Building language technology infrastructures to
support a collaborative approach to language
resource building

0000—0003—1207—5395] and Francis M

2[0000—0001—6108—2220]

Tommi A Pirinen?!
Tyers

! UiT Norgga arktalas universitehta
firstname.lastnameQuit.no
https://uit.no
2 Indiana
ftyers@iu.edu

Abstract. Digital infrastructures are a vital part of support for pro-
viding a research framework and platform in engineering their digital
lexicography and grammars and deploying the to end-users as real NLP
software products. In this article we review the usage of two popular
free/libre open source infrastructures and give our view on best current
practices from few decades of experiences. We find that infrastructures
can turn work in digital lexicography and grammars into viable end-user
products like machine translators, spell checkers and correctors and so
forth.

Keywords: NLP infrastructures - Citizen science - Uralic languages.

1 Introduction

Work in digital humanities, particularly like of digital lexicography, is a very front
and central concept in building for language technologies and digital cultures for
minority and under-resourced languages. In these contexts, it is common to have
very limited access to language experts that are highly necessary for building
of the resources necessary, we talk about citizen science and crowd-sourcing.
For this reason, the role of digital infrastructures for building of the natural
language processing systems becomes very central. An ideal digital infrastructure
makes it easy for a language expert, activist or other contributor with limited
technical skills or resources to work with involved technically complex systems,
to contribute their expertise with their native language skills. In this article
we make an overview of some infrastructures that enable contributing native
language skills and describe some recent developments in the field of software
engineering that have enabled us to improve our infrastructures so we also lay
out a desiderata of a kinds for all sorts of language technology infrastructures.
In this article we use as a case study two infra-structures we have helped
to build, that are also central to Uralic natural language processing: GiellaLT?

3 https://github.com/giellalt

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



2 T.A Pirinen, F.M. Tyers

and Apertium?, but we also cast an eyesight towards other kinds of popular
infrastructures.

The article is organised in following sections: First we describe some back-
ground for the system in section 2. Then we describe and compare different
infrastructures and their features in section 3. We discuss the system in sec-
tion 4.

2 Background

The work on computational lexicography, specifically for finite-state language
models and Uralic languages has been carried on for almost 40 years now. Some
of the technologies and systems underneath remain largely unchanged, for ex-
ample Finite-State morphology [2] methods have been used in similar form ever
since the beginning. On the other end, the software engineering and computa-
tional infrastructures typically have life-cycle of not more than 10 years. The
role of infrastructure to support language scientists and contributors is in many
cases to reduce the impact of changes of such computational systems to provide
smooth continuity for the development of the actual dictionary data etc. The
scientists and language experts contributing words and grammars are usually
not interested in differences of, e.g. RCS, CVS, SVN and git as version control
system, while the infrastructures have been dragged through these all in the
past decades—and conversely, the engineers who build the infrastructures may
be very interested in such underlying technologies. The linguistic and NLP soft-
ware is built on lexical data and grammars, this includes software like: machine
translation, spell-checking and correction, grammar checking, text-to-speech and
so forth. The main point of a good infrastructure is that the lexical data can
be contributed once and used for all applications alike. In figure 1 there is a
diagrammatic representation of ideal work-flow between various stakeholders of
NLP software.

One of the core values that makes this all possible is based on the free/libre
open source software (FLOSS) movement, which in way is turning into free
science and open data movements in the academia. In the old times of single
scientists keeping their word-lists and grammar sketches in the desk drawers,
eventually to be published in a grand tome with a high price and restricting
licence schemes, it was not easily possible for other researchers and the language
community at large to start contributing and further developing the resources.
However, the free and open source movement has already enabled such huge
projects like Wikipedia, a massive crowd-sourced online encyclopedia made by
humans, and this work is in a way trying to harness the same approaches in the
field of linguistics and lexicography.

One of the recent innovations in software engineering is the concept of Con-
tinuous Deployment and Continuous Integration (CD/CI). This means that a
software is developed all the time and the updates are made public immediately,

* https://github.com/Apertium

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



Building language technology infrastructures 3

Gramma)rf\checkmg

L

Language activist

Infrgstjucture

Citizen scientist

Text-to“épeech
Language expert

Researcher

Fig. 1. Ideal workflow for infrastructure in NLP apps (simplified; in reality there is a
fully connected graph of dozens of apps and stakeholders)

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



4 T.A Pirinen, F.M. Tyers

and there is an automatic infrastructure to test the software quality and send
the end-users updated versions. This translates directly to work with language
resources; when language users discover a word is not supported by the spell-
checker or similar NLP software they can submit it to the infrastructure and get
an updated version of the software with the word included within hours instead
of after months of development cycle. In this article we study the implementation
of such CI/CD infrastructures within the NLP systems.

2.1 Prior Art

The role of computational linguistics infrastructures in projects for cooperating
with citizen scientists and language experts to create NLP software has not
been very extensively studied. Some existing work has been published on the
topic of co-operation of linguists and engineers in large scale infra-structure like
projects, e.g. [8,4,7,11]. In the part of involving the audience more in the infra-
structure usage some recent projects have built on the existing and documented
infrastructures, such as [1, 10] The other part of infrastructure usage and uptake
is documented as outreach activities, for such relevant is also software projects,
like UralicNLP [5]5, and activities of education networks like COPIUS® and labs
like FU-Lab.”

3 Infrastructures and Resources

In this article we survey some of the main free/open source repositories for
Uralic NLP specifically related to lexicography and morphology. The main goal
of much of our work is to release NLP-based tools for end-users, be it machine
translation or spell-checking and correction, and the lexicography and contribu-
tions linguistic research are achieved as a side effect. As one of the goals of the
infrastructures is to lower the barrier to entry, we put an emphasis in this article
to the infrastructure frameworks built to make it easier and more accessible. In
table 1 we show an overview of the languages and resources for our infrastruc-
tures: GiellaL'T and Apertium and for comparison other FLOSS infrastructures:
CommonVoice® and Universal Dependencies? and UniMorph!?.

One important feature of a language technology infrastructure is separation
of the technology and data. This means that the language experts can collect and
curate data, while the engineers improve and add NLP systems, and when a new
or improved system for a specific NLP application is finalised, it can be applied
to all languages providing language data in the infrastructure. In practice for
example, this has in past meant, that when new research was published making

® https://github.com/mikahama/UralicNLP/
5 https://www.copius.eu/index.php
" https://fu-lab.ru/
8 https://commonvoice.mozilla.org
9 https://universaldependencies.org
10 https://github.com/unimorph/

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



Building language technology infrastructures 5

Table 1. Infrastructures and the languages and resources they have.

Infra - stuff Languages NLP resources

GiellaLLT 121 Morphological analysis
Text-To-Speech
Spell and Grammar-checking
Apertium 181 Morphological analysis
237 Machine translation

Common Voice 78 Speech recognition
Speech synthesis
Universal Dependencies 104 Treebanking
Dependency Grammar
Unimorph 122 Example

word-forms

weighted finite-state spell-checking and correction end-user usable [9], all lan-
guages in the infrastructure could have an additional (albeit basic) spell-checker
and corrector. Both in GiellaL T infra and Apertium system this is implemented
at low level by simply applying the necessary changes to all of the language
repositories. Due to potential of complicated interactions and change conflicts
in this phase, both infrastructures have built additional tooling to ease the pro-
cess: gut'! and Apertium-init'? In the core both systems are based on partial
templating, with main difference being in the implementation technology: Rust
and Python respectively.

3.1 Testing

One feature that an infrastructure is useful for as a supporting role for citizen
science and crowdsourcing lexicography is quality assurance. In the NLP software
this is done by automated testing. The automated tests for an end-user facing
software can vary from as simple unit and integration testing as ensuring that
you can enter word-forms and get analyses or translations back to as intricate
as ensuring that the translation or spell-checking quality does not decrease. The
testing methodology follows from software engineering and tends to use the same
terminology: Unit testing, regression testing, integration testing and so forth.
One of the testing approaches many linguists might be most acquainted with
is a form of regression testing [3]. One of the recent developments in software
engineering is automated testing of each commit on the server, using continuous
integration. Continuous integration is set up to ensure that no changes to the
lexicon are breaking the system or decreasing the results.

There are two problems that arise with complex NLP systems and auto-
mated testing: firstly, a full coverage testing on substantial material can take

1 https://github.com/divvun/gut/
2 https://github.com/Apertium/Apertium-init /

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



6 T.A Pirinen, F.M. Tyers

much more time and processing resources than is available on a freely available
CI services. Secondly, complex NLP systems do not only break from changes
within the local lexicographical data, but also from other parts of infrastructure
changing. With the theme of rule-based machine translation this is obvious:
each project depends at least from three different lexicographical projects: the
source language dictionary, the target language dictionary and the bilingual dic-
tionary, and change in any of these can throw the translation off. For other
NLP pipelines, similar problems arise from changes in the build infrastructure,
for example handling of capitalisation, tokenisation and even tagging standard
changes. The first problem of limited processing power we have partially solved
with self-hosted and customised build servers, however, this does introduce a
non-standard non-trivial component to the mix so it is unoptimal for the pur-
pose of this article (not easily reproducible). The second problem still exists in
our build systems, however we are researching on potential solutions.

3.2 Deploying

One feature that infrastructure provides to scientists and language experts is
turning their lexicons and grammars into end-user products fro the whole lan-
guage community: for example languages in GiellaLT and Apertium repository
are provided to users of LibreOffice, or Linux-based systems as packages for
spell-checking and correction [9].13

The most common approach for deployment is, is to simply provide a stan-
dard build system, such as auto-tools based one, and have the distributors of
systems pick it up for their users; this has been the traditional approach espe-
cially within the Linux ecosystem and other free / open systems. This is not
always feasible option for minority language technology, e.g. due to lack of in-
terest and necessary expertise on behalf of the distribution providers, for other
approaches we have build custom repositories'*, and supplementary parts to
packaging systems'®, which, while not ideal for average end users, are good
enough to get the software to a majority of the end users.

3.3 Documentation

One of our goals in the original infrastructure designs has been to introduce
the concept of Literate Programming [6] into NLP. The idea of producing docu-
mentation, even books, from well-commented source code is well within reach or
natural language processing, lexicographical databases and grammar rules are
typically the main meal of linguistic literature in general. For example in Fen-
nistic tradition, it is not untypical to see a grammar book formatted in form
of dozens and dozens of examples listed or tabulated accompanying every de-
scription of every grammatical phenomenon, this is very near to rule-based NLP

13 https://divvun.org

' https://Apertium.projectjj.com/apt/
!5 http://pahkat.uit.no/

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



Building language technology infrastructures 7

format already. The current implementation of the literate programming scheme
in giellaLLT infra follows the light-weight literate programming style most pro-
gramming languages have eventually adopted as well, namely doc comments.
What this means is we have specially formatted comment blocks within source
code, that can be, together with context-relevant code, be re-used as documenta-
tion, as well as unit tests. Compare this to Python’s docstrings'® and doctests!”.
It is noteworthy, that mostly, in lexicography and grammar, tests, are nothing
more than example word forms and their preferred annotations, be it grammat-
ical analysis or perhaps spelling corrections, this, naturally, is in and of itself
interesting for a linguist even without the testing feature. As a recent feature for
the documentation comments, the output format has been updated to GitHub’s
github-pages format and a prototypical examples can be found at the time of
writing in the GiellaLT github space!8.

4 Discussion and conclusions

We have built various infrastructures for enabling various groups of contributors
to contribute linguistic data. Currently our infrastructures are used to involve
large number of researchers in providing digital language tools for large number
of marginalised languages.

In the table 1 we give the amount of languages being worked on within
the infrastructures, while the numbers do not directly tell of the quality, there
are further ways of determining how much the languages have been worked on
in each of the systems. Within GiellaLT and Apertium communities we have
opted for self-classifying the production quality of the languages as such: in
GiellaLT registry'® at the time of writing we find 8 full production quality and
27 beta testing phase languages (out of 128), in Apertium correspondingly 53
trunk translators and 39 nursery translators (out of 237).2° The repositories
Common Voice, Universal Dependencies and Unimorph on the other hand do
not include classifications, but we can study them rather by comparing the sizes:
the biggest recording size in English is 1800 hours, and 36 have 10 or more hours
of confirmed recordings, out of the 78. For Universal Dependencies biggest data
set is German with 3.753 million dependency trees, with 43 having over 100
thousand trees. In unimorph, Finnish is the biggest dataset with over 2 million
word-forms, with 27 languages containing over 100 thousand word forms.

We have two infrastructures for NLP systems that have provided people with
various tools and software for years. They have also improved continuously and
still actively used.

16 https://www.python.org/dev/peps/pep-0257/

17 https://docs.python.org/3/library /doctest.html

'8 https://giellalt.github.io, see for example https://giellalt.github.io/lang-fin/fin.htm]
19 https://github.com/divvun/registry#languages

20 at the time of writing, this can obviously change fast in a fast-moving user community

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



8 T.A Pirinen, F.M. Tyers

Acknowledgments

Building and using infrastructures takes a large developer base and the authors
of the article are just a small part of these communities. Thanks goes to everyone
at GiellaLT?!, Divvun??, and Apertium??® communities.

References

1. Alnajjar, K., H&améldinen, M., Rueter, J., Partanen, N.: Ve’rdd. nar-
rowing the gap between paper dictionaries, low-resource NLP and com-
munity involvement. In: Proceedings of the 28th International Confer-
ence on Computational Linguistics: System Demonstrations. pp. 1-6. In-
ternational Committee on Computational Linguistics (ICCL), Barcelona,
Spain (Online) (Dec 2020). https://doi.org/10.18653/v1/2020.coling-demos.1,
https://www.aclweb.org/anthology/2020.coling-demos.1

2. Beesley, K.R., Karttunen, L.: Finite-state morphology: Xerox tools and techniques.
CSLI, Stanford (2003)

3. Bender, E.M., Poulson, L., Drellishak, S., Evans, C.: Validation and regression
testing for a cross-linguistic grammar resource. In: Acl 2007 workshop on deep
linguistic processing. pp. 136-143 (2007)

4. Bird, S., Liberman, M.: A formal framework for linguistic annotation. Speech com-
munication 33(1-2), 23-60 (2001)

5. Haméldinen, M.: Uralicnlp: An nlp library for uralic languages. Journal of
Open Source Software 4(37), 1345 (2019). https://doi.org/10.21105/joss.01345,
https://doi.org/10.21105/joss.01345

6. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97-111 (1984)

7. Maxwell, M., David, A.: Joint grammar development by linguists and computer
scientists. In: Workshop on NLP for Less Privileged Languages, Third International
Joint Conference on Natural Language Processing. pp. 27-34. Hyderabad, India
(2008)

8. Moshagen, S., Rueter, J., Pirinen, T., Trosterud, T., Tyers, F.M.: Open-source
infrastructures for collaborative work on under-resourced languages. In: Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation,
LREC. pp. 71-77 (2014)

9. Pirinen, T., Lindén, K., et al.: State-of-the-art in weighted finite-state spell-
checking. In: Computational Linguistics and Intelligent Text Processing 15th In-
ternational Conference, CICLing 2014, Kathmandu, Nepal, April 6-12, 2014, Pro-
ceedings, Part II (2014)

10. Rueter, J., Haméldinen, M.: Synchronized mediawiki based analyzer dictionary
development. In: Proceedings of the Third Workshop on Computational Lin-
guistics for Uralic Languages. pp. 1-7. Association for Computational Linguis-
tics, St. Petersburg, Russia (Jan 2017). https://doi.org/10.18653/v1/W17-0601,
https://www.aclweb.org/anthology /W17-0601

11. Streiter, O., Scannell, K., Stuflesser, M.: Implementing NLP projects for non-
central languages: Instructions for funding bodies, strategies for developers. Ma-
chine Translation 20(4), 267-289 (2006)

2! https://github.com/orgs/giellalt /people

22 https://github.com/orgs/divvun/people
3 https://github.com/orgs/Apertium/people

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 53—60. —— CC BY 4.0



