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Sequence alignment by exact or approximate string matching is one of the fundamental problems
in bioinformatics. As the volume of sequenced genomes grows rapidly, pairwise sequence align-
ment becomes inefficient for pan-genomic analyses involving multiple sequences. The graph rep-
resentation of multiple genomes has been an increasingly useful tool in pan-genomics research.
Therefore, sequence-to-graph alignment becomes an important and challenging problem.

For pairwise approximate sequence alignment under Levenshtein (edit) distance, subquadratic
algorithms for finding an optimal solution are unknown. As a result, aligning sequences of
millions of characters optimally is too challenging and impractical. Thus, many heuristics and
techniques are developed for possibly suboptimal alignments. Among them, co-linear chaining
(CLC) is a powerful and popular technique that approximates the alignment by finding a chain
of short aligned fragments that may come from exact matching. The optimal solution to CLC
on sequences can be found efficiently in subquadratic time. For sequence-to-graph alignment,
the CLC problem has been solved theoretically on a special class of graphs that are narrow and
have no cycles, i.e. directed acyclic graphs (DAGs) with small width, by Mäkinen et al. (ACM
Transactions on Algorithms, 2019). Pan-genome graphs such as variation graphs satisfy these
restrictions but allowing cycles may enable more general applications of the algorithm.

In this thesis, we introduce an efficient algorithm to solve the CLC problem on general graphs
with small width that may have cycles, by reducing it to a slightly modified CLC problem on
DAGs. We implemented an initial version of the new algorithm on DAGs as a sequence-to-graph
aligner GraphChainer. The aligner is evaluated and compared to an existing state-of-the-art
aligner GraphAligner (Genome Biology, 2020) in experiments using both simulated and real
genome assembly data on variation graphs. Our method improves the quality of alignments
significantly in the task of aligning real human PacBio data. GraphChainer is freely available
as an open source tool at https://github.com/algbio/GraphChainer.
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1 Introduction

Sequence alignment by exact or approximate string matching is one of the fundamen-
tal problems in bioinformatics. The basic alignment problem asks for an exact match of
one string in another reference string. A more general problem asks for an approximate
alignment that allows differences in the matching. One of such approximate alignment
method uses the Levenshtein (edit) distance [18], which equals the minimal number of in-
sertions, deletions and mismatches between the two sequences. The edit distance between
two sequences of length n can be computed exactly in O(n2) time [16], but algorithms to
compute this distance exactly in wrost-case subquadratic time are unknown.

As a result, computation of the optimal alignments between long genome sequences that
usually have millions of characters is too challenging and impractical. Thus, many heuris-
tics and techniques are developed for suboptimal alignments. Among them, co-linear
chaining (CLC) is a powerful and popular technique that approximates the alignment by
finding a chain of short aligned fragments that may come from exact matching. For CLC
on sequences, the optimal solution can be found efficiently in subquadratic time.

On the other hand, as the volume of sequenced genomes grows rapidly, pairwise sequence
alignment becomes inefficient for pan-genomic analyses involving multiple sequences. The
graph representation of multiple genomes has been an increasingly useful tool in pan-
genomics research. One of the common practices is to use directed labelled graphs to
represent multiple genomes. Therefore, sequence-to-graph alignment becomes an impor-
tant and challenging problem.

In this thesis, we introduce an efficient algorithm to solve the CLC problem on general
graphs with small width that may have cycles. This algorithm is based on the sparse
dynamic programming framework of [21], which solves the CLC problem efficiently on a
special class of graphs that are narrow and have no cycles, i.e. directed acyclic graphs
(DAGs) with small width. Our algorithm reduces the CLC problem on general graphs to
CLC on DAGs, under the same assumption that the graphs are narrow.

We also implemented an initial version of the new algorithm on DAGs as a sequence-to-
graph aligner GraphChainer. For now, this implementation assumes that input graphs are
DAGs, but has the potential to be modified to accept graphs with cycles in the future. The
aligner is evaluated and compared to an existing state-of-the-art aligner GraphAligner [27]
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in experiments using both simulated and real genome assembly data on variation graphs.
Our method improves the quality of alignments significantly in the task of aligning real
human PacBio data.

In the following sections, we will introduce the backgrounds of the problem. In Section 1.1,
we examine the approximate sequence alignment problems and the co-linear chaining tech-
nique on sequences. In Section 1.2, we introduce the concepts of pan-genome graphs and
the properties of such graphs. In Section 1.3, we review the sparse dynamic programming
framework of [21] which is the an important ingredient in our algorithm. At last, in Section
1.4, the contributions of this thesis are outlined.

1.1 Co-linear Chaining

In bioinformatics approximate sequence alignment has more applications than exact se-
quence alignment. For example, when mapping short read sequences against a reference
sequence in genome assembly, it is critical to allow errors in the alignments since the reads
are not always accurate and the sequence to reconstruct may have mutations so that no ex-
act match exists. Approximate sequence alignment searches for an alignment between the
two sequences with the smallest distance such as Levenshtein distance (edit distance) [18].
Figure 1.1 shows an example of approximate alignment under edit distance, defined as the
minimum number of operations to change one sequence to another by inserting, deleting
and changing one character at a time.

GGTGGGGTTTCGGTTTGGTCGCAA-ACTTC-G--ATAACATTTA

--TGGGGTTTCGC--TGGTCGCAGTACT-CAGACATAACATTTC
  ||||||||||   ||||||||  ||| | |  ||||||||| 

Figure 1.1: An example of global edit distance alignment. A dash symbol represents a gap. There are
5 insertions (green), 4 deletions (blue) and 3 mismatches (red) in the shown alignment. This alignment
is optimal but not unique. The edit distance is 5 + 4 + 3 = 12.

The pairwise approximate sequence alignment can be computed by dynamic programming
in O(n2) for two sequences of length n [16]. However, an algorithm faster than the worst-
case quadratic complexity is unknown and might be unlikely to exist. As proven in [3],
the optimal edit distance alignment between two sequences cannot be computed in time
O(n2−ε) for any ε > 0 unless the Strong Exponential Time Hypothesis (SETH) is false .
In the context of bioinformatics, where the sequence may consist of millions or billions of
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base pairs, the quadratic complexity in time and especially in space is often not practical.

Therefore many heuristics arise to speed up sequence alignment in practice, such as seed-
ing by minimizers [28, 29], maximal unique matches (MUMs) as in MUMmer [8, 9]. These
short alignments are not very informative on their own but can be extended to an align-
ment. Instead of computing alignments by extending from a single seed, we can also chain
several seeds, which leads to the co-linear chaining (CLC) problem.

In the CLC problem, the input is a set of anchors. An anchor is a matching pair of
intervals on each of the two sequences, and the anchor may have a weight. The goal is
to compute an ordered subset of anchors so that adjacent anchors satisfy some co-linear
conditions and the chain is optimal under some target evaluation function. For example,
we can look for the longest chain, where adjacent anchors have no overlaps, and both of
their intervals appear in increasing order. Depending on the various definitions of the co-
linear condition or the precedence relation and the target function, CLC is very flexible.
As shown in Figure 1.2, CLC can rule out anchors that cannot be chained with others if
overlapping is not allowed.

...GGTGGGGTTTCGGTTTGGTCGCAAACTTCGGTAACATTTA...

...TGGGGTTTCGCTGGTCGCAGTACGGTTTCGGTAACATTTC...

Figure 1.2: An example of co-linear chaining on two sequences. Each anchor is a matching pair of
intervals. The three anchors colored in red, greed and blue can be chained together in order. The yellow
anchor cannot be chained with any other anchor. Note that the blue anchor can extend to the left so it
is not maximal.

The advantage of CLC is that a CLC problem usually has efficient algorithms for the
optimal solutions under the definition, unlike other heuristic alignment strategies. The
chaining algorithm in [11] only requires O(N logN) time, where N is the number of an-
chors.

CLC can be easily extended to higher dimensions to support approximate multiple se-
quence alignment. An anchor is now a tuple of matching intervals on each sequence. Two
anchors to be chained together need to have all of their parts appearing in the order. For
k sequences, CLC can be solved in O(N logkN) time and O(N logk−1 N) space [23].

In addition, CLC can also be extended to the sequence-to-graph alignment with anchors



4

modified accordingly. On graphs, an anchor is a pair of a path on the graph, and an
interval on the sequence, indicating that the sequence of this path matches the interval
sequence.

1.2 Pan-Genome Graphs

As a natural extension of sequences, labelled graphs are widely used in bioinformatics such
as in genome assembly [2, 4] and error correction [30].

A pan-genome graph also called a variation graph, is a reference graph containing all
variants of a population, so that each path in the graph is a potential genome. Compared
to a single reference sequence, a pan-genome graph considers the variants between different
individuals. In addition, it enables the combinations of several variants at different sites
which do not necessarily appear in any of the sequences to build the graph, which further
increases the robustness. Another advantage of aligning sequences against graphs is the
efficiency. The sequences of interest usually are similar to each other, for example, the
genetic difference between individual humans is about 20 millions of base pairs, which
is about 0.6% of the total of 3.2 billion base pairs [6]. As a result, aligning against a
merged graph of these sequences can be hundreds of times faster than aligning against
each sequence separately. A variation graph in practice is usually a labelled DAG, which
is a directed labeled graph that has no cycles.

Aligning sequences against graphs is fundamental in applications utilizing graph represen-
tations. Similar to the sequence only cases, approximate matching under edit distance or
affine cost would be useful in practice. The algorithms to exact solution such as the bit-
parallel algorithm [26] extended from the sequence version [22], has a worst case complexity
of O(|V |+m|E|logw) for a general graph with |V | nodes and |E| edges and a sequence
of length m, or O(|V |+

⌈
m
w

⌉
|E|logw) for a DAG, where w is the word size of machine

(commonly 32 or 64). In areas other than bioinformatics, approximate sequence-to-graph
alignment also has broad applications and many solutions, such as in the hypertext search-
ing [24], but the scale of pan-genome graphs are usually too large for these algorithms to
be applied.
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Figure 1.3: A simple example of a variation graph. (a) The two linear graphs on the top represent
two sequences. (b) The two linear graphs can be merged into a variation graph. The merged graph is
a DAG, and its width is 2. (c) In practice, the graph may have a compact representation by merging
non-branching paths.

Therefore heuristics are widely used in practical applications of sequence-to-graph align-
ment. Techniques such as minimizers can extend to graphs by considering only the non-
branching regions. There are many softwares to build variation graphs, vg [12] for an
example. Figure 1.3 shows a variation graph built from two sequences. There are even
more aligners on graphs for various purposes, such as PaSGAL [15], GraphAligner [27], and
Astarix [13].

The co-linear chaining technique has also been proposed for sequence-to-graph alignment
as in [17]. The algorithm is designed for DAGs and needs the graph to be of small width.
Here the width of a DAG is defined as the minimum number of paths needed to cover all
nodes in the graph. Although pan-genome graphs may have billions of nodes, the width is
usually smaller. For example, a variation graph of chromosome 22 may have a width less
than 10. Table 1.1 shows widths of such variation graphs on human chromosomes, which
are built with whole genome sequencing (wgs) variants from Thousand Genomes project
phase 3 release [5], which consists of variants from 2504 individuals. For this specific set
of variants, the widths are all smaller than 10.
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chr nodes base pairs width chr nodes base pairs width
1 18,807,963 255,754,179 9 13 8,304,603 118,040,865 6
2 20,597,735 250,312,064 6 14 7,714,611 110,019,784 7
3 16,965,471 203,883,122 7 15 7,045,787 104,968,212 6
4 16,662,965 196,912,161 6 16 7,837,615 93,074,017 8
5 15,313,396 186,204,491 6 17 6,758,004 83,545,050 6
6 14,596,952 176,169,819 9 18 6,592,253 80,357,608 7
7 13,707,868 163,880,288 8 19 5,306,144 60,981,512 6
8 13,370,501 150,986,669 8 20 5,268,137 64,854,544 6
9 10,355,761 144,794,206 7 21 3,207,166 49,243,683 6
10 11,595,921 139,553,125 6 22 3,197,160 52,423,213 7
11 11,760,609 139,076,341 7 X 10,011,934 158,748,581 9
12 11,239,568 137,745,335 6 Y 184,003 59,435,025 2

Table 1.1: Statistics of our variation graphs on human genomes built with vg. The number of nodes is
from the compact representation where a non-branching path is merged as a single node. The number of
base pairs is identical to the number of nodes in the single-letter-labelled graph. All graphs have only one
connected component.

1.3 Sparse Dynamic Programming Framework

Although pan-genome graphs have a huge number of nodes, the width of the graph is
usually small. For a linear graph representing a single sequence, the width is 1. For a
variation graph built from k sequences, the width is at most k. In practice the width is
even smaller, as the number of variants in a single site is usually smaller than the number
of individuals in a population. As a result, for a graph with small width, some algorithms
may achieve an efficiency that is close to the sequence cases.

The sparse dynamic programming framework of [21] utilises this small-width property. If
the nodes of a DAG can be covered by k paths, the framework can extend some sequence
algorithms to graphs with a similar time complexity multiplied by just k. The framework
first computes a minimum path cover (MPC) of the graph, and builds an index of it. This
preprocessing step takes O(k|E|log |V |) time for a DAG of |V | nodes and |E| edges and
width k and is independent from the later dynamic programming algorithms for specific
problems. This MPC index can be computed once and stored. The framework then
maintains a data structure for each path in the MPC while processing nodes in topological
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order. Hence, problems such as the longest increasing subsequences (LIS), longest common
subsequences (LCS) on graphs and co-linear chaining without overlapping can be efficiently
solved.

1.4 Our Contributions

In the sparse dynamic programming framework of [21], the graph is required to be a DAG.
By slightly modifying the definition of co-linear chaining, we obtain an algorithm to accept
general graphs while maintaining the same efficiency under the same assumption that the
graph has a small width. Our algorithm solves the CLC problem on general graphs by
reducing it to a slightly modified CLC problem on DAGs, and then apply the sparse
dynamic programming framework. The new algorithm is discussed in Chapter 2.

We implement a version of the new algorithm on DAGs as a sequence-to-graph aligner
GraphChainer. The code is based on an existing state-of-the-art aligner GraphAligner

[27]. To reduce the alignment problem to co-linear chaining problem, we take short align-
ments from output of GraphAligner as anchors and connect the final chain to obtain an
alignment. The implemented pipeline is demonstrated in Chapter 3. GraphChainer is
freely available as an open source tool at https://github.com/algbio/GraphChainer.

We also evaluate GraphChainer in experiments and compare it with GraphAligner. Both
simulated data and real sequencing data are used. On all data sets, GraphChainer has
a significantly better alignment accuracy than GraphAligner assuming that smaller edit
distance indicates a more accurate alignment. As for time and space usage, the co-linear
chaining module takes only a small fraction of the overall aligning time, but the prepro-
cessing by GraphAligner to obtain anchors is already slower than direct aligning with
GraphAligner. The experiment design and results are included in Chapter 4.

Finally, we discuss the possible future development directions of our algorithm and im-
plentation in Chapter 5.

https://github.com/algbio/GraphChainer


2 Theoretical Results

We first focus on DAGs and discuss three definitions of co-linear chaining, where the
overlapping between anchor paths are strictly forbidden, or only allowed for one-node
overlapping, or allowed for all suffix-prefix overlapping.

Then we present a model for co-linear chaining problems in general and algorithms for the
above variants and propose an efficient sparse dynamic programming algorithm for the
one-node overlapping co-linear chaining. The algorithm is based on Algorithm 1 of [21]
which solves non-overlapping co-linear chaining. The key component in both algorithms
is the efficient computation of a minimum path cover and of an index on it, so a review
of this part is also included.

Finally, we analyze the co-linear chaining problem on general graphs, possibly with cycles,
and the correctness of applying the same algorithm on the one-node overlapping problem.

2.1 Definitions for Co-linear Chaining on Graphs

Given a directed graph G = (V,E), where V = {1, 2, . . . , |V |} is the set of vertices, and
E ⊂ V 2 is the set of edges, we use following notions:

• A walk in G is a sequence of nodes P = p1, p2, . . . , p|P | where for all i ∈ [1, |P |−1],
(pi, pi+1) ∈ E holds. In addition, we denote p1 by P.start and p|P | by P.end.

• We say that a node u ∈ V can reach another node v ∈ V if and only if there is a
walk from u to v.

• A path in G is a walk in G which does not visit the same node twice.

• A cycle in G is a path P = p1, p2, . . . , p|P | such that (p|P |, p1) ∈ E.

• If a directed graph has no cycles, then it is called a directed acyclic graph (DAG).
In a DAG, each walk is a path.

• An anchor is a pair (P, [x . . . y]) of a path and an interval, where P = p1, p2, . . . , p|P |

is a path in G, and [x . . . y] = {x, x + 1, . . . , y} is an interval of integer indices. We
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denote by A a given set of N = |A| anchors. We use A.P to indicate the path of
anchor A, and A.x, A.y for the interval endpoints of A.

• An anchor A precedes another anchor B if that A.x ≤ B.x ∧ A.y ≤ B.y and either
A.P.end can reach B.P.start or there is a suffix-prefix overlap between A.P and
B.P , i.e. there exists k > 0 that A.P.p|A.P |−k+i = B.P.pi holds for all 1 ≤ i ≤ k. We
denote this by A ≺ B.

• A chain is defined as an ordered sequence of anchors C = s1, s2, . . . , sp such that the
corresponding paths and intervals appears “from left to right”, or more formally, for
all i ∈ [1 . . . p− 1], si ≺ si+1.

The Graph Co-linear Chaining (GCLC) problem introduced as Problem 3 in [21] asks to
find a chain C = s1 . . . sp of a subset of the anchors A maximizing the number of elements
covered by the intervals in the chain, namely

Coverage(C) = |
p⋃
i=1

[si.x . . . si.y]|.

Instead of a max-coverage chain, we can also use other target functions such as the size of
the chain. More generally, as analyzed in [1], the problem of co-linear chaining function
should have the form of

Target(C) =
s∑
i=1

f(si) +
p−1∑
i=1

g(si, si+1),

where f(·) and g(·, ·) are some score functions. The algorithms searching for the optimal
chain will be the same as long as the target function is a sum of values that only depends
on one or two anchors locally, so that the optimal chain is always an extension of the
optimal subchains. The above Coverage(C) can be factored as f(s) = 0, g(s1, s2) =
s2.y −max{s1.y, s2.x− 1} plus an initial score s1.y − s1.x+ 1. For ease of discussion, we
focus on the max-coverage chain in the following sections.

Chaining Without Overlaps With the precedence defined with strictly no overlapping
anchors, we have the following problem:

Problem 1. (CLC without Overlaps) Given a labeled DAG G = (V,E), and N anchors
A1, A2, . . . , AN of the form (P, [x . . . y]) where P is a path on G, and x ≤ y are non-negative
integers, find an ordered subset C = s1 . . . sp of the anchors such that:



10

• for all 2 ≤ i ≤ p, it holds that si−1.y < si.y, si−1.P.end 6= si.P.start, and si−1.P.end

can reach si.P.start.

• C maximizes the coverage of intervals, that is, Coverage(C) = |⋃p
i=1[si.x . . . si.y]| is

maximized.

Figure 2.1 shows an example of the co-linear chaining problem. For Problem 1, A1A4A5 is
a valid chain, while A2A3 is not valid because of overlapping paths, and A2A5 is not valid
because their interval are not in order. A1 and A2 cannot be chained because A1.P.end

cannot reach A2.P.start.

A G T A G

T A

T T C T

A G

G C G

C

A1

A2

A3

A4

A5

C  A  G  T  A  A  G  G  C  T  A  G  T  T  G  T  T  C  T  A

Figure 2.1: An example of the co-linear chaining problem. Each pair of a path and an interval of the
same color indicates an anchor.

Chaining With Suffix-Prefix Overlaps Since in Problem 1 the intervals in the chain
can overlap in the sequence, allowing a similar overlap of the paths of selected anchors
might be preferred in some applications. Therefore, in addition to the above conditions
on the paths, two paths appear “in order” if some suffix of the first path is a prefix of the
second path. More formally, we have the following problem:

Problem 2. (CLC With Suffix-Prefix Overlaps) Given a labeled DAG G = (V,E), and N
anchors A1, A2, . . . , AN of the form (P, [x . . . y]) where P is a path on G, and x ≤ y are
non-negative integers, find an ordered subset C = s1 . . . sp such that:
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• for all 2 ≤ i ≤ p, it holds that si−1.y < si.y and that either

– si−1.P.end 6= si.P.start and si−1.P.end can reach si.P.start, or

– there exists L ∈ [1 . . .min{|si−1.P |, |si.P |}], such that for all 1 ≤ j ≤ L,
si−1.P.p|si−1.P |−L+j = si.P.pj.

• C maximizes the coverage of intervals, that is, Coverage(C) = |⋃p
i=1[si.x . . . si.y]| is

maximized.

This is a more general co-linear chaining definition compared to the non-overlapping one,
and it can extend to the graphs with cycles easily. In Figure 2.1, under the definition of
Problem 2, A2A3 is now a valid chain.

However, the suffix-prefix overlaps are more difficult to check for two given paths. In [21]
it takes additional time O(L log2 |V |) or O(L+ #overlaps) where L = ∑

i|Ai.P | is sum of
anchor path lengths and #overlaps is the number of overlaps between the input paths.
So we give another definition of co-linear chaining that is general enough for the later
extension on graphs with cycles, but still has an efficient solution.

Chaining With One-node Overlaps The most basic overlapping case is when the
two paths share exactly one node. This is equivalent to allowing node u to reach u itself.

Problem 3. (CLC with One-node Overlaps) Given a labeled DAG G = (V,E), and N
anchors A1, A2, . . . , AN of the form (P, [x . . . y]) where P is a path on G, and x ≤ y are
non-negative integers, find an ordered subset C = s1 . . . sp such that:

• for all 2 ≤ i ≤ p, it holds that si−1.y < si.y that either si−1.P.end = si.P.start or
si−1.P.end can reach si.P.start.

• S maximizes the coverage of intervals, that is, Coverage(C) = |⋃p
i=1[si.x . . . si.y]| is

maximized.

2.2 Algorithms

We first review the algorithm to compute the minimum path cover index from [21] which
solves our Problem 1 and 2 and then propose our algorithm for solving Problem 3.
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2.2.1 Minimum Path Cover

A path cover of a graph G = (V,E) is a set of paths that each node u ∈ V is included
in at least one path in the set. A minimum path cover (MPC) is a path cover with the
smallest number of paths. The width of a graph is the size of its minimum path cover.

To solve the minimum path cover on DAGs, we can reduce the problem to a lower-bounded
network flow problem [25]. First, we construct a new graph G′ = (V ′, E ′). A source S
and a sink T are added to V ′. We split each node u ∈ V into two nodes uin and uout that
are added to V ′. So V ′ = {S, T} ∪ {uin, uout|u ∈ V } where S and T are two new nodes.
For each edge (u, v) ∈ E we add edge (uout, vin) to E ′. In addition, we add (uin, uout)
and (S, uin), (uout, T ) for all u ∈ V . All edges have infinite capacity. Figure 2.2 shows an
example DAG with 5 nodes.

There is a mapping between a set of paths on G and a flow on G′. On the one hand, each
path in G is mapped to a path in G′ from S to T following the same nodes. In the other
direction, each flow can be decomposed into a set of several paths from S to T which each
has a unique path in G with the same nodes.

A flow that is at least one for all edges (uin, uout) clearly maps to a path cover in G. By
requiring a lower bound of 1 on these edges, a minimum flow on G′ gives a minimum
path cover on G. This is a well-studied problem that can be reduced to the basic max
flow problem by shrinking from a satisfying flow. Such flow always exists as there is
always path covers on G with |V | single-node paths. In addition, the time complexity is
proportional to the amount of flow shrinks. We can first compute a greedy path cover by
iteratively selecting a path that covers the most uncovered nodes. If the width of G is k,
it was proved that the greedy path cover has O(k log |V |) paths [21]. Therefore, the entire
shrinking procedure takes O((k log |V | − k)|E|) = O(k|E|log |V |) time.

Given a path cover P of size k, where P = P1, P2, . . . , Pk, the set of nodes that can reach
a given node u is the union of nodes on each path that can reach u and on each path
such nodes form a prefix of the path. Therefore, as in [21] we can efficiently find this
set by precomputing the array last2reach[i, u], defined as the last node on path Pi other
than u that can reach u, or ∅ if no such node exists. Further, we compute a reversed set
forward[u] for all u ∈ V such that (v, i) ∈ forward[u] if and only if last2reach[i, v] = u.
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Figure 2.2: A example of the reduction from G to G′. (a) The original DAG of 5 nodes. For clarity we
use V = {a, b, c, d, e} instead of integers. (b) The new graph G′. Green edges have a requirement on the
flow of a lower bound of 1, and all other edges have no limits.

2.2.2 Sparse Co-linear Chaining

We propose a new algorithm for solving Problem 3 on a DAG of small width. It is similar
to Algorithm 1 in [21]. Both algorithms require a path cover index built on the DAG, and
process the nodes in topological order. While Algorithm 1 solves Problem 1 that requires
strictly non-overlapping paths, the new algorithm solves Problem 3 by explicitly adding
the one-node overlapping updates in the dynamic programming.

The algorithm computes an array C[1 . . . N ] so that C[i] is the maximum coverage of
chains that has the anchor Ai as the last anchor and consists of only anchors Aj that
j < i. The previous algorithm, for each node in topological order, first updates the index
structure on each path with all the anchors whose paths end at the current node, then
updates all the anchors whose paths start from a node that is “one step” from the current
node by following the forward links from the path cover index.
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The index structure needs to maintain a set in the form of D = {(xi, ci) | 1 ≤ i ≤ |D|}
and to support two operations:

• D.update(x, c) adds a new pair (x, c) to the set D.

• D.RMaxQ(l, r) returns the maximum ci of all pairs in D with xi in the range [l, r],
that is, D.RMaxQ(l, r) := max{ci | (xi, ci) ∈ D ∧ l ≤ xi ≤ r}.

There are many efficient data structures for this purpose. For example, it is sufficient to
use a balanced binary search tree with a worst-case time complexity O(log |D|) for each
operation, as shown in Chapter 3 of [20].

The one-node overlapping has tricky cases where the above dynamic programming order
no longer works. Several anchors with a single-node path on the same nodes, can update
each other’s C[] array values in an interweaving way. We can sort these anchors first
by their sequence interval ending positions, and process one anchor at a time by first
updating its C[i] and then inserting this value into the data structure. In addition, we
include the anchors with a path starting or ending at the current node as well. We show
the pseudo-code of this algorithm in Algorithm 1.

In the new algorithm, we still process nodes one by one in topological order. Initially we
set C[j] := A[j].y−A[j].x+ 1 which is the Coverage(A[j]) for a single-anchor chain. Also
we initialize two index structures Ti and Ii for each path Pi in the path cover. For each
node v, we first consider the one-node overlapping cases. We find all anchors Ai that has
either Ai.P.start = v or Ai.P.end = v and sort them in the order of increasing Ai.y. Two
temporary index structures TmpT and TmpI are initialized. For each of these anchors, if
Ai.P.start = v then C[i] is updated with values in TmpT and TmpI, and if Ai.P.end = v

we add its value C[i] to TmpT and TmpI. Note that for an anchor Ai, it is possible that
Ai.P.start = Ai.P.end = v so that C[i] is immediately added to the index structures after
it is updated. After all of these anchors processed, we follow the same steps in the previous
algorithm: add the value C[i] of each anchor Ai with Ai.P.end = v to all index structures
Ti and Ii if path Pi contains v, then compute C[i] for all anchors Ai that Ai.P.start occurs
in the forward links of v.
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Algorithm 1: Co-linear Chaining on DAG using path cover
Input: DAG G = (V,E), a path cover P = P1, . . . , Pk of G, Anchors

A = {A[1], . . . , A[N ]}
Output: index j giving max C[j]

1 for i← 1 to l do
2 Ti.initialize();
3 Ii.initialize();

4 for j ← 1 to N do
5 C[j] = A[j].y − A[j].x+ 1;
6 start[A[j].P.start].push(j);
7 end[A[j].P.end].push(j);

8 for v ∈ V in topological order do
9 TmpT.initialize(); TmpI.initialize();

10 for j ∈ end[v]∪start[v] in the order of increasing y do
11 if A[j].P.start == v then
12 Ca[j]← max(Ca[j], A[j].y − A[j].x+ 1 + TmpT.RMaxQ(0, A[j].x− 1));
13 Cb[j]← max(Cb[j], A[j].y + TmpI.RMaxQ(A[j].x, A[j].y));
14 C[j]← max(C[j], Ca[j], Cb[j]);

15 if A[j].P.end == v then
16 TmpT.update(A[j].y, C[j]);
17 TmpI.update(A[j].y, C[j]− A[j].y);

18 for j ∈ end[v] do
19 for i ∈ paths[v] do
20 Ti.update(A[j].y, C[j]);
21 Ii.update(A[j].y, C[j]− A[j].y);

22 for (u, i) ∈ forward[v] do
23 for j ∈ start[u] do
24 Ca[j]← max(Ca[j], A[j].y − A[j].x+ 1 + Ti.RMaxQ(0, A[j].x− 1));
25 Cb[j]← max(Cb[j], A[j].y + Ii.RMaxQ(A[j].x, A[j].y));
26 C[j]← max(C[j], Ca[j], Cb[j]);

27 return argmaxjC[j]
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2.2.3 Proof of Correctness

Assume that the anchors A[1] . . . A[n] are sorted so that we assume the endpoints of
A[1].P, A[2].P, . . . , A[N ].P are in topological order, breaking ties by smaller A[i].y first.
Therefore any valid chain will be a subsequence of A[1] . . . A[N ] in the same order. We
denote by C[j] the maximum coverage using the anchor A[j] as the last anchor in the
chain and using only a subset of anchors A[1] . . . A[j]. There are 3 cases for computing
C[j].

(a) There is more than one anchor in the chain, and the intervals of the last two anchors
have no overlap.

(b) There is more than one anchor in the chain, and the intervals of the last two anchors
have non-empty overlap.

(c) A[j] is the only anchor in the chain.

So the recursion for C[j] is:

C[j] = max


C[j′] + A[j].y−A[j].x+1 ∀1 ≤ j′ < j,A[j′].y < A[j].x ∧ A[j′] ≺ A[j] (a)

C[j′]+A[j].y−A[j′].y ∀1 ≤ j′ < j,A[j].x ≤ A[j′].y ∧ A[j′] ≺ A[j] (b)

A[j].y−A[j].x+1 (c)

Note that in case (b) if A[j].x < A[j′].x, i.e. the interval of A[j′] contained in the interval
of A[j], the coverage is computed incorrectly, but it is not better than the chain that has
no A[j′] and thus fixed by the another chain that is computed correctly.

Denote the intermediate value for case (a) by Ca[j] and for case (b) by Cb[j]. By our def-
inition, an anchor A[j′] can contribute to C[j] only if A[j′].y < A[j].y and A[j′].P.end can
reach A[j].P.start. Denote by R−(u) the set of nodes that can reach node u, including node
u itself. Then A[j′] ≺ A[j] if and only if A[j′].y < A[j].y ∧A[j′].P.end ∈ R−(A[j].P.start)

Given a path cover of size K: P1, . . . PK , and the array last2reach[u, i] and forward[i],
define R−i (u) as the set of nodes on Pi that can reach u, including u itself. For any node
u, we have that

R−(u) =
⋃

1≤i≤K
R−i (last2reach[u, i]) ∪ {u}.

Therefore, Ca[j] can also be computed by combining results from all the paths, and the
additional updates from node A[j].P.start.
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Also define

Ca
i [j] =max{C[j′] + A[j].y − A[j′].y | A[j′].P.end ∈ R−i (last2reach[A[j].P.start, i])

∧A[j′].y < A[j].x }

Ca
u[j] = max{C[j′] + A[j].y − A[j′].y | A[j′].P.end = A[j].P.start ∧ A[j′].y < A[j].x }

where Ca
i [j] is the updates from path Pi and anchors with a path that are not overlapping

with anchor A[j], and Ca
u[j] is the update from anchors that has one-node overlaps with

A[j]. Then
Ca[j] = max{ max

1≤i≤K
Ca
i [j], Ca

u[j]}.

And similarly we can define Cb
i [j] and Cb

u[j].

We prove the correctness by induction. Assume that after the first M nodes V isited =
{v[1] . . . v[M ]} in topological order are processed, C[j] should be computed with the correct
values if A[j].P.start ∈ V isited, and the array Ca[j] and Cb[j] holds that

Ca[j] = max{Ca
i [j] | last2reach[A[j].P.start, i] ∈ V isited}

Cb[j] = max{Cb
i [j] | last2reach[A[j].P.start, i] ∈ V isited}

and Ti contains {(A[j].y, C[j]) | A[j].P.end ∈ V isited ∩ Pi}, Ii contains {(A[j].y, C[j] −
A[j].y) | A[j].P.end ∈ V isited ∩ Pi}.

This is trivially true for M = 0 when V isited = ∅. Suppose that the assumption is true
for M ≥ 0, and now v[M + 1] = u. For all paths i, last2reach[u, i] should be visited if
exists, so Ca[j] = max{Ca

i [j]}.

First we prove that C[j] are computed correctly if A[j].P.start = u. For all 1 ≤ i ≤ K we
have last2reach[u, i] ∈ V isited so Ca[j] holds the max{Ca

i [j] | 1 ≤ i ≤ K}. Suppose the
anchors in end[u]∪start[u] are sorted as j1, . . . jW , we have Ca

u[jk] = max{C[jk′ ]+A[j].y−
A[j].x+ 1 | 1 ≤ k′ < k ∧A[jk′ ].y < A[jk].x} for k ∈ [1 . . .W ]. In the first inner loop, when
the first k anchors are processed, their values are added to the temporary search trees,
and Ca

u[jk] can be computed with range maximum query, then Ca[jk] is computed and can
be added to the trees. The proof for Cb[j] is similar.

Then the search trees Ti and Ii are updated as stated in the assumption, to include the
values of anchor A[j] if A[j].P.end = u and Pi contains node u.

Finally, we prove that the related Ca
i [j] are computed as in the assumption. For an

anchor A[j], the value Ca[j] remains the same if u 6= last2reach[A[j].P.start, i] for all
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i ∈ [1 . . . K]. Otherwise if u = last2reach[A[j].P.start, i] for some anchor A[j] and Pi,
we have exactly all the anchors with end points from R−i (u) added to the search tree Ti,
so a range maximum query on range [0, A[j].x− 1] gives Ca

i [j]. By following the forward
links, the array Ca[j] for all anchors j where u 6= last2reach[A[j].P.start, i] for some Pi,
is updated with Ca

i [j].

Therefore, the assumption holds for M +1. After the main loop in the algorithm, we have
V isited = V and C[j] has the right values for all anchors. maxC[j] gives the maximum
coverage of all the chains.

2.2.4 Time Complexity

The minimium path cover can be computed as in [21] with time complexity O(k|E|log |V |),
where k is width of graph. In the dynamic programming part, each anchor will insert at
most one point in each data structure. The peak size of these data structures is therefore
N , so each insertion or range maximum query can be done in O(logN) with balanced
search tree. Each C[i] is updated at most once from each data structure, so the total
number of range maximum queries is at most (2k + 2)N . Therefore the algorithm takes
O(k|E|log|V |+kN logN) time which is the same as in the non-overlappint case in [21].

2.3 Co-linear Chaining on Graphs with Cycles

With a more general definition of precedence, we can define the co-linear chaining problems
similarly on graphs with cycles. The motivation of co-linear chaining is to recover a long
match by chaining a set of short matches in order. Two anchors can be chained if there is
a long match containing both of the anchors and they appear in it in order. For the DAG
case, a match is between a path and a sequence. When the graph has cycles, walks and
paths can be different, since a walk might contain some node multiple times, leading to
a confusing definition of “overlapping”. For example, given two different nodes u, v ∈ V
such that u can reach v, if the graph is a DAG, this implies that every path ending at
u has no common nodes with any path starting at v and that the paths ending at u are
“before” paths starting at v. But when the graph is just a cycle of all nodes, v can also
reach u, and any path appears “before” another path including itself. So we look for a
relaxation of the precedence relationship.
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2.3.1 Relaxation of Precedence

In the relation A.P ≺ B.P we remove the condition that “A.P and B.P have no common
nodes” and simply require that “A.P.end = B.P.start or A.P.end can reach B.P.start”.
The case when A.P and B.P have a suffix-prefix overlap is similar to the case when
they have no common nodes. Suppose A.P.end can reach B.P.start, there is a walk
that contains A.P and B.P in order as two disjoint parts. With this new definition for
A.P ≺ B.P we obtain the co-linear chaining problem on general graphs:

Problem 4. (CLC with One-node Overlaps On General Graphs) Given a labeled graph
G = (V,E), and N anchors of the form (P, [x . . . y]) where P is a walk on G, and x ≤ y

are non-negative integers, find an ordered subset C = s1 . . . sp such that:

• for all 2 ≤ i ≤ p, it holds that si−1.y < si.y and si−1.P ≺ si.P , that si−1.P.end =
si.P.start or si−1.P.end can reach si.P.start.

• S maximizes the coverage, that is, Coverage(C) = |⋃p
i=1[si.x . . . si.y]| is maximized.

2.3.2 Reduction to DAGs

A straightforward solution for Problem 4 is to consider a reduction to Problem 3 on DAG.
Here we take the condensation of a graph, which is a DAG, and discuss how to apply the
algorithm for Problem 4.

Consider the condensation or strongly connected components graph Gc = (Vc, Ec) of a
graph G possibly with cycles. A strongly connected component is a set of nodes S =
{v1, v2, . . . , v|S|} such that any u ∈ S can reach any v ∈ S, and is maximal with this
property. In particular, a set of just one node is a strongly connected component, and so
is a cycle. Each node u is in the same component with all the nodes that are reachable
from u and can reach u. This component is represented as a single node in Vc. Let the
mapping S : V → Vc mas the node u from G to its component node in Gc. Furthermore,
for a walk P = p1, p2, . . . , p|P |, let S(P ) be the walk S(P ) = S(p1), S(p2), . . . , S(p|P |) and
remove adjacent duplicate nodes. S(P ) is a walk on the DAG Gc so it is a path with no
duplicate nodes.

Gc will be a DAG with a width smaller or equal to the width of G. This is because any
path cover P = P1, P2, . . . , Pk of G gives a path cover S(P) = S(P1), S(P2), . . . , S(Pk) on
Gc of size k.
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Figure 2.3: An example of the reduction to DAGs. (a) The original graph and 5 anchors. Only the path
of each anchor is shown, since the intervals are not affected. (b) The reduced DAG and mapped anchors.

Figure 2.3 shows an example reduction from a graph with cycles to a DAG. There are 3
strongly connected components with more than one node and two single-node components.
After reduction, many anchors now have one-node overlaps with each other (e.g. A′1 and
A′2, A′3 and A′5). In addition, anchor A′1 and A′5 now have only one node in their paths.
A1A2 is a valid chain without overlaps, while A′1A′2 has an one-node overlap.

To apply the sparse dynamic programming algorithm for solving non-overlapping co-linear
chaining on this DAG Gc, we need to modify it for anchors that overlap within the same
strongly connected component. For anchors with a path completely included in one com-
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ponent, any two of them can be chained if their intervals allow. For two anchors that have
a suffix-prefix overlap of a single node, they can also be chained.

Given N anchors A = {A[1], . . . , A[N ]}, we map them to A′ = {A′[1], . . . , A′[N ]} where
A′[i].P = S(A[i].P ). This gives an instance of Problem 3 with A′ and Gc.

Now we need to prove that the maximum-coverage chain C ′ = A′[i1], A′[i2], . . . , A′[i|C′|] of
A′ on Gc gives also a maximum-coverage chain C = A[i1], A[i2], . . . , A[i|C|] for G. To do
this, we prove that C is a chain on G if and only if C ′ is a chain on Gc.

For two anchors A,B ∈ A, we prove that A can be chained before B if and only if A′

can be chained before B′. The condition that A.y < B.y holds since A′.y = A.y and
B′.y = B.y. If A.P.end = B.P.start or A.P.end can reach A.P.start, with the above
mapping S, we have that A′.P.end = S(A.P.end) and B′.P.start = S(B.P.start) so either
A′.P.end = B′.P.start (A.P.end and B.P.start are in the same component) or A′.P.end
can reach A′.P.start (A.P.end and B.P.start are not in the same component). In the other
direction, if A′.P.end = B′.P.start or A′.P.end can reach A′.P.start, there is a walk W
in G from some node u to node v that S(u) = S(A.P.end) and S(v) = S(B.P.start). So
there is a walk L from A.P.end to u, and a walk R from B.P.start to v. The concatenation
of L,W,R is a walk from A.P.end to B.P.start so A can be chained before B. Therefore
there is a bijection between the chains on G with A and on Gc with A′, and the maximum-
coverage chain on Gc gives the optimal chain on G.

Note that the same proof does not work if one-node overlapping is not allowed. A pair
of anchors that can be chained without common nodes might have a one-node overlap in
Gc if the nodes are in the same strongly component in G. So there is no such bijection
between chains on G and on Gc unless we allow one-node overlapping.



3 Implementation into a Pan-Genomic
Graph Aligner

We present here how the co-linear chaining algorithms are implemented efficiently on DAGs
and how they are applied in sequence-to-graph alignment. The pipeline is described with
technical details, in the hope that one can reproduce the experimental results from Chapter
4 reliably, and that as a software in practice, the internal mechanism is as transparent as
possible. Therefore, one can use our implementation directly or modify the code easily
whenever necessary.

Although the algorithm can be applied on graphs with cycles, we implemented it only
on DAGs. One reason is that the reduction from general graphs to DAGs is relatively
independent from the co-linear chaining problem on DAGs. Another reason is that all the
variation graphs created by vg in our experiments are DAGs. One can easily modify the
implementation to work on graphs with cycles by adding the reduction procedures.

First, in Section 3.1 we describe the application scenario where an erroneous long read is
being aligned to a pre-built pan-genome reference graph. The pipeline is demonstrated
briefly. Then in Section 3.2 the necessary steps to prepare the input graph are listed,
together with the pre-processing needed to extract anchors from the long read, and the
procedures to build a minimum path cover index with an efficient maxflow solver. In
Section 3.3 we show the implementation details of the algorithm solving the one-node
overlapping co-linear chaining problem described in Chapter 2 Problem 3, and review a
method to support dynamic range maximum queries on a balanced binary search tree.
Finally, in Section 3.4 we demonstrate the method to convert a chain of anchors to an
alignment between the input read and a matching path on the graph with the help of
edlib [31].

3.1 Overview

One of the most common applications in pan-genome graphs is aligning a read sequence
against a reference graph. The task is to find a path of the graph, such that its con-
catenation of node labels has a small edit distance to the input read, or to its reverse
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complement. Both the sequence and the graph may have ambiguous characters such as N
that can match multiple characters from ACGT. In particular, a long read, such as the ones
produced from third-generation sequencing, is difficult to align due to its length and high
error rate. For example, one long read may have 10k to 40k base pairs, which can exceed
100 times the length of short reads. In addition, the previous algorithms and techniques
for short reads might not be directly applicable to long reads because of the high error
rate. The error rate of these long reads is usually around 15%, which is much higher than
that of short reads (about 0.1% for Illumina). As a result, it means that the edit distance
between the long read and the original ground truth sequence can easily reach 6000. Based
on observation, these errors (insertion, deletion and mismatch) in a read are not uniformly
distributed, but appear in a pattern of small clusters. So techniques such as seeding with
the minimizer scheme may still work well when some continuous parts in the long reads
have a relatively small number of errors. One can extend the seed-and-grow strategy from
sequence-to-sequence alignment to obtain a long read sequence-to-graph aligner, such as
GraphAligner [27].

However, there are two drawbacks to the direct adoption of extension algorithms on long
reads. One is that the seeds may be clustered in several regions of the graph and are
separated in distance. Extending from one seed through the erroneous zone to reach the
next relatively accurate region is hard. Hence, for a long read, such aligner may find
several short alignments covering different parts of the read, but not a long alignment of
the entire read. On the other hand, a short part may have many falsely aligned fragments
that are not interesting for the alignment of the long read. If the sequence is randomly
generated, there is always a small chance to have duplication paths on the graph with
the same labels accidentally. Furthermore, in genome sequences, some chromosomes share
some sequences with other chromosomes.

So, among the many short alignments, one can connect a subset of them to form a long
alignment. This is where co-linear chaining can be applied.

Pipeline The co-linear chaining aligner pipeline is shown in Figure 3.1.

Our idea is to split one long read into many short ones, covering the entire read, and
we search for alignments of these short reads using other tools. Then we take all these
alignments as anchors and compute the max coverage chain. This chain is a sequence
of matching pairs of a path on the graph and an interval in the long read, and by our
definition of co-linear chaining, we can connect these paths to form a long path. The
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intervals are also merged as one. To connect one path to another, we perform a breadth-
first search (BFS) from the ending node of the first path to reach the starting node of the
second path. This connected path from BFS is not optimal as an alignment, but already
yields good alignments for the long read.

At last, we search an alignment between the long path and the long read and map it back
to a sequence-to-graph alignment. This sequence-to-sequence edit distance alignment task
is well-studied and has many efficient tools. We use edlib [31] with the global edit distance
setting, and pass an additional matching matrix to allow ambiguous characters.

3.2 Pre-processing for Co-linear Chaining

The input for a sequence-to-graph aligner is a graph and a set of read sequences. For
the co-linear chaining with sparse dynamic programming, the inputs are a pan-genome
graph, a set of anchors and a minimum path cover index. The MPC index only needs to
be built once for the same graph, and can be stored on disk together with the graph file.
To use GraphAligner correctly for anchor preparation, the input graph has to satisfy a
few conditions.

Pan-Genome Graph Although the graph is given as input to the aligner, we require
that the graph is a directed acyclic graph. This is naturally satisfied for variation graphs
produced by vg from a reference sequence plus a set of variants in Variant Call Format
(.vcf). As shown in Chapter 2, by computing the condensation of a graph with cycles,
the algorithm can solve the co-linear chaining problem on general graphs. However, it is
rare to find such graphs that are large enough that co-linear chaining on general graphs
is necessary in the context of pan-genome graphs.

Furthermore, to let GraphAligner work properly, the nodes in non-branching regions
should be merged into a single node with a label obtained by concatenating all node
labels. This is because GraphAligner searches for seeds that are completely contained in
one node label only. Tools such as vg construct might split long node labels into 32-
base-pair chunks and cause very few seeds reported by GraphAligner. Once the graph is
loaded inside GraphAligner, the long node labels are split into shorter nodes in a similar
manner. In our implementation, we consider the split node that might have a node label
longer than 1 base pair as if they are just nodes described in Chapter 2. As a result, a
one-node overlap can be in fact a short suffix-prefix overlap. This fine for our applications,
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         Output the Alignment with Smaller Global Edit Distance

Parameters

PacBio Long Read (.fastq or .fasta)
ACGTCACGTACGTACGTAGCTACGTTAA

Split

Short Read #1
ACGTCA

Short Read #2
CGTACGT

Short Read #M
ACGTTAA

GraphAligner

Co-linear Chaining

Chain of Anchors

Connecting BFS

Path in Graph &
Interval on Long Read

Edlib

Anchor #1

Anchor #2

Short Read #3
ACGTAGCT

GraphAligner GraphAligner

Anchor #3

GraphAligner

Anchor #N-2

Anchor #N-1

Anchor #N

No Alignment

PanGenome Graph (.vg)

Vg Toolkit

Genome Reference Sequence (.fa) Variants Calling File (.vcf)

Co-linear Chaining
Alignment (.gam)

Split Length

Split Interval

Parameter

Gap Limit

GraphAligner
Alignment (.gam)

GraphAligner

Figure 3.1: The pipeline of our long read aligner with co-linear chaining. GraphAligner, vg and edlib
are used as tools. Although GraphAligner is drawn as an external tool in the chart, in the final software
the pipeline is intensively integrated with GraphAligner.
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since the default parameter 32 is much smaller compared to the read lengths and most
nodes have shorter labels.

The graph can contain ambiguous characters such as N. When such are characters present,
GraphAligner will ignore them when searching for seeds as if the node labels are split
before and after these ambiguous ones.

Anchors To obtain anchors, we split and align the long read with GraphAligner. The
input read sequence is partitioned into short reads of L base pairs each. Then we run
GraphAligner for each short reads separately. For each alignment reported for each short
read, we extract the path of this alignment, and the original interval in the long read of
this split, to form an anchor. Here length L of each short read is defined as a parameter
colinear-split-len.

This method might miss some good short alignments crossing the splitting points between
short reads. So we also give a parameter colinear-split-gap or S to indicate the step
size, which is the number of base pairs between the starting positions of adjacent short
reads. By default S = L and the short reads forms 1x coverage of the long read. When
S is smaller, more anchors may be reported since more short reads are created. This may
drastically increase the pre-processing time for computing anchors, but we only observed
a tiny improvement in final alignment quality.

MPC Index Here we implement the algorithm to compute a minimum path cover as
described in [21]. The graph is not necessarily connected. When the graph has m con-
nected components G1 = (V1, E1), G2 = (V2, E2), . . . , Gm = (Vm, Em), each with widths
k1, k2, . . . , km, the width of the entire graph is ∑

1≤i≤m
ki, which can be relatively huge. Since

both the co-linear chaining and the aligning are independent within each connected com-
ponent, we can build the MPC index for each component separately, and partition the an-
chors based on which component the anchor path belongs to. The time spent is the sum of
time for building the MPC index for each component separately, i.e. O( ∑

1≤i≤m
ki|Ei|log |Vi|).

This essentially reduces the complexity from O( ∑
1≤i≤m

ki|E|log |V |) to O( max
1≤i≤m

ki|E|log |V |)
because

O(
∑

1≤i≤m
ki|Ei|log |Vi|) ≤ O(( max

1≤i≤m
ki

∑
1≤i≤m

|Ei|log |V |) = O( max
1≤i≤m

ki|E|log |V |).

In addition, since the sequence can be matched in the reverse complemented form, the
graph is first copied once to build a reverse complement graph, where each edge is re-
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versed, and node labels are also changed. Merging this copy and the original graph will
double the width. With the above optimization with connected components, this issue is
automatically addressed.

Computing Greedy Path Cover The minimum path cover is computed in two stages.
First we find a greedy path cover, as shown in Algorithm 2, by iteratively adding one path
that covers the most number of uncovered nodes. In each iteration, the graph is scanned
in topological order. For node v we update maxcover[v] with the maximum number of
uncovered nodes in a path that ends at v, and pre[v] records which node is the previous
one in that path. At last, a path traced back from argmaxv maxcover[v] is added to
current collection of paths. Uncovered nodes in this path are marked. We keep track of
total number of covered nodes, and iterate until all nodes are covered.

Shrinking to Minimum Path Cover The second step is to shrink the above path
cover to a minimum one. This is done by converting the path cover to a flow on the split
graph. Then this minimum flow problem on a graph where each edge has only lower bounds
is converted to a standard maximum flow problem with only upper capacity bounds. The
maxflow here is exactly the maximum number of paths that can be removed from the path
cover. In the residual network, we can factor the flow left back to a path cover which is
minimum.

To address the memory issue, we implemented a simple maxflow solver to avoid copying
the pan-genome graph. The solver uses Dinic’s algorithm [10] with a few optimizations.

Although the computation of minimum path cover can be paralleled by covering each
connected component separately and simultaneously, this is not implemented since the
current solver is already fast enough in a single thread, and most of our test graphs have
only one connected component (or two if the reverse complement graph counts).

Index Array We compute the MPC index slightly different from [21]. The index stores
two parts the are necessary to stay in resident memory to support the later sparse dynamic
programming framework. One is path[v] which is a list for each node v ∈ V containing
the index of paths that contain v. Another is backwards[v], similar to the forward links
but is a list of pairs (u, k) to indicate that u is the last node on path Pk that can reach v.
Both of these two arrays are computed separately for each connected component and its
minimum path cover.
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Algorithm 2: Greedy path cover
Input: Graph G = (V,E)
Output: A greedy path cover P = P1 . . . PK (where K is not necessarily minimum

but within O(k log|V |))
1 path_cover ← ∅;
2 covered_count← 0;
3 for j ← 1 to |V | do
4 covered[j]← 0;

5 while covered_count < |V | do
6 for j ← 1 to N do
7 maxcover[j]← 0;
8 pre[j]← None;

9 for v ∈ V in topological order do
10 if covered[v] == 0 then
11 maxcover[v]← maxcover[v] + 1;

12 for (v, u) ∈ E do
13 if maxcover[u] < maxcover[v] then
14 maxcover[u]← maxcover[v];
15 pre[u]← v;

16 T ← argmaxv maxcover[v];
17 path← ∅;
18 while covered_count < |V | do
19 if covered[T ] == 0 then
20 covered_count← covered_count+ 1;
21 covered[T ]← 1;

22 path← {T} ∪ path;
23 T ← pre[T ];

24 path_cover ← path_cover ∪ {path};

25 return path_cover
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3.3 Implementation of Co-linear Chaining

When implementing Algorithm 1, a key difference is that in practice, even the long read is
very short compared to the entire pan-genome graph. Therefore some operations are more
expensive than their theoretical complexity. For example, the for loop that enumerates
node in topological order will take O(|V |) even as an empty loop. In fact the algorithm
only cares about nodes where start[v] and end[v] are not empty, or some (u, k) in the
forward links of v has non-empty start[u]. These are essentially O(N) nodes which is
much smaller in practice.

Therefore we first compute the topological order as part of the index, along with the index
in it for each node. When given a set of anchors, we extract all the start and end nodes
in anchors, and nodes whose forward links reach some starts, which are exactly those in
the array backwards[v]. Then we sort these nodes according to their appearance order
in the precomputed topological order.

Data Structure There is a similar issue with data structures supporting range maxi-
mum queries. Some simple choices for such data structure such as segment tree [7] will
take a huge amount of memory that is proportional to the maximum range of the anchor
intervals, which can be |V |. Especially when running co-linear chaining for a set of reads
in parallel, a 30-core machine might need space as big as 30× |V |×k.

Our choice is a balanced binary search tree. The one used here is treap, but the method
to support range maximum queries can extend to any binary search trees as in [20]. Here
the key for each insertion is a structure such as (x, (c, j)) where x is key in the search tree,
c is the main value to compare with during range maximum queries, and j is the index
of the previous anchors for tracebacks. For each node in the binary search tree, we store
the (key, value) pair and also a max = (maxc,maxj) which is the maximum value in the
subtree rooted at this node. This can be maintained in each insertion and self-balancing
rotations. For a range maximum query at (l, r), we search for l and r simultaneously and
record a temporary maximum value of the nodes and sub-tree max that fall between l

and r. The size of a single binary search tree is only proportional to the distinct value of
inserted keys, which is only possibly A[j].y for some anchor A[j]. Although each split short
read may have many anchors and thus the total number of anchors N may be large, the
total number of distinct y where the splits end is much smaller. Hence the data structure
is extremely space-efficient and enables parallel execution of this pipeline.
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3.4 Transforming a Chain to an Alignment

The above algorithm only returns a chain with maximum coverage, which is an ordered
list of anchors, but not an alignment between the sequence and the graph yet. Suppose
the chain obtained is C = A1, A2, . . . , Ap; we need to find a path on the graph from
Ai.end to Ai+1.start for each 1 ≤ i ≤ p − 1. In addition, we wish that the long path
formed by the paths of the anchors and these connecting paths has a small edit distance
with the read sequence. Ideally, we can use something similar to bit-parallel algorithms
on graphs to extend from one end on the graph until the other end is reached, but the
readily available tools in GraphAligner only provides a single-direction extension, and
implementing such tool with both efficiency and alignment quality might be well beyond
the focus of co-linear chaining algorithms. Besides, the extension may find paths that are
optimal connecting adjacent anchors, but anchors themselves are already not optimal. The
final long path cannot match the read sequence well if the anchors have poor qualities, even
if the connecting paths are unnecessarily optimal. In addition, the need to connect these
parts originates from the lack of anchors in the region that can be chained, which likely
indicates this region has a high error rate in the read. Searching for optimal alignments
in these erroneous regions can hardly improve the overall alignment quality. In the end,
we test the simplest way to connect two nodes on the graph, by performing breadth-first
search (BFS). The paths by BFS match the read surprisingly well in our experiments.

Gap Another problem in converting a chain to an alignment is that the connected path
might be several times longer than the read. This is because the first and the last anchor
in a maximum coverage chain is replaceable if there is another anchor with the same
interval and a path that is distant but still able to be chained. Since anchors are obtained
by aligning the same short split sequence, there are usually several false-positive anchors
for each interval. If some chain accidentally starts or ends with one of such anchors, the
connected path may easily span over nearly half of the graph. To fix this drawback of
finding anchors by splitting, we introduce another parameter G =colinear-gap. If some
connecting path has or will have more than G base pairs, the chain is split and only the
longer one is kept. This may lead to multiple gaps when connecting a chain. This way
the remaining part of the chain is less likely to include false-positive anchors. Figure 3.2
shows an example of a chain of 4 anchors.
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gap gap

Figure 3.2: An example for gap breaking. Each green block indicates an anchor, and a blue block
indicates the BFS connecting path. Depending on the parameters, the first anchor might be ignored due
to the large gap between the first and the second anchor.

Edit Distance Alignment With the long path obtained and the input read, the align-
ment task is reduced to sequence-to-sequence alignment. We use a package edlib to
compute the global edit distance alignment between the two sequences, and map it back
to the path as an alignment on the graph.

The alignment by co-linear chaining is compared with the one from GraphAligner in terms
of global edit distance. The better alignment is selected first. This way the aligner can
successfully align most of the reads. For example, when the errors in reads are many but
clustered, so that some anchor are accurate but scattered in the graph, co-linear chaining
will likely find an alignment containing all these clusters; on the other hand, when the
anchors are of poor quality, it is impossible for co-linear chaining to find anything better
than seed-and-extend alignments, so the alignments from GraphAligner will be selected.



4 Experimental Results

We present here several experiments to demonstrate the practical performance of our co-
linear chaining aligner. First, we introduce the design of the experiments and the data
used. Then, we show results under various combinations of parameters, and compare our
tool GraphChainer with GraphAligner [27], which is a state-of-the-art aligner of long
reads to a pan-genome graph.

4.1 Experiment Design

Our first experiment consists of aligning simulated PacBio long reads. Given a variation
graph which is a DAG, we sample a long path from the graph by walking randomly on the
graph and concatenate the node labels on the path to obtain a reference sequence. The
ambiguous characters on the simulated reference sequence will be randomly replaced by
one of its indicated characters. We simulate a set of 15x coverage PacBio long reads with
package Badread [32]. Badread is used with parameters:

badread simulate --seed {seed} --reference {Ref} --quantity

15x --length 15000 ,10000 --error_model pacbio2016

--identity 85,95,5

For each simulated read, we know its original path on the graph as the ground truth by
mapping its interval on the reference. We use GraphAligner to align the reads directly as
a baseline, and to compute the anchors for the co-linear chaining algorithm. GraphAligner
is used as baseline with parameters:

GraphAligner -t 30 -x vg -f {Reads} -g {Graph} -a {long_gam}

and GraphChainer is used with parameters:

GraphChainer -t 30 -x vg -f {Reads} -g {Graph} -a {clc_gam}

--short -verbose

The –short-verbose enables collecting statistics such as the number of chains that contain
one-node overlaps and the CPU time spent in each phase for each read.



33

For an aligned set of reads, we compute the global edit distance between the read and the
path labels with package edlib. If this distance divided by the length of the read is smaller
than a certain threshold, we say that this read is aligned correctly. For example, the error
rate of simulated data is about 25%, so if a read of length 10000 is aligned with edit distance
2500, the alignment is good enough. The simulated errors will make the ground-truth path
indistinguishable from this alignment. The co-linear chaining alignment is compared to
the baseline in terms of the number of well-aligned reads under various thresholds. We
also compute the global edit distance between the path sequence of this alignment and
the ground truth path of the read. This indicates the overlapping of the alignment and
the ground truth. Ideally, this distance is zero when the alignment path is exactly the
ground-truth path.

We also test the algorithm on real PacBio long reads. For real reads, the ground truth
path is not available or even not existing if the variants in reads are not present in the
graph. So we only compute the edit distance between the read and the alignment.

All experiments are conducted on a server with AMD Ryzen Threadripper PRO 3975WX
32-Cores and 504Gb of RAM. All scripts and programs are given -t 30 in the arguments
to run with 30 threads. The time and peak memory usage of each program are measured
with command /usr/bin/time -v.

4.2 Data

Graphs We use two graphs from [14]: LRC.vg and MHC1.vg. We also build a variation
graph of chromosome 22 using vg toolkit with GRCh37 as the reference, and variants from
the Thousand Genomes Project phase 3 release [5]. We replaced all ambiguous characters
in GRCh37. GraphAligner searches for seeds within continuous node labels, and therefore,
the non-branching path nodes in the graph should be grouped into a single node with long
labels. The command for vg is

vg construct -t 30 -a -r {ref} -v {vcf} -R 22 -p -m 3000000

To test the case when the graph is extremely large, we also build the variation graph of
chromosome 1.

Reads For the real PacBio reads, we use the same dataset as in [27] with SRA accession
SRX4480530. We first aligned all the reads against GRCh37 with minimap2 [19] and
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selected only the reads that are aligned to chromosome 22 with at least 70% of their
length, and no longer alignments to other chromosomes. This leads to 136, 494 reads
with 2, 858, 621, 416 total base pairs, which is roughly 56x coverage on chromosome 22.
For chromosome 1, we filtered a similar data set of 907, 572 reads which is roughly 79x
coverage.

Table 4.1 shows statistics of graphs and the reads used in our experiments.

Graph nodes splitted nodes node label bps width total reads total read bps
LRC 117,787 122,227 1,099,856 4 1,093 15,872,214
MHC1 479,531 504,883 5,138,362 4 5,091 74,524,274

Chr22 sim 3,197,160 3,632,307 52,423,213 7 52,464 769,238,818
Chr22 real 136,494 2,858,621,416
Chr1 real 18,807,963 20,428,949 255,754,179 9 907,572 19,617,046,919

Table 4.1: Statistics of each data set. In our experiments, all graphs have 2 connected components that
have the same number of nodes, number of edges and width, as one component is the reverse complement
of the other one. So we show the statistics of one component, and the statistics will be doubled on the
entire graph.

4.3 Results

Metrics To compare the overall quality of alignments, we count the number of reads
that are aligned with an edit distance smaller than a given threshold 0 < σ ≤ 1 multiplied
by the read length, which are called good alignments. For example, given a read of length
10000, an alignment with edit distance 2000 is consider good for a threshold σ > 0.2 and
not good for σ ≤ 0.2. This threshold is related to the error rate of the long read sequences.

LRC and MHC1 On average, when the threshold is between 20% and 50%, our co-
linear chaining algorithm has aligned 2% more reads compared to GraphAligner. At
threshold 35%, which is slightly above the error rate of most of the reads, co-linear chaining
reduced the number of unaligned reads by half. When comparing in terms of ground truth
overlapping, the advantage of co-linear chaining is more obvious. Figure 4.1 shows the
results on LRC.vg. Figure 4.2 shows the results on MHC1.vg.
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Figure 4.1: The number of good alignments at each threshold, for simulated data on LRC.vg.

Figure 4.2: The number of well-aligned reads at each threshold, for simulated data on MHC1.vg.

Figure 4.3: The number of well-aligned reads at each threshold, for simulated data on chr22.vg
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Chromosome 22 For chromosome 22, the graph size is much larger than the average
length of simulated reads. The results are shown in Figure 4.3.

The curve in Figure 4.3 looks very different from the curves in Figure 4.1 and Figure 4.2.
One reason might be that randomly replacing the ambiguous character indepently violates
some assumption of the simulator, so that reads simulated from the region which originally
has only ambiguous characters follows a different pattern.

Analysis on Simulated Data Table 4.2 shows the number of good reads for each
graph. Here we use 0.4 as the threshold for good alignments with edit distance between
input reads, and 0.2 as the threshold for overlapping alignments with edit distance between
the ground truth path. On all graphs, GraphChainer find a good alignment for 1% more
of the reads under threshold 0.4, and an overlapping alignment for 2% more of the reads
under threshold 0.2.

Graph Aligner Good Reads Good Reads bps Overlap Reads Overlap Reads bps
by edit distance by edit distance by true path by true path

LRC GraphAligner 1064(97.35%) 15402957(97.04%) 1047(95.79%) 15177005(95.62%)
GraphChainer 1078(98.63%) 15712725(99.00%) 1072(98.08%) 15668530(98.72%)

MHC1 GraphAligner 4949(97.21%) 71933675(96.52%) 4900(96.25%) 71028183(95.31%)
GraphChainer 5027(98.74%) 73735165(98.94%) 5015(98.51%) 73534431(98.67%)

Chr22 GraphAligner 42989(81.94%) 630159099(81.92%) 42559(81.12%) 622012110(80.86%)
simulated GraphChainer 43402(82.73%) 638983670(83.07%) 43218(82.38%) 636460703(82.74%)
Chr22 GraphAligner 123353(90.37%) 2450869693(85.74%)
real GraphChainer 134771(98.74%) 2825239847(98.83%)
Chr1 GraphAligner 830989(91.56%) 17209566360(87.73%)
real GraphChainer 880549(97.02%) 19065996572(97.19%)

Table 4.2: Quality of alignments with each aligner on simulated and real PacBio long reads.

Real Data For the real PacBio reads on chromosome 22, the the difference between
GraphAligner and GraphChainer is more obvious than that on simulated data. As shown
in Table 4.2, GraphAligner can align only 90.37% of the reads within threshold 40%,
while co-linear chaining aligned 98.74% within the same threshold. Although if we use the
threshold 90%, which is similar to the 10% overlapping standard in [27], the difference is
insignificant.

For chromosome 1, the improvement is slightly smaller but still significant. For the 8.44%
reads that are not aligned within 40% threshold, GraphChainer found a good alignment
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for 64.7% of them, and reduced this ratio to 2.98% of the total number of reads. Figure 4.4
and Figure 4.5 shows the number of good alignments for chromosome 22 and 1.

Figure 4.4: The number of good alignments at each threshold, for real PacBio data on chromosome 22.

Figure 4.5: The number of good alignments at each threshold, for real PacBio data on chromosome 1.

Effect of One-node Overlapping Table 4.3 shows the effect of allowing one-node
overlapping in co-linear chaining. It can be seen that over 90% of the chains contains one-
node overlapped anchors. For the real data on chromosome 22 this ratio becomes 97%.
Although it does not implies that there is no other maximum-coverage chains without
such overlaps, it provides reasons to allow such overlaps.



38

Graph Total Reads Overlapping Optimal Chains After Gap Splitting
LRC 1093 1007(92.1%) 998(91.3%)
MHC1 5091 4731(92.9%) 4706(92.4%)

Chr22 real 136494 133111(97.5%) 132718(97.2%)

Table 4.3: Impact of allowing one-node overlapping. The “Overlapping Optimal Chains” count the num-
ber of reads that maximum-coverage chain has at least one pair of anchors that are one-node overlapped.
“After Gap Splitting” consider only the final chain after breaking large gaps.

Speed The co-linear chaining takes anchors from short GraphAligner alignments as in-
put, so the running time can be much longer than directly aligning with GraphAligner.
The short length of split reads gives rise to many false-positive anchors, which consumes
extra time that is not needed when directly aligning. Table 4.4 shows the speed and
memory usage of both aligners with 30 threads in the experiment on real data.

Memory The memory usage of co-linear chaining is slightly larger. The size of the
MPC index is O(k|V |). If the graph has more than one connected components, the path
cover can be split into groups and reduces space. The data structures during the dynamic
programming process take O(N) each and O(kN) in total, where N is the number of
anchors. In addition, the data structure part is independent for each thread, while the
MPC index is shared.

Chromosome Aligner Peak Memory(GiB) CPU Time(hh:mm:ss) Real Time(hh:mm:ss)
22 GraphAligner 8.92 1:30:08 0:03:16

GraphChainer 10.46 6:08:33 0:12:44
1 GraphAligner 19.3 10:37:23 0:22:44

GraphChainer 58.1 135:55:43 4:35:36

Table 4.4: Speed and memory usage of co-linear chaining aligner when aligning real PacBio reads.

Time in Each Phase The time spent on each part of the algorithm using 30 threads
is shown in Table 4.5. The most time-consuming part is finding anchors from short read
alignments. For chromosome 1, there are 7803 anchors on average for each read, which is
much more than 2233 anchors in the case of chromosome 22.

We can estimate the running time of co-linear chaining using the theoretical time com-
plexity O(kN log|V |). When comparing chromosome 1 to chromosome 22, the number of
reads is 6.6x, and number of anchors is 3.5x, and there is a factor 9

7 due to the widths,
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multiplied by the factor from log|V | which is about 1.25x. Given that the CPU time spent
in co-linear chaining for chromosome 22 is 49 minutes, an estimation of the CPU time of
this part for chromosome 1 is 30 hours and 19 minutes. This matches the measured CPU
time 30 : 11 : 54 in our experiments.

The time for the co-linear chaining part is relatively short. Since building the MPC index
is faster than loading the graph from disk, its time usage is omitted together with I/O
time and indexing time by GraphAligner.

Dataset anchor time chaining time edlib time total time
chr22 simulated 0:38:24 0:06:22 0:09:27 1:03:27

chr22 real 4:02:14 0:49:06 0:46:10 6:08:33
chr1 real 95:30:45 30:11:54 5:57:42 135:55:43

Table 4.5: CPU time spent in each phase of the aligner on the chromosome 22 graph and the chromosome
1 graph. Time is shown in format hh:mm:ss.



5 Conclusions

We extended the dynamic programming framework to solve co-linear chaining on general
graphs by a reduction to CLC with one-node overlaps on DAGs. This extension would en-
able more general applications of graphical representations of genomes. The algorithm is
implemented for DAGs as a sequence-to-graph aligner GraphChainer. We experimentally
show that GraphChainer significantly improves alignment quality and has competitive
performance when compared with a state-of-the-art aligner GraphAligner. The improve-
ment of alignment quality is significant for real PacBio long reads on human genomes. In
the experiments, the time complexity of our algorithm is empirically confirmed.

Although our implementation uses GraphAligner to find anchors, the CLC module is
relatively independent. One may compute the anchors with other methods and feed the
anchors to our CLC module. This can be added as a separate software in the future.

For now, the implementation assumes that the input graph is a DAG. The reduction from
graphs with cycles to DAGs and the procedure of mapping anchors between the two graphs
may be added in future developments.

As an initial implementation, there are many ways to improve the performance further.
One possible direction is to replace the method to connect adjacent anchors. Instead of
BFS, a better way is to use alignment algorithms that can extend from both directions,
where both the starting node and the ending node are determined. A modified bit-parallel
algorithm might also work.

One immediate application of our aligner would be genotyping, or variant calling, by
aligning a set of reads to the variants graph built from a set of known variants, as done
in [27]. With improved quality of alignments, we can expect better accuracy and recall on
the genotyping task.

The algorithm can extend to graphs with cycles easily, although such graphs in the appli-
cation are relatively rare compared to DAGs as the variation graphs in our experiments.
We hope that our aligner enables more applications on graphs with cycles.
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