Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield

Yonglei Jiang, Yanbao Lei, Wei Qin, Helena Korpelainen and Chunyang Li

a College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
b Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
c Department of Soil Quality, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
d Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland

* Correspondence author: e-mail: licy@hznu.edu.cn
Abstract

The glacial retreat is observed and predicted to increase in intensity especially in high-elevation areas as a result of global warming, which leaves behind a primary succession along soil chronosequences. Although soil microbes have been recognized as main drivers of ecological and evolutionary processes, our understanding of their effects on nutrient biogeochemistry during primary succession remains limited. In this study, we investigated changes in the microbial community structure, ecoenzymatic stoichiometry, and glomalin-related soil protein (GRSP) accumulation in the Hailuogou Glacier Chronosequence, located on the eastern Tibetan Plateau. We wanted to reveal the effects of nutrient limitation on soil microbes and the relative contributions of edaphic and biotic factors. The results showed that with an increasing soil age, there was a steady increase in the microbial biomass and a shift from a bacterial to fungal dominated pattern. Soil enzyme stoichiometry and analyses on threshold elemental ratios revealed that microbial activities are limited by carbon and nitrogen during the early successional stage (3-52 years), while phosphorus was the main limiting factor during later stages (80-120 years). Moreover, the redundancy analysis and structural equation modeling suggested that during early stages edaphic factors had a greater impact on microbial processes, while the vegetation factors were most influential during the last two stages. Overall, these results highlighted the importance of integrating knowledge of the microbial community structure, soil enzyme activities and GRSP to gain a holistic view of soil-plant-microbe interactions during ecosystem successions.

Key words Soil extracellular enzymes; Glomalin-related soil protein; Bacterial and fungal community structure; Hailuogou Glacier Chronosequence.
1. Introduction

Global warming has accelerated the retreat of glaciers, which has resulted in the development of new terrains containing mineral debris for the colonization by terrestrial microorganisms and pioneer plants (Schmidt et al., 2016). The glacial retreat areas provide an excellent opportunity to study the succession of plant and microbial communities, and also their interactions that contribute to soil ecosystem functioning (Knelman et al., 2012; Insam et al., 2017). Soil microorganisms are strongly involved in the plant community succession, soil nutrient release and retention. Many studies have shown that the composition and activity of soil microbial communities exhibit distinct patterns at different succession stages along the retreat of glaciers (Knelman et al., 2012; Schmidt et al., 2016; Insam et al., 2017; Jiang et al., 2018). For example, previous studies conducted on the High Arctic glacier foreland have shown that the microbial respiration rate and biomass are generally low at the early stages of succession and tend to increase with the progress of succession (Yoshitake et al., 2007; 2018). Furthermore, Sørensen et al. (2006) found that the addition of both carbon and nutrient (nitrogen and phosphorus) engendered a higher respiration rate and higher densities of soil fauna in dry heath (snowmelt occurs earlier) compared to the mesic heath (snowmelt occurs later) soils at a High Arctic site. Thus, soil microorganisms together with nutrient dynamics can be used to predict soil-plant-microbe interactions and soil biogeochemical cycles during ecosystem successions.

Soil extracellular enzymes produced by plants and microorganisms decompose organic matter present in soil. The expression of enzymes is a product of cellular metabolism, particularly regulated by the availability of nutrients in their environment (Sinsabaugh et al., 2009). The relative abundance of enzymes involved in C, N and P cycling, namely extracellular enzyme stoichiometry, reflects the biogeochemical equilibrium between the metabolic and nutrient requirements of microbial assemblages and nutrient availability.
Recently, ecoenzymatic stoichiometry has been suggested as a useful indicator of the relative resource limitation of microbial assemblages and their environment, because extracellular enzyme activities reflect the response of a microbial cell to meet its metabolic resource demands (Sinsabaugh et al., 2009; Chen et al., 2018).

Most early case studies and meta-analyses have indicated that there is a 1:1:1 converging tendency in C:N:P ratios of microbial acquisition activities (Sinsabaugh et al., 2008) and that the occurrence of C limitation is widespread among microbes. However, recent studies have suggested that N and P limitation are also common (Camenzind et al., 2017). For example, based on a meta-analysis of microbial enzyme activities in tropical ecosystems, Waring et al. (2013) found that nutrient cycling is more P-limited, as reflected by lower enzymatic N:P and C:P ratios. In contrast to the expected 1:1:1 ratio, Peng and Wang (2016) found that the ratio of C-, N- and P-acquiring enzyme activities is 1:1.2:1.4 in the temperate grasslands of northern China. Furthermore, Peng and Wang (2016) found a higher microbial enzyme N:P ratio (0.38) in the temperate grasslands compared to tropical ecosystems (0.13) (Waring et al., 2013), which suggested that N is a limiting element, and microbes exhibit a stronger capacity to acquire N than P in temperate grasslands. According to Sinsabaugh et al. (2009; 2011), eco-enzyme activities are related to both the Ecological Stoichiometry Theory (EST) and the Metabolic Theory of Ecology (MTE), which can be illuminated via the Threshold Elemental Ratio (TER), when growth responds to nutrient limitation (represented by N and P, high C:N or C:P) and energy availability (represented by C, lower C:N or C:P). During a long-term ecosystem development, both the mineral composition and nutrient content of soil change, thus possibly altering microbial nutrient cycling by constraining substrate accessibility (Chen et al., 2018). For example, Yoshitake et al. (2007) found that microbial activity was limited by the low availability of both carbon and nitrogen at the early stage of succession, and nitrogen limitation is mitigated at the late stage of succession through the
addition of carbon and/or nitrogen. However, no significant changes were observed in the microbial biomass during succession. These findings are related to changes in the physiological activities of the microbial community, such as enzymatic activity. Thus, a more detailed quantitative characterization of soil enzyme stoichiometry and resource limitation during the primary succession is urgently needed to understand the responses of soil microbes. Such knowledge would help to elucidate the processes that affect soil fertility and to predict the responses of ecosystems to global change.

Microbial communities have a role in the soil development also through the maintenance of the soil structure, retention of nutrients and improvement of nutrient availabilities (Smith and Read, 2008). One of the most important N-linked glycoproteins secreted by arbuscular mycorrhizal fungi (AMF) is the glomalin-related soil protein (GRSP), which generally contains 3–5% N, 36–59% C, 0.03–0.1% P, and 2–5% Fe (Lovelock et al., 2004; Schindler et al., 2007; Singh et al., 2013). Sinsabaugh et al. (2009) have found that compared to the microbial biomass, GRSP contributes over 20 times more to soil organic carbon. Moreover, due to its hydrophobic, iron binding and ‘sticky-string-bag’ structure formed by the hyphae, GRSP reduces organic carbon turnover and enhances its sequestration in terrestrial ecosystems (Rillig, 2004; Smith and Read, 2008). Therefore, GRSP concentrations are considered as a sensitive indicator of soil quality (Zhang et al., 2017). A number of studies have linked GRSP to long-term C and N storage (Rillig et al., 2003; Lovelock et al., 2004). For example, Zhang et al. (2017) observed that the contribution of GRSP to SOC was 4.7% in the planted forest, which was 2.1 and 1.6 times greater than those in the secondary and primary forest, respectively. However, little data are available on the interaction between GRSP and soil microbial C-, N- and P-cycling enzymes, as well as on different contributions of GRSP to soil carbon pools at various stages of soil development in glacial retreat areas.
The *Hailuogou Glacier Chronosequence* in Southwestern China represents a primary succession chronosequence and consists of different vegetation succession stages from pioneer communities to climax vegetation communities (Yang et al., 2014; Lei et al., 2015; Wang et al., 2016). Along with the soil development and plant community establishment, soil organic material and litter quality intensify plant–soil interactions in these pristine environments. Precise knowledge of such interactions is crucial for understanding the direction and magnitude of ecosystem succession (Wang et al., 2016; Jiang et al., 2018).

To address nutrient cycling processes during the primary ecosystem succession, we quantified microbial abundance and community structures, activities of C- (BG and CBH), N- (NAG LAP) and P- acquiring (AP) and organic matter degrading (POX) enzymes, as well as the potential substrate availability and the physicochemical and mineral controls in the soil along the 120 year-old *Hailuogou Glacier Chronosequence*. Our main objectives were to reveal the successional trajectories of microbial communities, as well as their impact on glomalin-related soil protein accumulation and extracellular enzyme stoichiometry, and to identify the limiting nutrient and relative contributions from edaphic and biotic factors in a retreating glacier forefield. Specifically, we hypothesized that (1) along the successional stages, a more fungus-dominated microbial structure elicits higher GRSP contributions that would improve the soil substrate quality (e.g., soil organic C and total N contents); (2) the extracellular enzyme stoichiometry reflects soil nutritional status, and the nutrient limiting factor shifts from C and N at early stages to N and P during later stages; (3) the relative contributions of edaphic and biotic factors on microbial nutrient (C, N and P) cycling through soil eco-enzyme stoichiometry and GRSP accumulation depend on the successional stage. By integrating the microbial community structures, soil enzyme activities and GRSP into a holistic ecosystem nutrition model, our results will provide new knowledge of the control of soil fertility along the successional stages in the *Hailuogou Glacier Chronosequence*, as well as of the direction and magnitude of its responses to global changes.
2. Materials and methods

2.1. Study sites

The Hailuogou Glacier is a monsoonal temperate glacier located at the Gongga Mountain (29°30′ to 30°20′N, 101°30′ to 102°15′E, 7556 m a.s.l) on the south-eastern fringe of the Tibetan Plateau. Many types of scientific investigations have been conducted in the area, including research on hydrology, botany, soil carbon dynamics and microbiology (Lei et al., 2015; Wang et al., 2016), and thus detailed information about the Hailuogou Glacier Chronosequence is available. The chronosequence extends to the northeast and has a horizontal length of 2 km and an elevation difference of 100 m. In this area, the climate is characterized by a mean annual precipitation of 2000 mm, most rainfall occurring between June and October (Lei et al., 2015), and considerable seasonal temperature fluctuations, ranging from -4.3 ºC in January to 11.9 ºC in July, with an annual mean temperature of 3.8 ºC. The present study was conducted on seven sites (representing successional ages 3, 12, 30, 40, 52, 80 and 120 years) undergoing long-term primary succession from bare soil with low carbon and nitrogen, to pioneer communities and eventually to climax vegetation communities (Lei et al., 2015). Based on a survey, we found that Astragalus spp. is the dominant species at the 3-year stage, Hippophae rhamnoides L. and Salix magnifica are the dominant species at the 12-year stage, H. rhamnoides, Salix spp. and Populus purdomii are the dominant species at the 30- to 40-year stages, Betula utilis, P. purdomii, Abies fabri are the dominant species at the 52-year stage, P. purdomii, A. fabri and Picea brachytyla are the dominant species at the 80-year stage, and the coniferous P. brachytyla and A. fabri are the dominant species at the 120-year stage. The approximate age of each stage was calibrated according to tree-rings and soil erosion rates assessed by $^{137}$Cs method. A seven-scale chronosequence (from ca. 3 years to ca. 120 years) was used.
2.2. Soil and plant sampling

In August 2015, we sampled three 10 × 10 m square plots with a distance of 10 m between plots (except for stages 1 and 2 with 5 × 5 m square plots and a 3-m distance between plots due to the small area at the early stages) at each chronosequence stage. For soil samples, five soil cores to a depth of 20 cm were collected from the center and each corner in each plot using a 5-cm diameter soil corer after removing surface litter by hand. The five soil cores collected at each stage were combined and homogenized to form one composite soil sample. The composite samples were stored in polyethylene bags with labels and transported to the laboratory with ice coolers. Once in the laboratory, soil samples were passed through a 2-mm sieve, and roots and stones were picked out. Approximately 500 g soil was divided into three parts and the material was used for (1) an analysis of soil physicochemical properties (air dried), (2) assays of soil extracellular enzymes activities and GRSP contents (stored at -20 ºC for no more than two weeks), and (3) an estimation of soil microbial biomass and communities (stored at -80 ºC). In each plot, all plant taxa were listed at the species level to assess the composition and richness of the plant community, including the tree, shrub and herb layers. If higher than 3 m, the tree biomass was calculated with the allometric equations reported by Zhong et al. (1997). The biomass of the shrub and herb layers and smaller trees was obtained through destructive sampling within the central 2 × 2 m area of each subplot (Yang et al., 2014). Plant litter samples were collected using 1-mm mesh litter traps with collection area of 0.42 m², at >0.5 m high from the ground to avoid tidal water. The litter traps were emptied monthly and individual litter components were dried at 80 °C for 48 h, desiccated at room temperature and weighed. All sampled plant materials were sorted by species, and then oven-dried and weighted.
2.3. Physiochemical analysis and GRSP determination

All litter samples were cleaned and oven-dried at 60 °C for 72 h before the final dry weight was recorded (Lei et al., 2015). Soil moisture (SM) was measured by drying 15 g fresh soil at 105 °C for 48 h. The soil pH was measured in each soil sample by a platinum black electrode and a glass electrode in a 1:10 (w/v weight:volume) aqueous solution, and the soil bulk density (SD) was quantified (Maynard and Curran, 2006; Lei et al., 2015). Soil total P (TP) was digested with nitric-perchloric acid (HClO₄), then measured with the molybdate colorimetric method (Murphy and Riley, 1962) using a UV2450 (Shimadzu, Japan). Soil available P (SAP) was sequentially extracted with 1 M MgCl₂, 0.5 M NH₄F, 0.1 M NaOH-0.5 M Na₂CO₃, and 1 M HCl. The soil samples were shaken end-over-end in 50-ml centrifuge tubes with 30 ml reagent for 16 h at 25 °C and 250 rpm. All extracts were centrifuged at 6000×g for 20 min at 0 °C, before the supernatant was decanted for the analysis of PO₄³⁻–P. Concentrations of PO₄³⁻–P in all extracts were determined using the Murphy and Riley (1962) method on a UV-VIS spectrophotometer (Shimadzu UV2450) at 710 nm. Total soil nitrogen (TN) was measured with a Kjeltec 2200 Auto Distillation Unit (FOSS Tecator, Sweden) by the semimicro-Kjeldahl method. Soil organic carbon (SOC) was determined by wet combustion (Nelson and Sommers, 1982). The soil dissolved nitrogen (SDN) was determined by persulfate oxidation with subsequent nitrate measurements. Briefly, concentrations of SDN, the sum of dissolved organic and inorganic nitrogen, were measured in 0.5 mol L⁻¹ K₂SO₄ extracts by the determination of NO₃⁻ following persulfate digestion (oxidation) of NH₄⁺ and organic N to NO₃⁻. In addition, soil microbial C, N and P concentrations were determined using a chloroform fumigation extraction method (Brookes et al., 1985).

Easily extractable and total glomalin (EE-GRSP and T-GRSP) were extracted according to the protocol described in detail by Zhang et al. (2015, 2017) and then measured by the Bradford protein assay (Wright...
1 g of 2-mm sieved soil was used for EE-GRSP or T-GRSP extractions using 8 mL of 20 mmol L$^{-1}$ sodium citrate (pH = 7.0) or 50 mmol L$^{-1}$ of sodium citrate (pH = 8.0). The soil extractions were autoclaved for 30 (EE-GRSP) or 60 (T-GRSP) min at 121 °C, after which the supernatant was removed by centrifugation at 10,000 × g for 10 min. The T-GRSP extraction was performed 4 times until the solution was straw-colored. The supernatants were pooled and stored at 4 °C until the Bradford analysis (Wright and Upadhyaya, 1996; Rillig, 2004). An enzyme microplate reader (Thermo Multiskan FC, USA) was used to read the optical density value of GRSP at 595 nm using bovine serum albumin as a standard. The contribution of GRSP to SOC was revealed by the GRSP/SOC ratio.

2.4. Extracellular enzyme activities: extraction and determination

At each plot, we measured the activities of six extracellular soil enzymes, including β-1,4-glucosidase (BG), cellobiosidase (CBH), peroxidase (POX), β-1,4-N-acetyl-glucosaminnidase (NAG), leucine amino-peptidase (LAP) and acid phosphatase (AP). The list of enzymes that were assayed and their corresponding substrates are presented in table S1. The method was described in detail by Jing et al. (2017). In short, we used a 96-well fluorometric microplate to determine soil enzymes activities. For hydrolytic enzymes (e.g., BG, NAG, LAP, AP and CBH), 1.5 g fresh soil was weighted and suspended in a 1 mM sodium acetate buffer, 4-methylumbelliferone (MUB) standards, and MUB (fluorescently) labeled substrates. For peroxidase, 1.5 g fresh soil was weighted and suspended in a 1 mM sodium acetate buffer and L-3,4-dihydroxyphenylalanine (L-DOPA). Hydrolytic enzymes were measured with 8 replicates for 2.5 h, and peroxidase with 8 replicates for 24 h in the dark at 25 °C. Then, the hydrolytic enzyme activities were assessed by evaluating fluorescence at 360 nm excitation and 460 nm emission, and peroxidase at 450 nm in a microplate reader (Thermo Lab systems, Franklin, MA, USA).
2.5. Microbial biomass and community composition

Phospholipid fatty acids (PLFAs) were determined to assess the structure of soil microbial communities at each plot using the method of Frostegård et al. (1991). Briefly, 5 g of soil of each sample (fresh weight) was extracted twice using the one-phase mixture of chloroform, methanol and citrate acid buffer (1:2:0.8, v/v/v). Lipids were separated into neutral lipids, glycolipids and phospholipids by chromatography on silicic acid columns. Then, the phospholipids were transformed by alkaline methanolysis into fatty methylesters, which were analyzed and quantified by a Hewlette-Packard6890N-5973N Gas Chromatograph fitted with a 25 m capillary column (Agilent 25 m × 0.2 mm inner diameter × 0.33 μm film thickness), using hydrogen as the carrier gas and N as the makeup gas. The gas chromatography conditions were set by the MIDI Sherlock program (MIDI, Inc. Newark, DE). All fatty acids were given in the table S3. The abundance of individual fatty acid methyl esters was recorded as nmol PLFA g⁻¹ soil. The bacterial and fungal biomass was estimated as the sums of bacterial PLFAs and fungal PLFAs, respectively. The fungi-to-bacteria ratio (F/B) was calculated from the respective sums of the above bacterial and fungal PLFA markers.

2.6. Statistical analyses

The changes in biomass, and ratios of $G^+/G^-$ and fungal/bacterial PLFAs were subjected to one-way analyses of variance (ANOVA) to determine the overall effects of chronosequence stages using SPSS 19.0 (SPSS Inc., Chicago, IL). Significant differences among means were evaluated by Tukey’s honest significant difference (HSD) at $p<0.05$. The regression analysis between glomalin (including T-GRSP and EE-GRSP) and six extracellular soil enzymes were also performed using SPSS 19.0. The C:N, C:P, and N:P acquisition ratios
were presented as ln(BG+CBH):ln(NAG+LAP):ln(AP) activities (Sinsabaugh et al., 2008). On the other hand, stoichiometric analyses of the soil enzyme data were conducted using the methods of Chen et al. (2018) to calculate enzyme ratios, threshold elemental ratios (TER), and lignocelluloses indices (LCI). TER for C:N and C:P was calculated according to Sinsabaugh et al. (2009):

\[ \text{TER}_{\text{C:N}} = \frac{\text{BG+CBH}}{\text{NAG+LAP}} \times \frac{B_{\text{C:N}}}{n_0} \]  
\[ \text{eqn 1} \]
\[ \text{TER}_{\text{C:P}} = \frac{\text{BG+CBH}}{\text{NAG+LAP}} \times \frac{B_{\text{C:P}}}{p_0} \]  
\[ \text{eqn 2} \]

When \( \text{TER}_{\text{C:N}} \) and \( \text{TER}_{\text{C:P}} \) are the threshold ratios (dimensionless), \( B_{\text{C:N}} \) and \( B_{\text{C:P}} \) represent the microbial biomass C:N or C:P ratios. The normalization constants \( n_0 \) and \( p_0 \) are the intercepts of the regressions for \( \text{ln(BG+CBH)} \) vs. \( \text{ln(NAG+LAP)} \) and \( \text{ln(BG+CBH)} \) vs. \( \text{ln(AP)} \) respectively. TER was used to reflect microbial resource limitation by comparing it to the available soil C:N or C:P ratio. If C:N or C:P was greater than TER for an element, the result suggested resource limitation (Sterner and Elser, 2002). Significant differences between C:N or C:P ratios and threshold ratios are estimated by simple T-test at each successional stage.

Furthermore, according to the approach of Tapia-Torres et al. (2015), the substrate C quality can be determined by the enzyme-based lignocelluloses index (LCI). Higher LCI indicates lower quality substrate C:

\[ \text{LCI} = \frac{\text{lnPOX}}{\text{lnPOX + lnBG}} \]  
\[ \text{eqn 3} \]

To further investigate the effects of variables on the composition of soil microbes and on the activities of soil extracellular enzymes, the redundancy discriminatory analysis (RDA) in the vegan R package was used (R Development Core Team, 2016). Before RDA, we used a forward selection procedure to select environmental factors (Blanchet et al., 2008). All significant \( (p < 0.05) \) variables were selected and used in further analyses. Furthermore, to visualize the complex relationships among variables, we performed
structural equation modeling (SEM) to estimate the direct and indirect effects determining available C, N and P in soil (Grace et al., 2010). According to the method of Wang et al. (2018), we classified all variables into five groups, including soil environment (pH, SD and SM), vegetation (plant richness, PR; plant litter biomass, PL; and total above-ground biomass, TAB), eco-enzymatic stoichiometry (BG, CBH, NAG, LAP, AP and POX), soil microbial structures (T-PLFA, Bact, Fungi and Acti) and Glomalin-related soil protein (T- and EE-GRSP). Before the SEM analysis, a principal components analysis (PCA) was performed to create a multivariate index representing each group to exclude the variables’ autocorrelation (Wang et al., 2018). Within each group, only variables that were significantly correlated with soil available C, N and P were included in PCA. The first principal component (PC1), which explained 67-91% of the total variance for each group, was subsequently used in the SEM analysis. All included factors were subjected to logarithmic transformation to meet the assumptions of normality. The SEM analysis was conducted with the Amos 17.0 software package (Smallwaters Corporation, Chicago, IL, USA). The criteria for the evaluation of structural equation modeling fit, such as the $p$-values, $\chi^2$ values, goodness-of-fit index (GFI) and the root mean square error of approximation (RMSEA), were adopted according to Grace et al. (2010).
3. Results

3.1. Microbial dynamics and GRSP accumulation

Along the chronosequence, the microbial biomass, as indicated by PLFAs, showed clear variation with soil age (Table S2; Fig. 1). Total PLFAs, fungi, G$^+$ and G$^-$ PLFAs (Fig. 1a-d) were found to increase significantly with soil age, except for the 40-year stage. The G$^+$/G$^-$ ratios significantly increased along the successional stages, reaching a peak at the middle stages (Fig. 1e). Furthermore, the fungi to bacteria ratios were lowest at the 12-year stage and highest at later stages (80-120 years) (Fig. 1f).

The concentrations of both easily extractable and total glomalin-related soil proteins (EE-GRSP and T-GRSP) increased significantly with the soil age (Fig. 2a, b). During the first four stages, the ratio of EE-GRSP/T-GRSP increased to 53.3% and then remained at that level during the last three stages (data not shown). However, their contributions to SOC increased linearly from 0.9 to 2.6% for EE-GRSP and from 2.4 to 5.9% for T-GRSP (Fig. 2c, d). The concentrations of T-GRSP and EE-GRSP increased linearly as a function of the AMF content (Fig. 2e, f).

3.2. Ecoenzymatic stoichiometry and potential nutrient limitation

Extracellular enzymes activities of soil increased dramatically along the successional stages following the glacial retreat (Fig. S1). Potential C, N and P acquiring activities were significantly correlated with each other, and the overall slope of C:N, C:P and N:P activity regressions were 0.67, 0.69 and 0.90, respectively (Fig. 3a-c). At the 3-year stage, microbial activities showed a higher investment in BG + CBH and NAG +
LAP enzymes than in the AP enzyme, while at the 40-120 years stages, microbes tended to have a higher investment in P-acquiring enzymes (Fig. 3a-c). This pattern was further supported by the microbial stoichiometric analyses, which indicated the presence of a potential C and N co-limitation at the early stages, then mainly P limitation at the late stages (Fig. 3d).

TER$_{C:N}$ and TER$_{C:P}$ were stable during four early successional stages but increased significantly during the later stages (Fig. 4a, b). In addition, TER$_{C:N}$ was lower than available C:N (e.g. SOC:SDN) across the chronosequence, except for the first stage (3 years), while TER$_{C:P}$ was higher than available C:P (e.g. SOC:SAP) during the four early stages (3-40 years) and lower than available C:P at the last three stages (52-120 years) (Fig. 4a, b). Moreover, the enzyme-based LCI index significantly decreased during the early three stages and maintained its lower level at the 30-120 -year stages (Fig. 4c). The concentrations of T-GRSP and EE-GRSP exhibited a linear increase with soil C-, N- and P-hydrolyzing enzymes activities along the chronosequence (Fig. 5).

3.3. The relative contributions of edaphic and biotic factors to soil microbial processes

The redundancy analysis (RDA) showed that the microbial community structure could be differentiated into three clusters: 3-12 (cluster 1), 30-52 years (cluster 2), and 80-120 years (cluster 3) (Fig. 6a). The soil extracellular enzyme activities could also be differentiated into three clusters: 3 years (cluster 1), 12 years (cluster 2), and 30-120 years (cluster 3) (Fig. 6b). Furthermore, T-PLFA and F-PLFA were best explained by vegetation characteristics, including the total aboveground and plant litter biomass, as well as soil physicochemical properties, including soil available phosphorus and dissolved nitrogen (SAP and SDN). However, B-PLFA was tightly related to SOC, and the ratios of F/B and G$^+$/G$^-$ were best accounted by pH.
and soil density (Fig. 6a). The activities of C-hydrolyzing enzymes (BG and CBH) were closely correlated with SOC, SDN, SAP and GRSP. Nitrogen-acquiring NAG and LAP were negatively related with SDN. Acid phosphatase was positively correlated with SAP and MBP, but negatively with pH and soil density. Peroxidase was negatively correlated with vegetation characteristics, including plant richness, and the aboveground and litter biomass (Fig. 6b).

The SEM models well fit the significance criteria according to their $\chi^2$, $P$, AIC, GFI and RMSEA values (Fig. 7a, b). At the early stages (3-52 years), environmental factors caused a greater impact on microbial communities and enzyme stoichiometry, while at the late stages (80-120 years), biotic vegetation properties as well as PLFAs began to dominate (Fig. 7a, b). GRSP contributed to SOC accumulation more at the late stages than at the early stages. Moreover, eco-enzymatic stoichiometry was tightly related to SAP at the late stages, while no significant relationship was detected at the early stages (Fig. 7).
4. Discussion

Microbial communities are the main drivers of organic matter decomposition to expedite pedogenesis, to facilitate the establishment of vascular plants, and to accelerate the successional dynamics of ecosystems, especially in pristine environments, such as glacier retreat areas (Bradley et al., 2016; Castle et al., 2017). According to our previous survey, plant growth in the Hailuogou Glacier Chronosequence area is most often N-limited at early successional stages, whereas often limited by P availability at older, more developed stages (Jiang et al., 2018). However, the understanding of the sequence and magnitude of changes in the microbial community assembly, as well as of the mechanistic underpinnings of microbial contributions to pedogenic development is still highly fragmentary. In addition, it is not well understood, whether generalizable patterns of nutrient limitation are applicable to metabolically and phylogenetically diverse soil microbial communities. Therefore, soil microbial biomass and community structures, GRSP (EE- and T-GRSP) concentrations and the stoichiometry of extracellular enzymes, which are reliable indicators of the biological condition of soil (Gispert et al., 2013; Zhang et al., 2017), were now quantified during the primary succession across the Hailuogou Glacier Chronosequence.

4.1. Microbial community dynamics and GRSP accumulation along the chronosequence

The seven stages of the 120-year succession were separated into three distinct clusters for microbial communities (Figs. 1, 6). Also, the fungi/bacteria ratio was lowest at the 12-year stage and reached its highest level at the last two stages (80-120 years) (Fig. 1f). In agreement with the present study, Fernández-Martínez et al. (2017) reported most important roles for bacteria at the initial stages of succession, while dominant roles for saprophytic and mycorrhizal fungi as succession progressed along a glacier
forefield. The pattern coincided with the vegetation dynamics, as broadleaved shrubs and trees dominate at stages 1-5, and coniferous *Abies fabri* and *Picea brachytyla* trees at stages 6 and 7 (Lei et al., 2015). Several studies have proposed that there is a shift from an early bacterial dominance to a late fungal dominance when plant establishment becomes increasingly important (Sun et al., 2016; Yoshitake et al., 2018). Besides serving as immediate decomposers, a large proportion of fungi can act as endophytes, mutualists or pathogens. Therefore, a strong coupling of plant-fungal distribution patterns would be expected at regional scales (Wardle, 2004; Chen et al., 2017; Jiang et al., 2018), which is supported also by the correlation between plant species richness and litter biomass, and fungal PLFA (Fig. 6a).

Glomalin-related soil proteins (GRSP), products of arbuscular mycorrhizal fungi deposited into soil after hyphae senesce (Treseder and Turner, 2007) can account for 4–5% of soil C, which exceeds the 0.08-0.2% contribution from soil microbial biomass (Rillig et al., 2001). In the *Hailuogou Glacier Chronosequence*, the concentrations of both easily extractable and total GRSP increased significantly with the soil age (Fig. 2a, b). These results are consistent with some previous works conducted in other tropical locations, where the GRSP content improved with an increasing plants density and vegetation complexity (Singh et al., 2013; Kumar et al., 2018). In addition, their contributions to SOC increased linearly from 0.9% to 2.6% for EE-GRSP and from 2.4% to 5.9% for T-GRSP (Fig. 2c, d). Moreover, the concentrations of T-GRSP and EE-GRSP increased linearly as a function of the AMF content (Fig. 2e, f), thus implying the importance of fungi at late stages. On the other hand, the sticky nature of GRSP enables it to protect organic matter from decomposition by promoting the formation of soil aggregates (Rillig et al., 2003; Rillig, 2004). Overall, these results demonstrated that both GRSP fractions in soil might be two reliable indicators during pedogenic development, particularly under environmental change scenarios.
4.2. Ecoenzymatic stoichiometry and potential nutrient limitation along the chronosequence

Extracellular enzyme activities can effectively reflect the functions of decomposer communities depending on the dynamic balance of metabolic requirements and nutrient availability (Adamczyk et al., 2014; Yang and Zhu, 2015; Cui et al., 2018). Along the chronosequence, an environment with a higher carbon content supports more developed and persistent plant communities that can provide a longer-term buildup of soil organic matter (Lei et al., 2015), which was found to result in stronger microbial metabolism and more effective extracellular enzymes for N and P acquisition (Figs. S1 and 3). At the later stages with the establishment of coniferous trees, POX activities increased significantly at higher decomposition rates of non-labile SOC, because POX is an enzyme for decomposing recalcitrant C fractions, such as lignin and humus (Fig. S1f, Sinsabaugh, 2011). In addition, the higher decomposition rate of labile SOC was evident based on the higher BG activity and lower LCI during later stages (Fig. S1c and Fig 4c). Higher BG indicated that more C-acquisition enzymes were produced for decomposing the labile SOC fraction. Yoshitake et al. (2018) found that the accumulation of soil organic C in a glacier foreland is known to be strongly affected by the vegetation cover.

In the present study, fungal biomass and F/B ratio were higher in soils with A. fabri and P. brachytyla during later successional stages (Fig. 1b, f). These results indicate that the establishment of coniferous trees has a great impact, especially on the fungal community. These coniferous trees are mycorrhizal species and, therefore, the direct effect of symbiotic fungi is not negligible in this case. Indeed, higher mycorrhizal richness favors plants productivity by improving the availability of nutrients from the soil environment. Moreover, roots and mycorrhizal fungi can also enhance SOM decomposition. Roots release exudates to soil and provide carbohydrates to mycorrhizal fungi, and both processes provide heterotrophic microbes with the
energy needed to synthesise extracellular enzymes to degrade SOM (Phillips et al., 2012). Roots and mycorrhizal fungi, for example, promote root- and mycorrhizal-derived C entering forest soils rapidly under elevated CO2 cycles, which limits soil C accumulation and increases N cycling rates (Phillips et al., 2012). This suggests that possible differences in litter quality, root exudates, mycorrhizal fungi and supply of rhizodeposits from plant roots might affect the supply of organic C.

Microbial extracellular enzyme stoichiometry has been suggested as a useful indicator in revealing nutrient constraints of microbial assemblages in response to environmental resource availability (Chen et al., 2018). In the Hailuogou chronosequence, available C:N was higher than TER$_{C:N}$ during all stages (Fig. 4a), indicating that microbial activities might be N-limited due to young pedogenesis. Furthermore, at the first stage, a higher investment in the BG+CBH and NAG+LAP enzymes relative to the AP enzyme was observed (Fig. 3), which suggested that microbial activity was co-limited by C and N after three-year deglaciation. Conversely, microbial activities were limited by P at the late stages (80–120 years), as shown by the higher investment in AP relative to the BG and CBH enzymes (Fig. 3b). The higher available C:P ratio compared to TER$_{C:P}$ during the late succession stages (Fig. 4b) also suggested that microbial activities were then more P-limited compared to the early stage.

Based on the unique global P cycle, Walker and Syers (1976) predicted that P fractions are transformed into more stable forms, resulting in P becoming the limiting nutrient and ecosystem component in extreme situations. At the Hailuogou Glacier Chronosequence, the P loss was observed after 52 years of deglaciation, and the loss reached 12.9% and 17.6% on the 80- and 120-year-old sites, respectively, approximately 7 times the level detected at the 110-year-old Rakata chronosequence (Schlesinger et al., 1998; Wu et al., 2015). The fast loss of P from the soil could be attributed to the higher weathering rate, the large amount of
plant uptake and transport by run-off. In addition to being assimilated by plants, the released phosphate tends to be adsorbed onto the surface of Fe and Al hydroxides due to the sharp decrease in pH, accounting for more than 30% of the total P at the 80- and 120-year-old sites (Zhou et al., 2016). However, the elevation difference of 150 m along less than 2 km of the Hailuogou chronosequence, as well as the abundant annual precipitation (approximately 1,947 mm) led to a strong erosion and great loss of soil P. Thus, the P availability may become a limited resource for microbial activities in the studied chronosequence within a century of initial soil formation.

4.3. The relative contributions of edaphic and biotic factors to microbial processes

The SEM models showed that at the early stages, soil environmental factors caused a great impact on microbial communities and enzymes stoichiometry (Fig. 7a). Given that soil directly provides the substrate and environment for microbial communities, the edaphic properties are expected to be more important in shaping the microbial dynamics. In Tibetan alpine grasslands, Chen et al. (2017) found that variation in soil microbial communities are mainly explained by edaphic factors, including soil organic carbon, C:N ratio, pH and soil texture. On the other hand, the explaining capacity of biotic factors increased at the last two stages along with the increasingly important forest cover (Fig. 7b), coincident with the establishment of a coniferous forest (Lei et al., 2015), high aboveground and litter biomass accumulation and a low litter quality (Table S2). Our previous results have also suggested that plants govern the turnover of soil fungal communities and functional characteristics in the Hailuogou chronosequence, likely due to the continuous input of detritus and differences in litter biochemistry among plant species (Jiang et al., 2018). The present study further demonstrated that vegetation might play an important role in determining the ecoenzymatic stoichiometry of soil, probably through direct effects on root systems (secreting exoenzymes) and indirect
effects on root systems (affecting microbial rhizosphere communities).

5. Conclusions

In this study, we investigated soil microbial community structures, soil enzyme activities and GRSP, and disentangled the nutrient limitation of microbial successional trajectories along the *Hailuogou Glacier Chronosequence*. The microbial biomass increased significantly with soil age until reaching the maximum at late stages. In addition, the microbial communities exhibited a distinct shift from a bacterial to fungal dominated pattern across the glacier chronosequence. On the basis of ecoenzymatic stoichiometry and threshold elemental ratio analyses, we found that microbial resource limitation was different along the chronosequence. At early successional stages, microbial activities were more carbon and nitrogen limited than at late stages, while phosphorus-limited phenomena became more serious with the rapid loss of phosphate at the late stages. Moreover, the redundancy analysis and structural equation modeling suggested that the edaphic factors are the primary agents influencing microbial processes, especially at the early stages, and the explaining capacity of vegetation factors increased during the last two stages along with the increasing importance of forest cover. Altogether, these findings provide useful knowledge of understanding soil-plant-microbe interactions and soil biogeochemical cycles during ecosystem successions. Nevertheless, we focused only on the relatively important environmental variables. Some unmeasured factors related to microbial community structures, such as root biomass, were not estimated in the present study. In future studies, it is important to ascertain whole-community level genetic factors responsible for nutrient transformation *in situ* through metagenomics, in order to obtain a more complete picture of the underlying mechanisms of microbial feedbacks to ecosystem succession under environmental changes.

Acknowledgements This work was supported by the National Science Foundation of China (31570598,
31500505) and the Talent Program of the Hangzhou Normal University (2016QDL020).

References


accelerate carbon and nitrogen cycling in forests exposed to elevated CO$_2$. Ecol. Lett. 15, 1042-1049.


Wright, S.F., Upadhyaya, A., 1996. Extraction of an abundant and unusual protein from soil and comparison


Figure captions

Figure 1. Sums (panels a-d) and ratios (panels e-f) of phospholipid fatty acids (PLFAs) in microbial groups in soil of different ages along the Hailuogou Glacier Chronosequence. Each value is the mean ± SE (n=3). Different lowercase letters indicate significant differences according to Tukey’s HSD test at a significance level of $p < 0.05$.

Figure 2. Temporal changes in glomalin-related soil proteins, including T-GRSP and EE-GRSP (a, b), their contribution to SOC (c, d) and correlation with arbuscular mycorrhizal fungi (AMF, e, f).

Figure 3. Regressions analyses of ln (BG+CBH) vs ln (AP), ln (BG+CBH) vs ln (NAG +LAP), and ln (NAG +LAP) vs ln (AP) (a, b, c). The solid line is the regression line, and the dashed line is the reference line with slope = 1. The solid regression line to the left from the 1:1 line suggests more resources devoted to the enzyme on the y-axis compared with the x-axis [e.g., ln(NAG + LAP) compared to ln(AP)]. The regression line to the right from the 1:1 line suggests more resources devoted to the enzyme on the x-axis compared with the y-axis. Stoichiometry analysis of enzyme activities at seven successional stages along the Hailuogou Glacier Chronosequence (d). “★” successional age 3 years, “■” 12 years, “●” 30 years, “▲” 40 years, “◆” 52 years, “□” 80 years, and “○” 120 years.

Figure 4. Comparisons of (a) threshold elemental ratio (TER) of C:N and available C:N ratio (i.e., SOC:SDN), (b) TER of C:P and available C:P ratio (i.e. SOC:SAP), and (c) lignocelluloses index (LCI) among different successional stages. Each value is the mean ± SE (n=3). Different uppercase letters indicate
significant differences ($p < 0.05$) for SOC:SDN and SOC:SAP values, and different lowercase letters indicate significant differences for $\text{TER}_{\text{C:N}}$, $\text{TER}_{\text{C:P}}$ and LCI values among different successional stages according to Tukey’s HSD test. Different asterisks indicate significant differences between $\text{TER}_{\text{C:N}}$ and SOC:SDN values, and between $\text{TER}_{\text{C:P}}$ and SOC:SAP values at the same successional stage according to simple t-test. SOC, soil organic C; SDN, soil dissolved N; SAP, soil available P.

**Figure 5.** Relationships between glomalin-related soil proteins (including T-GRSP and EE-GRSP) and soil extracellular enzymes along the *Hailuogou Glacier Chronosequence*. Closed cycles and open cycles represent total glomalin (T-GRSP) and easily extractable glomalin (EE-GRSP), respectively.

**Figure 6.** Redundancy analysis of selected environmental variables for microbial community structures (a) and soil extracellular enzymes (b) along the *Hailuogou Glacier Chronosequence*. SOC, soil organic C; SDN, soil dissolved N; SAP, soil available P; MBP, microbial P; PL, plant litter; PR, plant richness; TAB, total above ground biomass; SM, soil moisture; SD, soil density; Stage codes as in Fig. 3.

**Figure 7.** Structure equation modeling depicting direct and indirect regulatory pathways of environmental factors that affect microbial community structures, glomalin-related soil proteins and ecoenzymatic stoichiometry at early (a) and late (b) successional stages along the *Hailuogou Glacier Chronosequence*. Arrows represent positive (solid) or negative (dashed) path coefficients. Arrow width is proportional to the strength of the relationship. Numbers on the arrows are standardized direct path coefficients. Double-layered rectangles represent the first component of PCA conducted for soil environment, vegetation, glomalin-related soil proteins, soil microbial characteristics and ecoenzymatic stoichiometry. The dark solid “↑” and dashed “↓” symbols indicate a positive or negative relationship between the variables,
respectively. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$.

**Figure 1**
Figure 2
Figure 3

(a) $y = 0.673x + 0.193$
$r^2 = 0.669$
$p < 0.0001$

(b) $y = 0.687x + 0.568$
$r^2 = 0.794$
$p < 0.0001$

(c) $y = 0.901x + 0.9$
$r^2 = 0.924$
$p < 0.0001$

(d) P & C limited
N & C limited
P limited
N limited
Figure 4
Figure 5
Figure 6
Figure 7

(a) early (3-52 years)

χ²=3.252, df=13, P=0.112, AIC=85.01, GFI=0.973, RMSEA=0.013

(b) late (80-120 years)

χ²=2.752, df=13, P=0.167, AIC=95.43, GFI=0.915, RMSEA=0.023