the Life and Health Medical Association, Helsinki [M. S-V.], all in Finland.

Meetings

The content of this manuscript has been presented in form of a poster (abstract 729) in European Society of Pediatric Otorhinolaryngology Conference in Stockholm June 2018.

Corresponding Author

Lotta E. Ivaska, MD, Department of Otorhinolaryngology – Head and Neck Surgery, Turku University Hospital and University of Turku, 20521 Turku, Finland

Fax: +358 2 313 3525

Tel: +358 2 3130000

E-mail: lesaari@utu.fi
ABSTRACT

Human bocavirus 1 (HBoV1) can persist in nasopharynx and tonsils. Using HBoV1 serology, reverse-transcription polymerase chain reaction (PCR) for detecting messenger RNA (mRNA) and quantitative PCR for HBoV1 genome load count, we studied in what extent the HBoV1 DNA loads in nasopharynx correlates with acute infection markers. Tonsillar tissue, nasopharyngeal aspirate and serum were obtained from 188 elective adenoid-/tonsillectomy patients. Relatively high loads of HBoV1 DNA were detected in the nasopharynx of 14 (7%) primarily asymptomatic subjects with negative mRNA and/or serodiagnostic results. Quantitative HBoV1 DNA PCR may have lower specificity than HBoV1 mRNA detection for diagnosing symptomatic infection.

Key words: bocavirus, parvovirus, nasopharynx, tonsil, serology, diagnosis, detection
BACKGROUND

Human bocavirus (HBoV) was discovered in 2005 and belongs to the Parvoviridae family [1]. It is a non-enveloped single-stranded DNA virus causing mild to life-threatening respiratory tract infections in young children. HBoV1 is primarily transmitted by the respiratory route [1]. Three other human bocaviruses (HBoV2-4) have been discovered in stool and are considered enteric. HBoV1 is a frequent finding in young children suffering from lower respiratory tract illnesses such as bronchiolitis, wheezing, asthma and pneumonia [1,2]. The persistence of HBoV DNA in the airways and tonsils has been under investigation lately. In a recent study, HBoV DNA was found in tonsil squamous cell carcinoma tumors, prompting speculations of a possible causal association [3,4]. The virus is known to persist for weeks or months in the respiratory tract whereby a qualitative polymerase chain reaction (PCR) is insufficient as a diagnostic tool [1,2,5,6]. Microbiological diagnosis is often incorrectly based on a qualitative multiplex PCR. The most reliable diagnosis of acute HBoV1 infection is considered to be based on messenger RNA (mRNA) or a high HBoV1 DNA load in nasopharyngeal aspirate (NPA), DNA in serum, and serology [1,2,5,7]. HBoV1 DNA has been shown to also persist in adenoids and tonsils of children [8]. The aim of this study was to evaluate if high HBoV1 DNA loads occur in NPA or tonsils in adeno-/tonsillectomy patients without acute HBoV1 infection, based on a documented lack of HBoV1 mRNA and/or IgM, the gold standards for diagnosis. We hypothesized that there is no active bocavirus replication in persistent HBoV1 detection.

METHODS

Study Population

Tonsil and nasopharyngeal samples were collected from 200 consecutive patients who underwent adeno-/tonsillectomy at the Satakunta Central Hospital, Pori, Finland, between April 2008 and March 2009. The inclusion criteria were tonsillectomy, adenotonsillectomy or adenotomy due to
clinical indication and written informed approval from the study subject or his/her parents. Out of
the 200 enrolled patients, 12 yielded low-quality samples. In total, 188 patients with a median age
of 12 years (range 1-65) underwent elective adeno-/tonsillectomy (n=143) or sole adenotonsillectomy
(n=45) and had sufficient and good quality biopsy samples for microbial and immunological studies
[9]. The main indications for tonsillectomy were recurrent tonsillitis in 43 (30%) and tonsillar
hypertrophy in 48 (34%) of 143 patients and for adenotonsillectomy, adenotonsillar hypertrophy in
40 of 143 (28 %) patients, respectively [9]. Other indications (8%) for adeno-/tonsillectomy were
e.g. throat abscess, recurrent fever, food remnants in tonsils and teeth braces. Indications for
adenotomy were hypertrophy in 17 (38%) and recurrent otitis in 28 (62%) of 45 patients. All the
study patients filled a standardized health questionnaire including respiratory symptoms 30 days
before and after the operation [9]. On the operation day 127 (67%) had no respiratory tract
symptoms, 37 (20%) reported mild respiratory symptoms and 24 (13%) had no data.

Samples

Adeno-/tonsillectomy was performed by otolaryngologists according to routine clinical
procedure. A part of the internal tonsillar tissue was instantly cut in 3-4 mm cubes, stored in
RNAlater, an RNA stabilization reagent (Qiagen, Hilden, Germany), incubated at +2-8 ºC until the
next working day and finally stored at -80 ºC [9]. Nasopharyngeal aspirate samples were collected
using a standardized procedure. If the aspirate yield was small, the collection was repeated after
administration of 2 ml physiologic saline. For viral analyses, a part of the tonsils and a
nasopharyngeal aspirate were stored in dry tubes at -80 ºC [9]. The first sample of the paired serum
samples was collected during the tonsillectomy anesthesia and the follow-up sample was taken in a
median of 58 days (range 36-104).

Ethical Approval
The study protocols were approved by the Ethics Committee of the Satakunta Central Hospital and by the Ethics Committee of the Hospital District of Southwest Finland.

Virus Diagnostics

Virus diagnostics of all NPA and tonsil samples was performed according to clinical routine using PCR. Adenoid tissue samples were not analyzed. In-house real-time PCR assays were used to detect HBoV1, rhinovirus, enterovirus, and respiratory syncytial virus as described previously [9]. Seeplex RV12 ACE Detection (Seegene, Seoul, Korea) multiplex PCR assay was used for detection of adenovirus, coronaviruses (229E/NL63 and OC43/HKU1), influenza A and B viruses, metapneumovirus, parainfluenza virus types 1-3, respiratory syncytial virus group A and B, and rhinovirus according to manufacturer’s instructions. Quantitative PCR (qPCR) was used for measuring the HBoV1 DNA load [10]. Serological tests for HBoV1-specific IgM and IgG were performed for 122 patients [5,11]. Serology of the adenotony patients (n=45) was not analyzed. To verify that the IgG results were HBoV1 specific, the serum samples were blocked with HBoV2 and HBoV3 antigens. The mRNA expression levels of HBoV1 in NPA and tonsil samples were analyzed by reverse-transcription PCR (RT-PCR) [7]. An RT-PCR detecting human beta-actin mRNA was used as control for intactness of mRNA in the samples [12]. Virus PCR and qPCR were done at the Department of Virology, University of Turku, Turku, Finland, and at the Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden. Serology was analyzed at the Department of Virology, University of Helsinki and the RT-PCR at the Norwegian University of Science and Technology, Trondheim, Norway.

RESULTS

HBoV1 DNA in NPA, tonsillar tissue, or in both samples, could be detected in 40 patients (21%) with a median age of 5 years (range 1-22). These patients did not have severe respiratory tract
infection but 12 of 40 patients (30%) reported one or more of the following: mild rhinitis, cough, symptoms of otitis, throat pain or upper airway obstruction symptoms on the operation day. In the sole adenotomy group 8 of 15 patients (53%) and in the adeno-/tonsillectomy group 4 of 25 patients (16%), respectively, reported symptoms (Tables 1-2).

Twenty-eight patients were positive for HBoV1 DNA in NPA only, 7 in tonsillar tissue only and 5 in both samples. Five sole adenotomy patients had high (>10^6 copies/ml) viral load in NPA using qPCR but were mRNA negative (Table 1). In the tonsillectomy group 9 patients had relatively high (>10^4 copies/ml) viral load in NPA but were mRNA negative and corresponding sera available were HBoV1 IgM-negative (Table 2). Only 1 patient gave a (barely) IgM-positive test result, but with a stable IgG absorbance in paired samples (Table 2). In all but three patients, the HBoV1 DNA finding was accompanied with IgG positivity indicating a prior infection. These three HBoV1 DNA-positive but seronegative children had, however, prior HBoV2 immunity, which suggest that their HBoV1 IgG-negativity can be explained by an immunological phenomenon called original antigenic sin [13]. Furthermore, HBoV1-IgG levels did not increase in any of the 7 paired serum samples of HBoV1 DNA-positive patients (Table 2). All 29 NPAs and 8 tonsils analyzed were HBoV1-mRNA negative (Tables 1-2). Eight NPA samples with HBoV1 DNA loads >10^4 were tested with the beta actin-mRNA PCR, all with strongly positive results.

DISCUSSION
Our study confirms that HBoV1 can be found in the respiratory tract of patients with chronic and recurrent adenotonsillar disease. Quite a high prevalence (21%) of HBoV1 DNA in tonsils and/or NPA of elective adeno-/tonsillectomy patients was detected which agrees with earlier studies [8]. An even higher prevalence (43%) has been discovered in mainly asymptomatic subjects but the patients were small children (median age of 23 months) undergoing elective adeno-/tonsillectomy
and/or myringotomy [14]. We also found relatively high (>10^4 copies/ml) or high (>10^6 copies/ml) HBoV1 DNA loads in nasopharynx of 13% and 3% our study patients, respectively. However, the high DNA loads were not accompanied by positive HBoV1 mRNA or serological responses. Our results supported the study hypothesis that HBoV1 was not actively transcribing in persistent infection.

The most common laboratory diagnostic method for respiratory infections is qualitative PCR, despite the fact that HBoV1 DNA can, due to prolonged presence or intermittent shedding, be detected in the nasopharynx for months after a symptomatic respiratory infection [1,6,15]. Previous studies have suggested that the DNA amount decreases over time and that high DNA loads (>10^4 to 10^6 copies/ml, depending on the study) would be a sign of acute bocavirus infection [2,5,7,15]. To define one specific threshold for high viral load is very demanding due to the various test methods, the type and quality of the specimens, and the time of collection. In our study we found high loads (>10^6 copies/ml) of HBoV1 DNA particularly in adenotomy patients of which 3 were asymptomatic and 2 had mild respiratory tract symptoms. Only 1 adeno-/tonsillectomy patient with relatively high viral load (>10^4 copies/ml) reported symptoms.

In addition, mRNA of HBoV1 has been used as a marker of viral activity: HBoV1 mRNA can be detected in NPA of patients with symptomatic respiratory tract infection but not in asymptomatic controls [2,7]. It is known that HBoV1 DNA is stored in adenotonsillar tissue [8]. We wanted to investigate the viral activity in tonsils. None of the tonsils showed HBoV1 mRNA regardless of the HBoV-DNA load. Furthermore, all NPAs were also mRNA negative, in line with earlier studies of non-acute HBoV1 infections[7,8]. Conversely, in previous studies, the detection of HBoV1 mRNA in symptomatic patients was associated with high HBoV1 DNA loads [2,7]. In our elective adeno-/tonsillectomy patients, relatively high loads of HBoV1 DNA in the respiratory tract were not
associated with concomitant viral replication demonstrated by the lack of mRNA detection. Our data suggests that HBoV1 DNA or its high load by qPCR are less specific markers for acute HBoV1 infection than mRNA, at least in adenotonsillar surgery subjects. In this respect, our data support using HBoV1 mRNA detection as a more reliable method for diagnosing acute infection as suggested previously [2,7,8].

Serological results were in line with the clinical findings and did not support acute HBoV1 infection in any patients. Since most patients studied by serology were ≥5 years of age, they most likely have already experienced primary bocavirus infection. The HBoV1 DNA finding in the respiratory tract was accompanied by IgG positivity in 18/25 cases (no sera available n=4), of which 17 were IgM negative, indicating past infections. The one barely IgM-positive patient with HBoV1 DNA in tonsils, showed an already high and stable IgG in paired samples, indicating a recent but non-acute infection. In two earlier studies among wheezing children, there has been an association of high (>10^4 or >10^6 copies/ml) HBoV1 DNA load with diagnostic serology [2,5]. This association could not be found in the current study of primarily asymptomatic tonsillectomy patients due to lack of acute infections. We show that persisting HBoV1 DNA can be of relatively high loads also in non-acute infections.

This study provides new information about HBoV1 DNA positivity without clinical illness/manifestation and also confirms earlier results of HBoV1 diagnosis [2,5−7,15]. Earlier studies have focused on young children with respiratory tract infection [5,7,14,15] whereas our study had slightly older and mainly asymptomatic adeno-/tonsillectomy patients. A major limitation of the current study is that the data set was not complete: 8 of the 45 (18%) HBoV1 PCR-positive NPA or tonsillar tissue samples were not analyzed by mRNA RT-PCR. Another limitation of this study is the low number of paired serum samples. Serum samples were not available at the
enrollment (n=4), at the follow-up visit (n=10) or both samples (n=4). Serology of the adenot
omy group was not analyzed. However, this is still the largest study on subjects without acute respiratory
symptoms that compares different diagnostic methods for HBoV1 infection.

In conclusion, we did not find a correlation between HBoV1 genome load and mRNA detection or
serology in adeno-/tonsillectomy patients. Our findings support the use of HBoV1 mRNA detection
and serology as more specific diagnostic tools to identify acute bocavirus infection.

NOTES

Funding
This work was supported by the Turku University Hospital Foundation, Turku [to L.E.I.], the Turku
University Foundation, Turku [L.E.I.], the Sigrid Jusélius Foundation, Helsinki [to T.J.], and the
Life and Health Medical Association, Helsinki [to M. S-V.], all in Finland.

Acknowledgments
We acknowledge Lea Hedman and Heidi Jokinen for technical help.

Potential conflicts of interest
Dr. Allander has a patent Human bocavirus and methods of diagnosis and treatment licensed to
Karolinska Institutet Innovations AB. Other authors: no reported conflicts.

Table 1. Adenotomy patients with HBoV1 DNA-positive NPA samples

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age (y)</th>
<th>Adenotomy indication</th>
<th>Symptoms(^a) on the operation day</th>
<th>HBoV1 NPA PCR result</th>
<th>HBoV1 DNA load (cp/ml) in NPA</th>
<th>mRNA NPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>B013</td>
<td>4</td>
<td>ROM</td>
<td>yes</td>
<td>pos</td>
<td>128800</td>
<td>neg</td>
</tr>
<tr>
<td>B038</td>
<td>3</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>123800</td>
<td>neg</td>
</tr>
<tr>
<td>B061</td>
<td>2</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>550000</td>
<td>neg</td>
</tr>
<tr>
<td>B064</td>
<td>2</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>176800</td>
<td>neg</td>
</tr>
<tr>
<td>B066</td>
<td>3</td>
<td>ROM</td>
<td>yes</td>
<td>pos</td>
<td>141200</td>
<td>neg</td>
</tr>
<tr>
<td>B073</td>
<td>3</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>100396800</td>
<td>neg</td>
</tr>
<tr>
<td>B074</td>
<td>5</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>36200</td>
<td>neg</td>
</tr>
<tr>
<td>B087</td>
<td>3</td>
<td>ROM</td>
<td>yes</td>
<td>pos</td>
<td>28269400</td>
<td>neg</td>
</tr>
<tr>
<td>B100</td>
<td>6</td>
<td>AH</td>
<td>yes</td>
<td>pos</td>
<td>19708800</td>
<td>neg</td>
</tr>
<tr>
<td>B122</td>
<td>8</td>
<td>AH</td>
<td>yes</td>
<td>pos</td>
<td>358200</td>
<td>neg</td>
</tr>
<tr>
<td>B126</td>
<td>4</td>
<td>AH</td>
<td>yes</td>
<td>pos</td>
<td>16800</td>
<td>neg</td>
</tr>
<tr>
<td>B129</td>
<td>2</td>
<td>ROM</td>
<td>yes</td>
<td>pos</td>
<td>117400</td>
<td>neg</td>
</tr>
<tr>
<td>B182</td>
<td>2</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>20537600</td>
<td>neg</td>
</tr>
<tr>
<td>B184</td>
<td>1</td>
<td>ROM</td>
<td>no</td>
<td>pos</td>
<td>2227000</td>
<td>neg</td>
</tr>
<tr>
<td>B194</td>
<td>2</td>
<td>ROM</td>
<td>yes</td>
<td>pos</td>
<td>91600</td>
<td>neg</td>
</tr>
</tbody>
</table>

Abbreviations: y, years; ROM, recurrent otitis media; AH, adenoid hypertrophy; NPA, nasopharyngeal aspirate; cp, copies. \(^a\)One or more of the following: mild rhinitis, cough, symptoms of otitis, throat pain, upper airway obstruction symptoms.
Table 2. Adeno-/tonsillectomy patients with HBoV1 DNA-positive NPA and/or tonsillar tissue samples

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age (y)</th>
<th>Tonsillectomy indication</th>
<th>Symptoms on the operation day</th>
<th>HBoV1 PCR result, NPA</th>
<th>HBoV1 DNA load (cp/ml), NPA</th>
<th>HBoV1 PCR result, tonsils</th>
</tr>
</thead>
<tbody>
<tr>
<td>B004</td>
<td>6</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>NA</td>
<td>neg</td>
</tr>
<tr>
<td>B008</td>
<td>6</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>400</td>
<td>neg</td>
</tr>
<tr>
<td>B015</td>
<td>8</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>500</td>
<td>neg</td>
</tr>
<tr>
<td>B021</td>
<td>8</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>4400</td>
<td>neg</td>
</tr>
<tr>
<td>B028</td>
<td>16</td>
<td>RT, TH</td>
<td>no</td>
<td>pos</td>
<td>NA</td>
<td>neg</td>
</tr>
<tr>
<td>B051</td>
<td>7</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>133200</td>
<td>neg</td>
</tr>
<tr>
<td>B069</td>
<td>8</td>
<td>RT</td>
<td>no</td>
<td>pos</td>
<td>600</td>
<td>neg</td>
</tr>
<tr>
<td>B113</td>
<td>12</td>
<td>ATH</td>
<td>NA</td>
<td>pos</td>
<td>119200</td>
<td>neg</td>
</tr>
<tr>
<td>B130</td>
<td>5</td>
<td>ROM, ATH</td>
<td>NA</td>
<td>pos</td>
<td>30400</td>
<td>neg</td>
</tr>
<tr>
<td>B160</td>
<td>7</td>
<td>ATH</td>
<td>yes</td>
<td>pos</td>
<td>4000</td>
<td>neg</td>
</tr>
<tr>
<td>B162</td>
<td>6</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>210600</td>
<td>neg</td>
</tr>
<tr>
<td>B169</td>
<td>7</td>
<td>RT</td>
<td>no</td>
<td>pos</td>
<td>7600</td>
<td>neg</td>
</tr>
<tr>
<td>B185</td>
<td>7</td>
<td>ATH</td>
<td>NA</td>
<td>pos</td>
<td>8600</td>
<td>neg</td>
</tr>
<tr>
<td>B018</td>
<td>22</td>
<td>RT</td>
<td>yes</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>B019</td>
<td>5</td>
<td>ROM, RT, TH</td>
<td>no</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>B036</td>
<td>4</td>
<td>ATH</td>
<td>NA</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>B135</td>
<td>3</td>
<td>ATH</td>
<td>no</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>B193</td>
<td>2</td>
<td>ATH</td>
<td>no</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>B195</td>
<td>9</td>
<td>ATH</td>
<td>no</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td>Sample</td>
<td>Age</td>
<td>Condition</td>
<td>Fever</td>
<td>Helper</td>
<td>Cutoff</td>
<td>Result</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>B198</td>
<td>3</td>
<td>ROM, ATH,</td>
<td>yes</td>
<td>neg</td>
<td>0</td>
<td>pos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>recurrent fever</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B056</td>
<td>5</td>
<td>ATH</td>
<td>yes</td>
<td>pos</td>
<td>307800</td>
<td>pos</td>
</tr>
<tr>
<td>B082</td>
<td>4</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>32200</td>
<td>pos</td>
</tr>
<tr>
<td>B106</td>
<td>4</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>220800</td>
<td>pos</td>
</tr>
<tr>
<td>B150</td>
<td>5</td>
<td>RT, ATH</td>
<td>NA</td>
<td>pos</td>
<td>92400</td>
<td>pos</td>
</tr>
<tr>
<td>B197</td>
<td>3</td>
<td>ATH</td>
<td>no</td>
<td>pos</td>
<td>202600</td>
<td>pos</td>
</tr>
</tbody>
</table>

Abbreviations: y, years; ATH, adenotonsillar hypertrophy; TH, tonsillar hypertrophy, ROM, recurrent otitis media; RT, recurrent tonsillitis; NPA, nasopharyngeal aspirate; cp, copies; NA, not available; abs., absorbance (cutoff ≥0.131).

a One or more of the following: mild rhinitis, cough, symptoms of otitis, throat pain, upper airway obstruction symptoms.

b Paired serum samples; no increase in IgG.

c No acute-phase serum sample available.

d HBoV2 IgG positive; may influence induction of HBoV1 IgG through original antigenic sin [13].

e Very low absorbance level; 0.147. Together with a stable IgG level in paired samples, the interpretation is recent but non-acute HBoV1 infection.