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ABSTRACT
Weak lensing will play an important role in future cosmological surveys, including e.g.
Euclid and SKA. Sufficiently accurate theoretical predictions are important for correctly
interpreting these surveys and hence for extracting correct cosmological parameter estimations.
We quantify for the first time in a relativistic setting how many post-Born and lens–lens
coupling corrections are required for sub-per cent accuracy of the theoretical weak lensing
convergence for z ≤ 2 (the primary weak lensing range for Euclid and SKA). We do this by
ray tracing through a fully relativistic exact solution of the Einstein field equations, which
consists of randomly packed mass-compensated underdensities of realistic amplitudes. We
find that including lens–lens coupling terms and post-Born corrections up to second and third
order respectively is sufficient for sub-per cent accuracy of the convergence along 94 per cent
of the studied light rays. We also find that a significant percentage of the studied rays have
post-Born corrections of size over 10 per cent of the usual gravitational convergence, κ (1), and
several rays even have post-Born corrections several times the size of κ (1) at z = 2.

Key words: gravitational lensing: weak – large-scale structure of Universe; cosmology:
observations.

1 IN T RO D U C T I O N

Effects of inhomogeneities on cosmological observations are de-
scribed using cosmological perturbation theory. Traditionally, only
the simplest part of the first order of these weak lensing expressions
was considered but with the increasing precision of observational
data, it has been necessary to go beyond first order perturbation
theory. The first order perturbative lensing expressions are well
known and full second order expressions for the convergence are
given in e.g. Umeh, Clarkson & Maartens (2014a,b), Marozzi
(2015), Ben-Dayan et al. (2012), and Fanizza et al. (2013). Third
and fourth order corrections have only been considered partially,
e.g. in Troster & Van Waerbeke (2014) and Krause & Hirata
(2010). However, there are several reasons why care must be taken
when using perturbative expressions. First of all, the literature
contains inconsistencies between analytical expressions obtained
by different authors (see e.g. discussions in Fanizza et al. 2015;
Marozzi 2015; Fanizza, Yoo & Biern 2018). Second of all, questions
regarding the gauge dependence of lensing expressions must be
carefully considered as pointed out in e.g. Yoo et al. (2018). Lastly,
higher order corrections can be more important than lower order
corrections because the real Universe is better described by a
weak field approximation than standard perturbation theory (see
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e.g. Adamek et al. 2016). This obscures the validity of precision
estimates based on perturbation theory truncated at a finite order.
These points emphasize the importance of checking the appropriate-
ness of perturbative expressions by a comparison with exact results.
The straightforward way of doing this is to compare approximate
results based on perturbation theory with exact results obtained by
ray tracing through exact solutions to Einstein’s equations. This
permits one to assess whether or not the studied expressions are
correct and yield the expected precision. This is the goal of this
work, which is based on considering a semirealistic inhomogeneous
but statistically homogeneous and isotropic dust + � solution
to Einstein’s equations. The model is constructed as a Swiss-
cheese model. Swiss-cheese models are obtained by removing
patches in a Friedman-Lemaitre-Robertson-Walker (FLRW) model
(the ‘cheese’) and replacing them by inhomogeneous solutions to
Einstein’s equations. As Swiss-cheese models are exact solutions
to Einstein’s equations their metrics are known and hence light
propagation can be described by exact means in these models. By
choosing different metrics for constructing the Swiss-cheese model,
different scenarios can be studied. For instance, Kottler structures
have been glued together with lambda cold dark matter (�CDM)
models to study how observations based on thin beams are affected
by small-scale inhomogeneities (Fleury, Dupuy & Uzan 2013;
Fleury 2014). Here, we are concerned with weak lensing and hence
the Swiss-cheese models must be constructed to model the large-
scale structures of the Universe. An appropriate Swiss-cheese model
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can be obtained by combining the �CDM model with Lemaitre–
Tolmann–Bondi (LTB) voids. The LTB structures are distributed
randomly so that the obtained results do not contain artefacts that
are known to plague Swiss-cheese models with regularly distributed
structures (Vanderveld, Flanagan & Wasserman 2008). The model
is used to identify the terms necessary to achieve perturbative results
deviating less than ∼1 per cent from the exact convergence, κ , up to
a redshift of 2 (the primary weak lensing range for several upcoming
surveys goes out to z ≈ 2). The results indicate that one must include
lens–lens coupling at second order and post-Born corrections at
second and third order to achieve a 1 per cent precision out to z =
2. These corrections are derived following procedures similar to
those of Troster & Van Waerbeke (2014) but are given in a form
that generalizes the expressions to arbitrary order. Higher order
corrections are also needed for sub-per cent accuracy of the weak
lensing shear but as the shear can be obtained from the convergence
(see e.g. Kilbinger 2015) we do not investigate the necessary higher
order corrections to the shear here.

2 L I G H T P RO PAG AT I O N

The starting point for gravitational lensing is the geodesic deviation
equation for a deviation vector ξ a which separates neighbouring
null geodesics on a future pointing bundle ka: ξ̈ a + kbξ ckdRa

bcd =
0. We use Ra

bcd to denote the Riemann tensor, and dots indicate
derivatives with respect to the affine parameter λ associated with
ka. Given an observer, the equation can be projected into a 2d
screen space spanned by an orthonormal tetrad basis eA

a , A = 1, 2.
The equation then becomes ξ̈A = RABξB , where the optical tidal
matrix is given by RAB = − 1

2 δABRcdk
ckd − CAcBdk

ckd , with Rab

the Ricci tensor and Ca
bcd the Weyl tensor. Solutions are written in

terms of the Jacobi map, JAB , as ξA(λ) = JAB (λ)ζB , where JAB

satisfies J̈AB = RACJ C
B , with JAB (λo) = 0 and J̇AB (λo) = −δAB .

The differential equation can also be written as an integral equation
which in matrix notation becomes J = (λo − λs)I + ∫ λs

λo
dλ(λs −

λ)R · J . The Jacobi map takes the observed angle between two rays
at the observer, ζA := −ξ̇ A|o, and maps it to the deviation vector
at the source. The map can be expanded in terms of a background
distance d̄A and an amplification matrix AAB = (1 − κ)δAB + γAB

or (ignoring a small antisymmetric part)

J = d̄AA = d̄A

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
. (1)

The convergence is therefore κ = 1 − trJ /2d̄A, and the shear is the
trace-free part of A. The angular diameter distance as a function of
the affine parameter is dA = √

detJ = d̄A

√
(1 − κ)2 − γ 2, where

a bar denotes background quantities and γ 2 := γ 2
1 + γ 2

2 .
We shall now consider solving for the convergence perturbatively,

assuming a weak field approximation. We consider a perturbed
FLRW metric (using c = 1 = 4πG): ds2 = a2[ − (1 + 2
)dη2

+ (1 − 2�)γijdxidxj], where γij = δij if xi are Cartesian (i, j, k,
. . . denote spatial indices). As only the sum of the potentials will
appear we introduce the Weyl potential ψ := (
 + �)/2. We will
work on the conformal geometry, ignoring factors of a except where
they appear in relation to δρ. In this case the background angular
diameter distance is d̄A = r , and we will use r as the affine parameter
distance down the past light cone from observer to source: r = λo

− λs. For the considered metric, the leading order perturbative
contribution to the optical tidal matrix is

δRAB = −δABδρ/a2 − 2∇〈A∇B〉ψ . (2)

Note that we keep only the terms with the highest number of
derivatives in screen space since these terms are by far the most
important for normal lensing events. Angle brackets mean the trace-
free part of a tensor: X〈AB〉 = XAB − 1

2 δABδCDXCD , and ∇2 =
∇A∇A. (As we keep only the highest derivatives of the potential,
no derivatives of the tetrad appear.) If we identify ψ as the full
gravitational potential (e.g. from an N-body simulation) rather than
the potential from linear perturbation theory, this is an excellent
approximation. We use the flat sky approximation so the derivatives
in the above expression can simply be swapped with Cartesian
derivatives in the final expressions. Note lastly that the Ricci
term deviates from the exact Ricci term only in terms of Born
corrections and Doppler corrections as the exact Ricci term is
− 1

2 δABRcdk
ckd ∝ −ρ

(
kμuμ

)2
.

Using δR, the integral equation for the amplification matrix
becomes

A = I +
∫ r

0
dr ′ r

′(r − r ′)
r

δR · A . (3)

Our goal is to solve this equation to obtain κ at sub-per cent accuracy
as will be necessary for the correct interpretation of and forecasts
for upcoming surveys. We define the operator

O B
A (r, r ′) = −

∫ r

0
dr ′ r

′(r − r ′)
r

δR B
A (r ′) . (4)

Repeated substitution then shows that the solution can be written as
the series

AB
A(r) = δB

A − OB
A(r, r ′) + OC

A(r, r ′)OB
C (r ′, r ′′)

−OC
A(r, r ′)OD

C (r ′, r ′′)OB
D(r ′′, r ′′′) + · · · . (5)

The second term gives the standard linear convergence and shear:

κ(r) =
∫ r

0
dr ′ r

′(r − r ′)
r

a2δρ(r ′), (6)

γAB (r) = 2
∫ r

0
dr ′ r

′(r − r ′)
r

∇〈A∇B〉ψ(r ′), (7)

with −γ22 = γ11 = γ1, γ12 = γ21 = −γ2.
Promoting these to operators, κ(r) → κ(r, r′) and γAB(r) → γAB(r,

r′), we can separate the trace and trace-free parts of OAB as

OAB (r, r ′) = κ(r, r ′)δAB + γAB (r, r ′) . (8)

Using this we can now calculate the higher order contributions to the
convergence and shear by extracting the trace and trace-free parts
of the higher-order products of OAB . In general, a contraction of
two symmetric matrix operators in 2D, XAB = XδAB + X̂AB , can
be expanded into its trace and trace-free parts as

XC
AYCB = 1

2

(
2XY + X̂CDŶCD

)
δAB

+XŶAB + X̂ABY + X̂C
〈AŶB〉C. (9)

We can use this repeatedly to calculate all the higher-order con-
tributions we require. Consequently we have the second-order
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convergence in terms of the first-order operators κ and γAB:

κ (2)(r) = κκκ + κγγ

= −κ(r, r ′)κ(r ′, r ′′) − 1

2
γ AB (r, r ′)γAB (r ′, r ′′)

= −
∫ r

0
dr ′ r − r ′

r
a2δρ(r ′)

∫ r ′

0
dr ′′ (r ′ − r ′′) r ′′a2δρ(r ′′)

− 2
∫ r

0
dr ′ r − r ′

r
∇〈A∇B〉ψ(r ′)

×
∫ r ′

0
dr ′′ (r ′ − r ′′) r ′′∇〈A∇B〉ψ(r ′′). (10)

Similarly we can read off the correction to the shear from the trace-
free part as

γ
(2)
AB = κ(r, r ′)γAB (r ′, r ′′) + γAB (r, r ′)κ(r ′, r ′′)

+ γ C
〈A(r, r ′)γB〉C(r ′, r ′′)

= 4
∫ r

0
dr ′ r − r ′

r
∇〈A∇Cψ(r ′)

×
∫ r ′

0
dr ′′ (r ′ − r ′′) r ′′∇B〉∇Cψ(r ′′). (11)

For the third-order terms we now use OC
A(r, r ′)OD

C (r ′, r ′′) =
κ (2)(r, r ′, r ′′)δAB + γ

(2)
AB (r, r ′, r ′′), again promoting κ (2) and γ

(2)
AB to

operators and using equation (9):

κ (3)(r) = κ (2)(r, r ′, r ′′)κ(r ′′, r ′′′) + 1

2
γ

(2)
AB (r, r ′, r ′′)γ AB (r ′′, r ′′′)

= −κ(r, r ′)κ(r ′, r ′′)κ(r ′′, r ′′′)

− 1

2
γ AB (r, r ′)γAB (r ′, r ′′)κ(r ′′, r ′′′)

+ 1

2
κ(r, r ′)γAB (r ′, r ′′)γ AB (r ′′, r ′′′)

+ 1

2
γAB (r, r ′)κ(r ′, r ′′)γ AB (r ′′, r ′′′)

+ 1

2
γ C

〈A(r, r ′)γB〉C(r ′, r ′′)γ AB (r ′′, r ′′′) (12)

and so on. In this way we can explicitly see the different contri-
butions to the higher order convergence. The third order lens–lens
coupling correction of the convergence is not necessary for per cent
accuracy at z < 2 in the studied model but could be necessary at
higher redshifts.

The integrals in the above expressions are in principle to be taken
along the real perturbed line of sight, but this makes them difficult
to compute. Alternatively, we can simply interpret these integrals
as being along the background light ray, an approximation known
as the Born approximation. We can then obtain corrections to the
Born approximation by expanding around the background line of
sight as follows.

It follows from the geodesic equation that deviations, δxA, to
the light path in screen space are given by δxA = −2

∫ r

0 dr ′(r −
r ′)ψ,A(r ′). Different orders of δxA are obtained by Taylor expanding
ψ ,A around the unperturbed light path under the integral, while
integrating according to the Born approximation, i.e. for the first

and second order:

δx(1)A = −2
∫ r

0
dr ′(r − r ′)ψ,A(r ′)

δx(2)A = −2
∫ r

0
dr ′(r − r ′)ψ,AB (r ′)δx(1)B (r ′)

= 4
∫ r

0
dr ′(r − r ′)ψ,AB (r ′)

∫ r ′

0
dr ′′(r ′ − r ′′)ψ,B (r ′′).

(13)

Inserting these into the lowest perturbative expression for the ampli-
fication matrix gives the following corrections to the convergence:

κB1 = −2
∫ r

0
dr ′ r − r ′

r
r ′a2δρ,A

∫ r ′

0
dr ′′(r ′ − r ′′)ψ,A

κB2 (14)

= 2
∫ r

0
dr ′ r − r ′

r
r ′a2δρ,AB ×

∫ r ′

0
dr ′′(r ′ − r ′′)ψ,A

∫ r ′

0
dr ′′(r ′ − r ′′)ψ,B

+ 4
∫ r

0
dr ′ r − r ′

r
r ′a2δρ,A ×

∫ r ′

0
dr ′′(r ′ − r ′′)ψ,AB

∫ r ′′

0
dr ′′′(r ′′ − r ′′′)ψ,B. (15)

Lastly, it is necessary also to include the Doppler convergence κv

in the computations (see e.g. Bolejko et al. 2013). The lowest order
Doppler convergence is given by

κv =
(

1 − 1

ra,t

)
(vS − vO) · n + vO · n, (16)

where n is the direction vector of the light ray computed in the
background and vS and vO are the spatial velocity fields of the
source and observer, respectively.

3 R ESULTS

We show the above discussed contributions to the convergence
along light rays propagated in a Swiss-cheese model based on the
spherically symmetric Lemaitre–Tolman–Bondi dust solutions. The
LTB structures are specified by a �CDM background (the ‘cheese’)
with �� = 0.7 and H0 = 70 km s−1 Mpc−1, a constant big bang time
and a curvature parameter given by

k(r) =
⎧⎨
⎩−5.57 · 10−8r2

((
r

40 Mpc

)6
− 1

)6

if r < 40Mpc

0 otherwise
. (17)

The choice of k specifies the shape and size of the LTB structures.
While the detailed shape in terms of e.g. the steepness of the
resulting density contrast is not particularly important for the
results, k must be chosen to yield structures of overall qualities
similar to realistic large-scale structures. The choices specified
above yield structures of semirealistic sizes: voids with radius
∼30 Mpc and minimum density δρ/ρ ≈ 0.3 surrounded by a mass-
compensating shell with overdensity peaking at δρ/ρ ∼ 100. The
LTB structures are arranged randomly according to the description
in Koksbang (2017), leading to a Swiss-cheese universe of random
close-packed LTB structures with a packing fraction of ∼0.6. The
exact convergence along light rays in the Swiss-cheese model is
compared with the perturbative approximations obtained from mock
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Figure 1. Precision of κapprox := κ (1) + κv + κB1 + κB2 + κκκ + κγγ along
100 light rays at z = 2. κexact is the exact convergence computed using exact
light propagation with the exact Swiss-cheese space–time.

N-body reproductions of the Swiss-cheese model following the
mapping procedure of Koksbang & Hannestad (2015a,b). Within
that setting, light rays can be traced using standard perturbation
theory on a flat FLRW background combined with the non-linear
density and velocity fields of the mock N-body data.

Hundred random light rays have been considered, each with
an observer in the �CDM background. By including the lowest
order lens–lens coupling and the two lowest orders of post-Born
corrections as well as κ (1) + κv , the difference between the exact
and approximate convergence reduces to less than 1 per cent in
the studied redshift interval along 94 of the light rays when local
effects from the Doppler convergence are ignored. This is illustrated
in Fig. (1), which shows the deviation between the exact and
approximate κ at z = 2 (since the deviations between exact and
approximate results generally increase with redshift, showing the
results at z = 2 is appropriate). In general, we find that each of the
higher order corrections individually reaches 1 per cent of both κ (1)

and κexact along at least one of the studied light rays. An example
light ray is given in Fig. 2, which shows the individual contributions
to the convergence for one of the light rays. For this particular line of
sight, the second and third order contributions are all of similar size
and are ∼1 per cent or sub-per cent individually while their sum is
approximately 3.5 per cent of the exact convergence. As indicated
already in this figure, the lowest order post-Born correction is by
far the most important contribution after κ (1) + κv . The distribution
of the lowest order Born correction along all the light rays at z = 2
is shown in Fig. 3. Quite noticeably this second order contribution,
which is often neglected, exceeds 10 per cent of the traditional
gravitational convergence, κ (1), along multiple rays and it even
exceeds the value of κ (1) along several light rays. This supports
the findings of e.g. Marozzi et al. (2017) that the lowest order Born
correction leads to significant effects on at least some observations.

4 C O N C L U S I O N S

By comparing the approximate weak lensing convergence with its
exact counterpart we showed that a sub-per cent accuracy up to
z ≈ 2 of the weak lensing convergence requires several orders
of the post-Born correction as well as the lowest order lens–lens

Figure 2. Higher order contributions to κ along a fiducial light ray in the
Swiss-cheese model. The contributions are shown as percentages of the
exact convergence κexact. The figure does not show the area with z < 0.5
as this area is obscured by peaks due to division by zero and mismatches
of the exact and approximate Doppler convergences. The mismatches in the
Doppler convergence will not be discussed here where accumulative effects
along the light rays are the focus.

Figure 3. Size of κB1 relative to κ (1) at z = 2.

coupling correction. Since most contributions to the convergence
are in the form of integrals along the line of sight, even higher
order corrections are needed if the same accuracy is required at
higher redshifts. Our results thus indicate that the correct treatment
of upcoming surveys will require the inclusion of several higher
order corrections to the standard gravitational convergence κ (1). Our
results also indicate that already for current surveys, including the
post-Born correction at lowest order is important as it can become
the dominant contribution to the convergence along some lines of
sight.

The presented results were obtained for a specific Swiss-cheese
model based on a single, specific LTB structure that reduces exactly
to the background �CDM model at its edge. Such a set-up is
clearly overly simplified compared to the real Universe but the
LTB structures were distributed randomly and close-packed with a
structure size and amplitude chosen to approximate realistic large-
scale structures. Hence, while there would presumably be small
adjustments in the results obtained here if using another (semi-
)realistic model, the overall results are expected to be valid in

MNRASL 486, L41–L45 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/486/1/L41/5475653 by H
elsinki U

niversity Library user on 27 O
ctober 2020



Accurately computing weak lensing convergence L45

general for a universe with a soap-bubble large-scale structure
distribution with an average �CDM evolution. None the less, it
would be interesting to further investigate the results obtained
here e.g. by using the method described here for computing
higher order corrections along light rays in N-body simulations.
Any significant quantitative discrepancies with the results obtained
here would require an explanation while an overall agreement
with the results presented here would strengthen the credibility
of results obtained by ray tracing through N-body simulations. In
relation to this it would also be useful to use the method studied
here for computing κ to evaluate the accuracy of the multiple-
lens approximation often used for ray tracing through N-body
simulations.
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