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Abstract
Increased use of bioenergy, driven by ambitious climate and energy policies, has led to an 
upsurge in international bioenergy trade. Simultaneously, it is evident that every node of 
the bioenergy supply chain, from cultivation of energy crops to production of electricity 
and heat, is vulnerable to climate change impacts. However, climate change assessments of 
bioenergy supply chains neither account for the global nature of the bioenergy market, nor 
the complexity and dynamic interconnectivity between and within different sub-systems in 
which the bioenergy supply chain is embedded, thereby neglecting potential compound-
ing and cascading impacts of climate change. In this paper, systems thinking is utilised to 
develop an analytical framework to address this gap, and aided by causal loop diagrams, 
cascading impacts of climate change are identified for a case study concerning imports of 
wood pellets from the United States to the European Union. The findings illustrate how the 
complexity and interconnectivity of the wood pellet supply system predispose the supply 
chain to various cascading climate change impacts stemming from environmental, social, 
political and economic domains, and highlight the value of using system-based analysis 
tools for studying such complex and dynamic systems.

Keywords Bioeconomy · Energy transition · Cascading risks · Indirect impacts · Cross-
border impacts

1 Introduction

Modern use of bioenergy (for electricity, heating and transportation) has seen a remarkable 
expansion in the last decade, mainly because of climate change and energy security concerns 
(Hoefnagels et al. 2014). Bioenergy has traditionally been used locally, and political efforts 
to increase its use mainly rely on the presumption that it will be domestically sourced, and 
hence increase energy self-sufficiency (Mandley et al. 2020). However, international trade in 
bioenergy products has increased rapidly during the past decade, from around 785 petajoule 
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(PJ) in 2004 to 1250 PJ in 2015 (Junginger et al. 2019). Additionally, there are countries such 
as Finland that become net importers of bioenergy, if trade in biomass that indirectly ends 
up in energy production is accounted for (Heinimö 2008). Furthermore, a majority of bioen-
ergy demand or supply scenarios project a further increase in international trade in the future 
(Daioglou et al. 2020; Mandley et al. 2020). This is oftentimes due to more favourable mar-
ket conditions (mainly lower prices) for imports from major production regions than domestic 
production (Lauri et al. 2014; Matzenberger et al. 2015; Rytter et al. 2016), and the fact that 
the actual market potential for domestic biomass supply is substantially lower than the theo-
retical potential in many countries, after accounting for environmental, social, technical and 
economic restraints (Egnell and Börjesson 2012).

Significant uncertainties exist as to how the global bioenergy market will evolve amidst 
future climate, socioeconomic and technological change, and how an increase in global bio-
energy demand will be realised (Kranzl et al. 2014). Demand projections for bioenergy under 
different climate change mitigation scenarios (see e.g. Bauer et al. 2020; Daioglou et al. 2019), 
as well as estimations of global and regional bioenergy production potentials (see e.g. Hame-
lin et al. 2019; Searle and Malins 2015), are readily available, although results vary widely 
between studies (Mandley et al. 2020). Conversely, studies of future international bioenergy 
trade are scarce and bioenergy scenarios and models rarely try to map out international trade 
flows of biomass (Daioglou et al. 2020; Kranzl et al. 2014).

Climate change impact, vulnerability and risk assessments concerning bioenergy have hith-
erto been isolated to specific segments or aspects (such as demand projections, or economic 
drivers) (Cronin et al. 2018; Emodi et al. 2019; Schaeffer et al. 2012), specific supply chain 
nodes (mostly feedstock production) (see e.g. Haberl et al. 2011; Nguyen and Tenhunen 2013; 
Preston et al. 2017), specific climate change impacts (such as floods or droughts) or confined 
within national borders (Langholtz et al. 2014). However, the need to understand cascading 
climate change impacts, defined here as impacts that flow through a network of interconnected 
system components, affecting the components in different ways (Helbing 2013), has gathered 
prominence in recent years. Cascading climate change impacts emerge from interdependen-
cies between coupled natural and socio-economic systems in response to changes and feed-
backs (Lawrence et al. 2020). The cascading of impacts may be contained locally or span vast 
geographical areas.

The aim of this paper is to apply systems thinking in order to advance the identification and 
assessment of potential cascading climate change impacts (hereafter referred to as cascading 
impacts) that may affect complex international bioenergy supply systems in the future. This 
is achieved through the creation of an analytical framework for identifying the network struc-
ture in which the international bioenergy supply chain is embedded. We apply the framework 
within a case study and ask the following research question: In what ways could cascading 
impacts affect imports of wood pellets from the United States (US) to the European Union 
(EU)? We identify and visualise cascading impacts on the wood pellet supply system through 
a literature review and causal loop diagrams (CLDs). This type of an approach accounts for 
the complexity and interconnectivity between and within different systems by identifying rela-
tions and connections that have previously been considered in isolation.
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2  Theoretical background and analytical framework

2.1  Complexity of�energy systems and�climate change impacts

The energy sector, with its regional and global networks of infrastructure and supply 
chains, can be thought of as an inherently complex and dynamic system-of-systems, con-
sisting of ‘multiple, heterogeneous, distributed systems embedded in networks at multiple 
levels that evolve over time’ (Agusdinata and DeLaurentis 2008). A system is defined here 
as a set of multiple interdependent components, connected through causal relationships, 
which together express a structured function or purpose. A system can only be fully under-
stood by observing it as a whole i.e. by examining all the interactions between the differ-
ent components and observing the subsequent performance. A system can be, and often 
is, composed of several smaller sub-systems, which are connected through networks that 
allow for movement or communication between them (Haraldsson 2004).

The complexity of energy systems stems from the heterogeneity of and dynamic inter-
dependence between the components of the sub-systems and the complexity of the net-
works that connect them, as well as the uncertainty related to its future state (Agusdinata 
and DeLaurentis 2008). The components of the sub-systems consist of various operations 
and actors that are shaped by different policies, regulatory frameworks and institutions, 
market rules and regulations (Hoggett 2014), as well as the natural and social environment 
(Parish et al. 2018). The uncertainty regarding the future state of the system arises from the 
difficulty in projecting how the different components and the network connections will be 
affected by climatic, demographic, social and behavioural changes, in addition to techno-
logical innovations and emerging products.

Within complex and interconnected systems, individual climate change impacts and 
risks tend to cascade through the networks, affecting components and actors both geo-
graphically and temporally distant from the original impact (Challinor et al. 2018; Ground-
stroem and Juhola 2018; Hochrainer-Stigler et  al. 2020). Such cross-border, systemic, 
cascading impacts1 are further amplified or diminished by social, institutional, political 
and behavioural factors that affect the perception of the impact, the subsequent responses 
and the vulnerability and resilience of the system (Challinor et  al. 2018). For instance, 
Shughrue and Seto (2018) show how cascading impacts stemming from natural hazards are 
readily transferred between urban areas connected by international supply networks, while 
Bierkandt et al. (2014) and Otto et al. (2017) convey how perturbations may cascade along 
a supply chain and result in supply disruptions far from the original site of damage. Simi-
larly, Bollinger et al. (2014) highlight the risk of climate change impacts cascading along 
interconnected infrastructure networks, and the subsequent need for proper management 
and adaptation responses.

Climate change is a wicked problem (Adger et al. 2018), and social dynamics and com-
plex transmission pathways of cascading impacts are oftentimes not readily quantifiable 
(Challinor et al. 2018). Hence, it is often advisable to involve a qualitative approach in cas-
cading impact assessments, in addition to or as a basis for quantitative methods, in order to 
ensure incorporation of all the components, both quantifiable and non-quantifiable, of the 
system under study (Agusdinata and DeLaurentis 2008; Challinor et al. 2018; Chappin and 

1 Cross-border impact is defined as an impact that transcend some form of border (e.g. national, jurisdic-
tional or ecological) (Groundstroem and Juhola 2018), while cascading and systemic impacts are often used 
interchangeably.
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van der Lei 2014). Systems thinking can be a useful tool for this purpose. Systems think-
ing was developed to identify and explain relations and interconnections between seem-
ingly unrelated components within complex and dynamic systems. By thinking holistically, 
a model representation of the system and all its networks is produced, which can further 
be analysed with e.g. CLDs to highlight components and feedbacks within the system 
(Haraldsson 2004).

2.2  Analytical framework

Utilising a systems thinking approach, a general analytical framework was developed that 
lays out the sub-systems and network interconnections of a bioenergy supply system. The 
core system under study is the supply chain, consisting of cultivation of biomass; harvest-
ing or collection of feedstock; different stages of refining, processing and production; queu-
ing and storage at various stages; transportation, transmission or distribution between dif-
ferent nodes; and end use as e.g. vehicle fuel or heating (An et al. 2011; Awudu and Zhang 
2012; Hoefnagels et al. 2014). The operations of the supply chain are directly affected by 
different actors and factors stemming from the sub-systems of other sectors and infrastruc-
tures, the global bioenergy market, policies and regulatory frameworks, the human and 
social environment and the natural environment. Additionally, the supply chain is indirectly 
affected through the movement of actors and factors within the complex network that the 
system is embedded in (Fig. 1).

For instance, the supply chain system might be connected to the water sector if cultiva-
tion of certain bioenergy crops require irrigation. Similarly, different stages of refining or 
processing are dependent on an uninterrupted supply of electricity, while logistics tend to 
rely on the ICT (information and communication technology) sector for communication 
and management. Furthermore, competition for land-use and natural resources can create 
conflicts with other sectors as shown by studies on the water-energy-food nexus (Zhang 
et al. 2018).

The supply chain is also affected by the rules, regulations and technological innovations 
of the international bioenergy market. The bioenergy market is essentially defined by the 
status of and alterations to demand and supply, both of which have been increasing rapidly 
in recent years. At the same time, the geographically separated centres for demand and sup-
ply have resulted in the market becoming increasingly international, a phenomenon that is 
projected to intensify in the future, both for direct trade in bioenergy products, as well as 
the significant amounts of traded biomass products that indirectly ends up in energy pro-
duction (Heinimö and Junginger 2009; Proskurina et al. 2017). Whether a region becomes 
a competitive player on the global bioenergy market is largely defined by economic factors 
such as the cost of feedstock production, transport and labour (Lamers et al. 2012), as well 
as e.g. free trade agreements, anti-dumping and phytosanitary regulations, sustainability 
requirements, and to a lesser extent country-specific tariffs (considering most countries are 
members and abide by the rules of the World Trade Organization (WTO)) (Daioglou et al. 
2020). Technological innovations, such as cheaper production processes and new energy 
products, may restructure the global bioenergy market and affect the supply chain opera-
tions in different ways.

The supply chain operations, as well as other sectors and the global bioenergy market, 
are governed by international and regional policies and regulatory frameworks. Renewable 
energy projects, including bioenergy, are often supported by governments in the form of 
subsidies, grants, feed-in tariffs or quota systems. In addition, governments may impose 
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environmental taxes or more stringent reporting and sustainability requirements for com-
panies. The aim of policy support is to promote positive externalities, such as energy secu-
rity, sustainability, climate change mitigation, economic growth, social welfare or job crea-
tion, and to spur innovation and maturation of nascent technologies (Lamers et al. 2011; 
White et  al. 2013). Policies affect both the behaviour of individuals and households i.e. 
the demand side, as well as the decisions and actions of companies i.e. the supply side. 
While policies, when designed and implemented correctly, tend to be beneficial for renew-
able energy deployment, inconsistent and poorly designed policies have the opposite effect, 
hindering the expansion and utilisation of renewable energy. For instance, many renewable 
energy projects require substantial amounts of credit, which is obtained through loans or 
investments. If the project is dependent on unstable government support policies, such as 
a feed-in tariff that is up for re-evaluation in a few years, banks and investors will be reluc-
tant to provide capital to a reasonable price, and the project will most likely be scrapped. 
In contrast, policies that are set for a 10 or 20-year period and have thoroughly investi-
gated and planned for factors such as social acceptability, uptake rates and the need for 

Supply chain

System X

System X

System X

System X

System X

Fig. 1  The analytical framework describing the bioenergy supply system. The core supply chain system 
(dark grey circle in the middle) is connected to other sub-systems (coloured circles) through a complex net-
work (solid black lines). The boundary of the system (dashed black circle) excludes such sub-systems (light 
grey circles) that do not directly affect the supply chain
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infrastructure upgrades, are much more likely to succeed in promoting the deployment 
of renewable energy projects. In fact, consistent and long-term support policies can be 
regarded as the most important factor in achieving renewable energy targets (White et al. 
2013). Strong supporting policies in both the EU and the US is also the main reason for the 
significant expansion of global bioenergy production and international trade in biomass 
in the past decades, despite these policies being targeted at domestic production and con-
sumption (Lamers et al. 2011).

Social and human factors come into play through changes in attitudes, behaviours and 
perceptions of the various actors operating throughout the system, such as land owners, 
loggers and farmers, mill and refinery owners, port operators, truck drivers, investors, 
forestry and farmers’ associations, non-governmental organisations (NGOs) and citizens 
(Parish et al. 2018). For instance, for policies to go through, a reasonable level of public 
support is usually required (White et al. 2013). The sustainability of bioenergy is a con-
tested issue, and citizens’ perceptions of bioenergy in general (e.g. regarding the impact on 
biodiversity, carbon neutrality, competition with other land use), and of specific bioenergy 
projects (aesthetics, odour, noise, economic and social benefits), can change rapidly (Gold 
2011).

Additionally, the bioenergy supply system is embedded in and affected by the natural 
environment. Agricultural crops or trees used as feedstock for bioenergy are inherently 
affected by e.g. soil properties, biodiversity and groundwater levels. Changes to species 
distributions and competitions, among both plants and animals, have far-reaching impli-
cations for whole ecosystems and affect the growing conditions for bioenergy feedstock. 
Moreover, weather and climate affect, and are affected by, the cultivation and management 
of bioenergy feedstock. Crops and trees are intricately linked to the global carbon cycle, 
through sequestration of carbon in living material, and the subsequent release of carbon to 
the atmosphere or soil upon combustion or decomposition (Delucchi 2010). Infrastructure 
and people are also very much dependent on a stable natural environment and affected by 
weather and climate.

The complex network structure connecting the sub-systems together, predisposes the 
supply chain to cascading impacts, risks and failures. Studying complex and dynamic sys-
tem-of-systems is an extremely laborious task, and therefore, a simplification of the net-
work structure, or inclusion of only some of the sub-systems is usually warranted. The 
case-specific boundaries of the bioenergy supply system under study should thus include at 
least those sub-systems that directly affect the core supply chain, and the network they are 
embedded in, but may exclude indirect interconnections to such systems that do not have a 
direct connection to the supply chain.

3  Methodology

3.1  Justi�cation of�the�case study

The framework was operationalised through a case study, concerning imports of wood pel-
lets to the EU from the southeast region of the US. Overall, bioenergy accounts for ca. 
60% of all renewable energy used in the EU, and this share is projected to increase further 
in the future (Joint Research Center 2019), as bioenergy is promoted as a cost-effective 
and efficient means by which the common EU greenhouse gas (GHG) reduction target of 
40% below 1990 levels and the renewable energy target of 32% of total energy production 
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by 2030 could be met (EC 2018; Sikkema et al. 2021). Additionally, almost all EU mem-
ber states have national strategies or other relevant policy initiatives in place or under 
development to promote the use of bioenergy as part of a transition towards a low-carbon 
economy (EC 2019). As a result, bioenergy imports from outside Europe are projected to 
increase substantially, with as much as 60% and 76% of EU demand potentially being met 
by imports in 2030 and 2050, respectively, compared to ca. 4% currently (Mandley et al. 
2020).

Wood pellets is the most common form of bioenergy used in the EU, which consumes 
around half of the global pellet production (amounting to more than 26 million tonnes in 
2018), mainly in large scale combined heat and power (CHP) plants. Pellets are a glob-
ally traded commodity, with many EU member states, such as the UK, Denmark, Italy and 
Belgium, importing almost all of their consumed pellets from abroad (Fig. 2) (Calderón 
et al. 2019). The US accounts for over 60% of imports and 70% of all pellets used for elec-
tricity in the EU (Dwivedi et al. 2019; Fingerman et al. 2019), and these shares will likely 
increase substantially in the future (Johnston and van Kooten 2016; Jonsson and Rinaldi 
2017; Sun and Niquidet 2017). During the last ten years, the US pellet production has 
increased significantly almost exclusively as a response to increasing European demand 
(Diaz-Chavez et al. 2019) and the US is also the largest exporter of sustainably sourced 
pellets to Europe (Thrän et al. 2019). Paolotti et al. (2015) showed that importing pellets 
from the US is in many cases both more economical and more sustainable with regards to 
GHG emissions, than importing pellets from other European countries. Additionally, the 

Fig. 2  Map of major trade flows of wood pellets to or within Europe in 2018 (in ktonnes) (Calderón et al. 
2019)
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US has vast forest resources, relatively low supply costs, high quality products, and largely 
complies with European sustainability criteria. The southeast region of the US is the main 
hub for production and export of pellets, sourcing more than 98% of pellets exported to the 
EU (Fingerman et al. 2019).

3.2  Methods and�data

The analysis was carried out in a four-step procedure (Fig. 3). First, direct climate change 
hazards and exposure in the three main geographical areas in which the wood pellet supply 
chain is located, namely, the southeast US, North Atlantic Ocean and the port of Rotterdam, 
were identified based on the US Fourth National Climate Assessment (NCA4), the fifth 
assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) and the 
Royal Netherlands Meteorological Institute’s climate scenarios (KNMI’14), respectively. 
Second, the bioenergy supply system in which the wood pellet supply chain is embedded 
was identified based on the analytical framework, and system boundaries were defined. 
Third, the most prominent climate change impacts on the sub-system components were 
identified by a literature review. Direct impacts on CHP plants or end use of electricity and 
heat were omitted from the study as this is highly location specific, whereas the end-user 
in this study (the EU) is not. Finally, the cascading effect of the impacts and potential feed-
back loops within the system were visualised in CLDs using a novel layered approach to 
highlight how complexity in the system emerges through sub-system feedbacks.

The purpose of a CLD is to map out the structure of a system and its networks and 
reveal causalities and feedbacks within the system (Haraldsson 2004). CLDs are commonly 
used alongside systems thinking to facilitate understanding and analysis of the system 
under investigation (Sanches-Pereira and Gómez 2015). A CLD is composed of variables 
connected by arrows that indicate unidirectional causal links between the variables. An 
arrow from variable X to variable Y with a positive sign (+) represents a positive link, 
indicating that a change in variable X produces a change in the same direction in variable 
Y; thus, if X increases, Y increases. An arrow with a negative sign ( −) represents a negative 
link, which means that a change in variable X results in a change in the opposite direction 
in variable Y; thus, if X increases, Y decreases. Note that the signs only indicate the direc-
tion of change (same or opposite) of the affected variable, and have nothing to do with 
whether the change is increasing or decreasing, beneficial or detrimental. Some of the links 
between variables are characterised by delays, which may have implications for the whole 

Fig. 3  Steps of the analysis and data used
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system. Delays are shown in the CLD by crossing lines on an arrow. One crossing line indi-
cates a short delay, while two crossing lines indicate a long delay. Generally, the longer the 
delay, the larger the implications for the system (Sanches-Pereira and Gómez 2015). The 
timeframes for short versus long delays need to be defined for each study separately as this 
is highly system specific.

A CLD offers an opportunity to identify feedback effects in the system, which may point 
to potential future trajectories of change. Feedback effects arise when variables affect each 
other in a cascading manner, ultimately leading back to a previous variable, creating a feed-
back loop (Fig. 4). A feedback loop can be either reinforcing (R), if events or behaviours 
created by the variables in the loop amplify each other, leading to unbounded growth or 
decline, or balancing (B), if some variables create counteracting changes, resulting in equi-
librium. An easy way of assessing the effect of the feedback loop is to count the number of 
negative signs in the loop; an even number results in a reinforcing loop, and an odd number 
results in a balancing loop (Kirkwood 1998).

In this paper, climate change impacts in the CLDs are divided into incremental climate 
change (i.e. temperature increase and precipitation change), extreme weather (compris-
ing heat waves, droughts, wildfire, heavy rainfall and inland flooding) and sea level rise 
(including coastal erosion, storm surges and coastal flooding). Additionally, the impact of 
increasing atmospheric carbon dioxide  (CO2) on tree growth and productivity is depicted 
separately. In addition to positive ( +) and negative ( −) effects, arrows with the sign o are 
present in some of the CLDs, representing effects that can be either positive or negative 
depending on the situation. Since climate change impacts are inherently characterised by 
unknown time lags, delays in the CLDs have been sparsely highlighted only for the impacts 
that are believed to materialise significantly later than the rest.

3.3  System boundaries

As this study is concerned with cascading impacts of climate change, the system bounda-
ries of the wood pellet supply system only include such actors and factors that both influ-
ence the supply chain operations, either directly or indirectly through another sub-system, 
and simultaneously could be affected by climate change.

At the core of the wood pellet supply system under study is the supply chain, which 
starts with the acquisition of feedstock from pine (and to a lesser extent different hard-
wood) plantations and forests in the southeast US. After logging and natural drying in the 
forests, the wood is collected and transported by truck either directly to nearby pellet mills 
in the case of pulpwood and other low-grade wood, logging- and forestry residues, and 

Fig. 4  An example of a simple feedback loop, where variable X has a positive effect on variable Y (thus 
inducing a change in variable Y in the same direction), which in turn has a negative effect (although 
delayed) on variable X (counteracting the initial effect), resulting in a balancing feedback loop
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thinnings (comprising ca. 60% of the feedstock), or to sawmills or different wood product 
manufacturers, from where residues and by-products are later acquired by the pellet mills 
(comprising the remaining 40%) (Fingerman et  al. 2019; Goetzl 2015; Hoefnagels et  al. 
2011). The finished pellets are transported by truck, rail or barges to an international port 
on the US east coast, from where they are shipped over the North Atlantic Ocean to Europe 
(mostly to Rotterdam, which is the largest port on the Atlantic coast and the main port for 
transhipments in Europe) (Diaz-Chavez et al. 2019; Fingerman et al. 2019). From there, the 
pellets are further transported to CHP plants throughout the EU. Storage takes place at the 
sawmills, pellet mills, ports and CHP plants.

The sub-system of other sectors and infrastructures is confined to the forestry and wood 
manufacturing sectors, tourism, nature conservation, agriculture, electricity production and 
distribution and the ICT sector. The pellet industry collaborates and competes directly with 
the rest of the forestry and wood manufacturing sectors for access to wood resources (Con-
rad et al. 2011). In general, sawmilling and other forest industries requiring high-quality 
wood are collaborators with the pellet industry, who uses residues and by-products from 
harvest-, thinning- and milling operations of these industries, while the pulp and paper 
industry is a competitor as it utilises the same feedstock (Johnston and van Kooten 2016; 
Jonsson and Rinaldi 2017). The tourism sector, recreational use of forests and federal 
nature conservation compete for access to undisturbed forests, while agriculture competes 
for land-use rights (Beach et al. 2015). Pellet production is connected to the electricity sec-
tor since e.g. drying, pressing, milling and storage require electricity (Hansson and Hackl 
2016; Uasuf and Becker 2011), while many operations, such as transport, depend on reliant 
ICT services (Markolf et al. 2019). In contrast, other sectors such as the water sector, are 
outside the system boundaries as it does not have a significant direct impact on the supply 
chain per se, although it is tightly connected to e.g. electricity production and agriculture. 
Likewise, population growth and urbanisation in the southeast US increase the value of 
land adjacent to urban areas, and subsequently the likelihood of forests being allocated to 
urban development (Wu et al. 2014), thus competing for land-use. However, it is not clear 
whether population growth and urbanisation are affected by climate change, and they are 
therefore not included in this study.

Price fluctuations of pellets, pellet demand and supply trends, research and innovation in 
the bioenergy field, as well as quality standards of pellets, are included in the study through 
the global bioenergy market sub-system. Pellet prices in the EU are heavily dependent on 
developments on the global market, such as demand and supply trends, currency exchange 
rates and local events disrupting supply (Parish et al. 2018). The quality and characteristics 
of the pellets available on the international market may change in the future due to tech-
nological innovations, which may e.g. increase energy density or decrease lifecycle GHG 
emissions (Hansson and Hackl 2016).

Policies and regulatory frameworks included within the system boundaries are national 
(US), regional (EU) and international climate change and energy policies, as well as sus-
tainability criteria that may affect the pellet supply chain. In fact, national and EU climate 
and renewable energy goals and targets are the main drivers of the transatlantic pellet trade 
(Parish et al. 2018), while EU sustainability criteria set out rules for pellet feedstock plan-
tation management.

The boundaries of the sub-system of the human and social environment can be challeng-
ing to define, due to the complexity and untraceable nature of human behaviour, thoughts 
and perceptions. Included within the system boundaries of this study are southeast US for-
est owners and foresters, employees in the forest- and pellet industries, and both US and 
EU citizens and NGOs, whose actions can influence and affect the operations of the supply 
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chain. For instance, the availability of feedstock for pellet production is first and foremost 
in the hands of the private forest owners, whose decision to harvest is affected by personal 
values, financial needs and life events, and weighted against other uses of the forest, such 
as recreation and hunting (Butler et  al. 2017; Dale et  al. 2017). Additionally, the pellet 
industry is subject to fluctuating support from citizens and NGOs. As the industry is a 
significant employer in the southeast US, it is generally perceived by citizens as benefit-
ting the community, although the highly export-oriented focus of the industry is sometimes 
given a negative connotation. However, some US NGOs have raised concerns about bio-
diversity loss, deforestation and high disturbance rates (Diaz-Chavez et al. 2019), due to 
a high conversion rate of natural forests to pine plantations in response to increased pellet 
demand in the southeast US (Duden et al. 2018; Wade et al. 2019).

Finally, the sub-system of the natural environment is the very foundation upon which 
the wood pellet supply system depends on. Included within the system boundaries are the 
ecosystems that southeast US forests and plantations are a part of, specifically focusing 
on the growing conditions of forests, variations in species distributions, the prevalence of 
insects and pathogens, as well as the ecosystem services that southeast US communities 
rely upon. The climate of the southeast US is excellent for rapid tree growth and regenera-
tion, which has spurred forestry developments in the region, at the expense of natural for-
ests (Cristan et al. 2016). Much of the southeast US is part of the North American coastal 
plain, which was designated a biodiversity hotspot in 2015 (Noss 2016). The coastal plain 
supports a rapidly increasing population, a burgeoning tourism sector, and valuable cul-
tural resources, all of which are exposed to sea-level rise, flooding, coastal erosion, storm 
surges and saltwater intrusion, with implications for ecosystem resilience, human wellbe-
ing and vulnerability, and infrastructure. Ecological diversity in the region is high and the 
ecosystems provide a range of societal benefits, such as improved water and air quality and 
flood protection (Carter et al. 2018).

4  Results

4.1  Projected climate change in�the�supply chain regions

Temperatures in the southeast region of the US are projected to increase by ca. 1.9–2.4 °C 
by mid-century and by 2.5–4.3 °C by late-century, with the lower end representing RCP4.5 
and the higher end RCP8.5.2 This is slightly less than the country average, mainly due to 
increased evapotranspiration, which releases latent heat. Conversely, the southeast is likely 
to see a higher increase on average in the frequency and intensity of heat waves (a 6-day 
period with a maximum temperature above the  90th percentile). Additionally, the num-
ber of days with a maximum temperature above 32 °C is projected to rise by 40–50 days 
by mid-century under RCP8.5 (Vose et al. 2017). The change in total seasonal precipita-
tion is likely to remain small compared to the natural variation in the southeast. Gener-
ally, increased precipitation is expected in the northern areas of the southeast region, while 
decreased precipitation is projected for the southern areas (Easterling et al. 2017). How-
ever, the severity and frequency of extreme precipitation events are projected to increase 

2 The RCPs (Representative Concentration Pathways) are climate change scenarios further explained by 
e.g. O’Neill et al. (2016).
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substantially even in RCP4.5 (Carter et al. 2018). The frequency and magnitude of agricul-
tural droughts (i.e. conditions of soil moisture deficits) will likely increase in all seasons in 
the future, due to increased evapotranspiration rates (Wehner et al. 2017).

Changes to fire regimes (i.e. the frequency, pattern, size, intensity, severity and season) 
are projected to have a profound effect on the southeast US, which already experiences the 
highest number of wildfires in the country, as well as the largest area burned by prescribed 
fire. In the future, increased temperatures and prolonged droughts are likely to result in 
more frequent wildfires and reduce the effectiveness of prescribed fire. Furthermore, rapid 
urbanisation along the edges of forests reduces the possibility for using prescribed fires 
(Carter et al. 2018).

Sea levels are projected to rise more than the global average (projected to be as much 
as 1.5–2.5 m by the end of the twenty-first century) in the southeast US, due to local land 
sinking and groundwater withdrawal (Carter et  al. 2018). Subsequently, coastal flooding 
and storm surges are projected to occur frequently in the future, potentially daily in some 
areas (Sweet et  al. 2017). Hurricanes are a major concern for the southeast, but future 
changes to the frequency of hurricanes due to climate change are unclear. However, stud-
ies show that the intensity and precipitation rates of hurricanes are likely to increase with 
warmer temperatures (Easterling et al. 2017).

The already observed sea surface temperature increase in the North Atlantic Ocean is 
projected to continue, with ca. 0.5–3 °C increase expected during the period 2010–2099, 
depending on the emission scenario. Sea level is also expected to rise, although this 
will only be discernible along the coasts. A northward shift in storm tracks, along with 
increased storm activity and resulting surface wave heights, have been observed in the 
North Atlantic, but it is unclear how these trends will evolve in the future, due to a gap in 
research (Hoegh-Guldberg et al. 2014; IPCC 2014).

The coastal area of the Netherlands is projected to experience less pronounced warming 
than the eastern and southern areas of the country, although temperatures in the Nether-
lands are projected to increase slightly more than the global average. Conversely, scenarios 
suggest that the coastal area may experience greater winter precipitation increases than the 
rest of the country. Summers are expected to become slightly drier in the future. Sea levels 
are projected to rise 15–40 cm by 2050, and 25–80 cm by 2085. By 2100, the rise may be 
as high as 100 cm. Due to the already low-lying area, storm surges, floods and coastal ero-
sion will likely become major challenges for the coastal region of the Netherlands in the 
future (KNMI 2015).

4.2  Cascading climate change impacts on�the�wood pellet supply system

4.2.1  The core supply chain

Tree growth and productivity are directly affected by changes to the climate, especially 
increasing temperatures and altered precipitation patterns. For instance, high temperatures 
and droughts are major causes of tree damage and mortality. Wildfires are a major threat to 
both natural forests and plantations in the southeast US and will require improved manage-
ment strategies in the future (Carter et al. 2018). Increased numbers of damaged or dead 
trees can temporarily increase the supply of feedstock to pellet mills but will decimate the 
supply in the long run (Barrette et al. 2015). In contrast, increasing atmospheric  CO2 lev-
els are generally projected to benefit forests globally, increasing the rate of photosynthesis 
and tree growth. However, the magnitude of the  CO2 fertilisation effect is unclear, and tree 
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growth would still be inhibited by lack of other nutrients, and by droughts in the southeast 
US (Susaeta et al. 2014).

Harvesting wood may be rendered impossible due to extreme weather events, such as 
heavy storms, extreme rainfall, flooding or wildfires, as e.g. operating of heavy machinery 
may become difficult or impossible. Wildfires and heavy rainfall also impact the natural 
drying of timber on the forest floor. Wildfires are also a risk to pellet mills or other forestry 
and storage facilities located close to forests. Facilities could also be susceptible to e.g. 
flooding, hurricanes or sea level rise, depending on their geographic location (Acuna and 
Strandgard 2017).

Self-heating and ignition of pellets, as well as biological degradation and pest infesta-
tion, are common problems during storage, with the risk increasing with longer storage 
periods. Dust explosions are dangerous incidents that can happen during any stage of the 
handling process, triggered by electrostatic discharge, hot surfaces or high friction tem-
peratures (Dafnomilis et al. 2018; Kymäläinen et al. 2015). All these risks may be intensi-
fied by a warmer and wetter climate. Pellet storage facilities need to be enclosed to prevent 
moisture build-up and spreading of dust, and they need to be large enough to accommo-
date large quantities of pellets while ensuring adequate ventilation (Dafnomilis et al. 2018; 
Whittaker and Shield 2017), qualities that many storage facilities in the southeast US lack 
(Diaz-Chavez et al. 2019). Many ports have storage facilities for pellets right next to the 
quay, in order to minimize handling of the pellets (which may cause damage), and reduce 
the time spent outdoors. This leaves the storage facilities vulnerable to storm surges and 
sea level rise. During rain, loading and unloading of pellets is usually seized to prevent 
degradation of the pellets (Dafnomilis et al. 2018). Increased precipitation may thus cause 
delays in supply or extend the time of storage at ports, hence increasing the risk of fire and 
biological hazards.

Disruptions to the transportation network, including ports, have been recognised as 
a significant risk to the whole economy of a region. Extreme weather events may cause 
detours, delays, accidents or cancellation of transport, incurring substantial costs for vari-
ous actors along the supply chain (Becker et al. 2018; Jaroszweski et al. 2010; Koetse and 
Rietveld 2009). During 2014–2016, four major inland flood events occurred in the south-
east US, causing casualties, injuries and health problems, as well as billion-dollar damages 
to property and infrastructure. Additionally, coastal property and transportation infrastruc-
ture in the southeast US are very vulnerable to sea level rise, hurricanes, storm surges and 
flooding. Many southeast US cities are projected to experience more than 30 days of high 
tide flooding annually by 2050 even in a low-emission scenario; the port cities of Savannah 
and Wilmington already experienced all-time records of 38 and 90 days, respectively, of 
coastal flooding in 2016 and 2015 (Carter et al. 2018). Bridges, roads and rail networks in 
the region are projected to experience the largest damages in the country by mid-century 
under both low and high emission scenarios (Carter et al. 2018; EPA 2017). Additionally, 
high winds may blow vegetation onto roads and rail lines and cause instability of high-
sided vehicles. High temperatures can cause thermal loading of roads (resulting in expan-
sion, bleeding or rutting of asphalt), and buckling of rails (Dawson et al. 2016).

The main risks for water transport are mostly evident at ports. Port facilities are suscep-
tible to impacts from sea level rise, strong winds and storm- and tidal surges. For instance, 
high waves can damage docking structures or berthed ships, or cause coastal erosion or 
sedimentation along the port channel. Flooding may impede overland access to the port or 
damage facilities in the area, while strong winds may prevent ships from docking or hin-
der loading/unloading of cargo (Yang et al. 2018). Heavy storm surges can dislodge cargo 
containers and damage terminal buildings and equipment (DOE-EPSA 2015). During 
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Hurricane Irma in 2017, several major ports in the southeast US had to be closed for opera-
tion for several days (Carter et al. 2018). Increased storminess and wave height along North 
Atlantic shipping routes could be hazardous to ships and force switching to longer, but less 
storm prone routes, resulting in increased prices and supply delays (Arent et al. 2014), as 
well as the need to allocate more resources to ship maintenance or upgrade ship structures 
(Bitner-Gregersen et al. 2018). Transportation may also experience fuel supply disruptions 
and price spikes if fuel production and distribution is adversely affected by climate change 
(DOE-EPSA 2015).

In summary, every node in the core supply chain is susceptible to climate change 
impacts that may cascade through the supply chain and disrupt pellet supply to CHP plants, 
causing a reduction in national bioenergy production (Fig. 5). This may hinder the fulfil-
ment of national emission reduction targets and potentially exacerbate climate change if 
fossil fuel-based energy production needs to be ramped up. As a hypothetical example, 
the reinforcing feedback loop R1 (the supply chain loop) shows how increased tempera-
tures and changing precipitation patterns negatively affect tree growth and productivity, 
leading to decreased opportunities for harvesting operations. Consequently, feedstock sup-
ply to pellet mills is reduced, pellet mill operations are shut down, causing pellet supply 
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disruptions at CHP plants, and hence reduced CHP plant operations. As the CHP plants 
are no longer able to run on pellets, coal is used instead, which further exacerbates climate 
change. Alternatively, the cyclical nature of the supply chain means that the feedback loop 
R1 could start with any node that is affected by climate change (such as reduced harvesting 
operations due to extreme weather events, disruptions to the transport network due to sea 
level rise, or degradation of pellets during storage due to increased temperatures), which 
would result in reduced production of pellet-based electricity and heat, a ramp-up of coal-
fired power plants and a further increase of climate change.

4.2.2  Other sectors and infrastructures

Demand and price projections for timber and other wood products are uncertain but have 
been trending downwards in the US since the 1990s (Vose et  al. 2018). However, an 
upsurge in future forest product demand has been projected by e.g. Wade et  al. (2019), 
which would result in increased profitability and hence increased operations of the for-
est industry. This is also reflected in the reinforcing feedback loop R2 (the forest industry 
loop) in Fig. 6, which shows how increased forestry operations incentivise streamlining and 
ramping up of harvesting operations, further increasing the profitability of the forest indus-
try. The effect on the pellet industry is twofold: if high-quality wood industry operations 
are increased, the availability of residues for pellet production also increases, while the 
opposite is true when low-quality wood industry operations are increased, due to increased 
competition for feedstock (Lal et al. 2011; Susaeta et al. 2014).

The profitability of the forest industry could decrease if adverse climate change impacts 
on forests and plantations, such as wildfires or droughts, affect the availability of wood, 
which would also reduce the supply of residues to pellet mills. Simultaneously, decreased 
competition from other low-quality wood operations due to reduced profitability could 
temporarily redirect the remaining residues to pellet mills (Lal et al. 2011). Additionally, 
increased tree growth due to  CO2 fertilisation could potentially result in increased feed-
stock production in the long run and hence lower prices and increased demand for forest 
products. However, recent hurricanes in the southeast US have previously resulted in bil-
lions of dollars in economic losses for the forest industry, which suggests that economic 
losses are likely to outweigh any positive gains (Susaeta et al. 2014).

Several studies project that recreational visits to forests will increase in a warmer cli-
mate, as forests provide shade and lower temperatures than urban areas (Lal et al. 2011). 
This may entail greater pressure from the public and tourism sector to keep forests intact. 
Additionally, the need for nature conservation may increase if threats to forest biodiver-
sity and wildlife are anticipated due to climate change. However, as the southeast US for-
ests are mainly privately owned and not a hotspot for nature tourism, the effect of these 
pressures on land-use patterns is uncertain. Furthermore, concerns over reduced suitability 
of agricultural land in the Midwest US due to climate change have spurred an interest in 
expanding agricultural areas in the southeast (McNulty et  al. 2015), which may prompt 
some southeast forest owners to shift to agriculture in the hope of greater revenues. All 
these factors affect harvesting operations, and hence the pellet industry, as competition for 
land-use increases.

Climate change induced disruptions to electricity and ICT services could have cas-
cading risks for all nodes in the supply chain (Horrocks et al. 2010). For instance, elec-
tricity outages could inhibit operations at mills or ports (Uasuf and Becker 2011), while 
making road transportation more hazardous by shutting down road lighting and traffic 
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signals. Fant et al. (2020) estimated future climate change induced damages, and sub-
sequent economic costs, to electricity transmission and distribution infrastructure in the 
US to be substantial, with the southeast region being one of the most vulnerable areas. 
Furthermore, the dependence on and demand for electricity and ICT services will most 
likely accentuate in the future due to e.g. population growth, the electrification of trans-
port and the introduction of smart grids and ‘internet of things’ (Markolf et  al. 2019; 
Steinberg et al. 2020), potentially leading to price increases or electricity grid overloads 
(Martinich and Crimmins 2019). Increased demand could also lead to improvements in 
and build-outs of the electricity and ICT supply networks, thus benefiting supply chain 
operations.
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4.2.3  Global bioenergy market

Climate change may affect the global bioenergy market, and through both direct and indi-
rect connections, these effects may cascade through the network and impact the supply 
chain (Fig. 7). For instance, adverse climate change impacts on feedstock production may 
increase the price for pellets, which in turn increases supply costs for CHP plants and sub-
sequently affects the price paid by consumers (Langholtz et  al. 2014). Furthermore, the 
pellet market is characterised by long-term contracts with suppliers sourcing from specific 
plantations (Roni et  al. 2018), which increases the risk of supply shortages due to local 
disruptions induced by climate change. In the southeast US, pellet demand and production 
are expected to increase (Wade et al. 2019), which may redirect higher quality pulpwood 
and saw logs directly towards pellet production, resulting in higher quality pellets. On the 
other hand, a simultaneous increase in demand for high-quality wood products would leave 
mainly low-quality wood and by-products for pellet production purposes (Diaz-Chavez 
et al. 2019). This may complicate the fulfilment of specific industrial-grade quality stand-
ards of pellets used in CHP plants in the EU (Olsson and Hillring 2014), perhaps dampen-
ing demand. The counteracting forces of demand and price fluctuations are illustrated in 
Fig. 7 by two simplified feedback loops. The reinforcing pellet demand loop (R3) shows 
how increasing pellet demand enhances pellet mill operations and causes pellet supply to 
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CHP plants to increase, resulting in a pellet price drop, which further increases demand. 
The balancing pellet price loop (B1) shows how low pellet prices negatively affect the prof-
itability of pellet mill operations, thus reducing pellet production and supply to CHP plants, 
causing pellet prices to increase once again in response to a pellet shortage on the market.

Another set of counteracting forces are found when looking at the effects of increased 
research and innovation, brought about by the need for more climate-friendly products, on 
pellet demand. On the one hand, research and innovation may result in pellets of higher 
quality and more sustainable production processes, which would increase the demand for 
pellets and further incentivise research and innovation in the field of pellet production 
(Mandley et  al. 2020), as depicted by the reinforcing innovation loop R4 in Fig.  7. For 
instance, innovations such as bioenergy with carbon capture and storage (BECCS) could 
provide solutions to the ‘carbon debt’ resulting from biomass combustion3 and increase the 
sustainability of bioenergy, resulting in increasing demand, provided that social and politi-
cal barriers are overcome. Although the uptake and commercialisation of BECCS is yet 
to be realised at scale, most mitigation scenarios that limit the global temperature rise to 
1.5–2 °C assume substantial utilisation of BECCS (Fridahl and Lehtveer 2018).

On the other hand, pellet-based energy production will likely face competition from 
new types of bioenergy in the future, such as pyrolysis oil, as well as from other uses of 
lignocellulosic biomass in accordance with national bioeconomy transition strategies, thus 
dampening the demand for pellets. However, projections regarding the uptake and com-
mercialisation of new bioenergy forms or biobased products are ambiguous. Furthermore, 
emphasising the ‘cascading principle’ for biomass utilisation could result in more bioen-
ergy being produced from used products at the end of their lifetime (Mandley et al. 2020) 
and lessen the demand for pellets made from primary sources.

4.2.4  Policies and regulatory frameworks

Both the supply chain operations themselves, as well as the global bioenergy market, 
are heavily influenced and guided by national, regional and international climate change 
mitigation policies (Fig. 8). Political support for bioenergy is likely to increase as climate 
change progresses (Mandley et al. 2020), resulting in a steady increase in pellet demand in 
the EU in the future. However, whether managed tree plantations sequester more or less 
carbon than natural forests is an ongoing debate that may shift political support from pro-
moting forestry operations to reverting forests to a more natural state to mitigate climate 
change (Webster 2019), influencing the profitability of the forest industry and its opera-
tions. Adverse impacts on forests may also result in protectionist measures being imple-
mented by national governments, as has occurred in the food sector: Local disruptions to 
agricultural yields have resulted in political decisions to ban exports of the affected com-
modity, causing a shortage on the global market and price spikes around the world (Chal-
linor et al. 2018). A similar scenario could play out for bioenergy feedstock, as illustrated 
in Fig.  8: the reinforcing protectionist loop (R5) highlights how adverse climate change 
impacts on pellet feedstock and hence pellet production in US pellet mills may result 
in national protectionist measures, which would hamper the international pellet trade, 

3 The carbon debt refers to the initial release of  CO2 upon harvesting and combustion of wood, which is 
supposedly offset when growing trees sequester the same amount of  CO2 (Mitchell et al. 2012).
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reducing pellet supply to European CHP plants, incurring a pellet price spike, resulting in 
reduced pellet demand, which would hamper pellet production globally.

The EU RED II (Renewable Energy Directive) specifies sustainability criteria for for-
est biomass used for large scale (> 20 megawatt) production of fuels, electricity or heating 
and cooling, to ensure legality of harvesting, forest regeneration, protection of high con-
servation value areas, minimisation of impacts on soils and biodiversity and maintaining 
the long-term production capacity. Compliance can be demonstrated through national or 
regional legislation comprising the harvesting area, or through internationally recognised 
third party legislation at the forest holding level. Additionally, criteria pertaining to mini-
mising negative effects on the forest carbon stock can be verified by assuring that the coun-
try of origin is a party to the Paris Agreement, has a national system for LULUCF (land-
use, land-use change and forestry) reporting, or that appropriate management systems are 
in place at the forest holding level (EC 2018). Dwindling US support for the Paris Agree-
ment as was seen during the President Trump era, and a subsequent withdrawal, would 
require US pellet producers to show compliance with EU sustainability criteria through 
e.g. third-party certification or private standards (Webster 2019). Many large forest own-
ers and pellet manufacturers have voluntarily joined a certification program, but this is 
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Fig. 8  CLD showing how the sub-systems of the core supply chain (in black), other sectors and infra-
structure (in light brown) and the global bioenergy market (in red) are connected to policies and regula-
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tices. A description of every node and link can be found in Table 6 in the Appendix
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often prohibitively expensive and difficult for small private landowners (Diaz-Chavez et al. 
2019). In fact, according to Poudyal et al. (2019), green certification among southeast US 
private forest owners is rare.

Approximately 82% of the forests in the southeast US is privately owned (Oswalt et al. 
2018), and hence, the US government has no authority to require any form of certifica-
tion of sustainability. However, various state or federal entities (e.g. US Forest Services, or 
US Environmental Protection Agency) give recommendations for land-use and best man-
agement practices (BMPs) to private forest owners, in order to ensure sustainable use and 
compliance with federal nature conservation laws. If new evidence of climate risks to, or 
negative effects from bioenergy utilisation on forests emerge, recommendations for BMPs 
for private forest owners may change (Parish et  al. 2018), affecting the decision by for-
est owners to allow logging and other forestry practices in their forests. However, incor-
porating climate change projections into management recommendations has hitherto been 
scarce (Carlton et al. 2014).

4.2.5  Human and social environment

Several factors influence how private forests are being used in the US. In general, the 
larger the forest holding, the more inclined are the forest owners to engage in harvesting. 
A fair price, a steady market and stimulating investment opportunities, but also prospects 
to address environmental problems or climate change and benefit the local community, 
have been found to influence the decision by private forest owners to sell wood specifically 
for bioenergy production (Paula et al. 2011). A strong (weak) timber market means more 
(less) incentives for private forest owners to increase the forested area and implement forest 
adaptation management measures that increase resilience to climate change (Duden et al. 
2017), such as diversifying the forest to include different species of different age, changing 
to more tolerant tree species, reducing tree density, using prescribed fire, protecting water-
sheds or adapting forest roads to flood hazards (Susaeta et al. 2014; Vose et al. 2018). An 
increased availability of harvesting and thinning residues from enhanced adaptation man-
agement operations may increase the availability of feedstock to pellet mills, but simultane-
ously shift the feedstock supply towards more low-quality wood (Fingerman et al. 2019).

Boby et  al. (2016) surveyed climate change perceptions among professional foresters 
working for private forest owners in the southern US and found that 60% believe that cli-
mate change is real, but only ca. 14% attributed climate change solely to human causes. 
Personal observations of climate change impacts are strongly related to the perception of 
climate change as a real threat (Boby et al. 2016), and scepticism towards climate change 
hinders the implementation of adaptation measures (Morris et al. 2016). Private forest own-
ers who believe in human-caused climate change tend to be more inclined to not engage in 
harvesting and instead promote the regeneration of natural forests. A perceived increase in 
climate change impacts or heightened awareness of climate change among private forest 
owners and foresters may therefore reduce motivation for harvesting, while simultaneously 
incentivise adaptation management (Khanal et al. 2017). However, increased awareness of 
climate change may influence the decision of forest owners to sell feedstock specifically to 
pellet mills in either direction, depending on whether they perceive bioenergy production 
to be a viable mitigation strategy or not (Dulys-Nusbaum et al. 2019; Gruchy et al. 2012).

The forestry sector is associated with rural areas, where the population tends to be dis-
proportionately more vulnerable to climate change than in urban regions, due to poverty, 
high unemployment rates, limited access to healthcare and an aging population. In fact, 
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the southeast US is struggling with persistent poverty in many counties (Lal et al. 2011) 
and a range of socially and economically adverse impacts on different sectors is projected, 
making the region one of the most vulnerable in the country (Hsiang et al. 2017). Poverty 
substantially reduces the adaptive capacity of the communities. For instance, Gaither et al. 
(2011) showed that socially vulnerable people in the southeast US are less likely to imple-
ment wildfire prevention measures on their land, and less able to recover from wildfires 
than more affluent people in the region.

Additionally, labour productivity is expected to decrease substantially due to extreme 
heat; by the end of the century under RCP8.5 without adaptation, the southeast US is 
projected to experience a loss of 570 million labour hours annually in high-risk sectors, 
including forestry, compared to a 2003–2007 baseline (EPA 2017). The reinforcing social 
vulnerability loop (R6) in Fig.  9 shows the connection between the forest industry and 
social wellbeing: Increased awareness of climate change may decrease some forest owners’ 
willingness to engage in harvesting operations, which negatively affects the profitability of 
the forest industry. This in turn increases social vulnerability of the associated community 
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Fig. 9  CLD showing how the sub-systems of the core supply chain (in black), other sectors and infrastruc-
ture (in light brown), the global bioenergy market (in red) and policies and regulatory frameworks (in pur-
ple) are connected to the human and social environment (in turquoise). More connections mean greater 
potential for climate change impacts (in blue) to cascade through the network. R6 refers to the social vul-
nerability loop and R7 to the public support loop described in the text. Some connections identified in the 
previous CLDs, but not directly related to the new connections, have been removed to improve readability. 
LQW = low-quality wood, HQW = high-quality wood. A description of every node and link can be found in 
Table 7 in the Appendix
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as unemployment rates increase, also negatively affecting the rest of the forest owners in 
the area, who may be forced to shift to more profitable activities such as agriculture or 
nature tourism, further reducing the profitability of the forest industry.

Pine plantations are less biodiverse than natural forests (Duden et al. 2018) and hence poten-
tially more vulnerable to climate change induced disturbances, which further increases the pres-
sure from NGOs and the public to protect natural forests from plantation conversions in the face 
of climate change (Aggestam et al. 2020). Nevertheless, citizens in the southeast US tend to 
support the local forest industry and oppose too strict involvements by the government in pri-
vate forest owners’ management decisions (Kreye et al. 2019). In addition, increased pellet pro-
duction may help counteract other major threats to southeast forests, namely, urbanisation and 
expansion of agricultural areas. Furthermore, pellet mills can offer an outlet for excess logging 
residues and low-quality wood, which would otherwise be left on the ground to decompose or 
burned on-site, releasing  CO2 to the atmosphere (Dale et al. 2017).

Within the EU, bioenergy is generally perceived to be highly supported by the public, which 
in turn stimulates the expansion and promotion of bioenergy policies and subsequently inter-
national trade (Ejelöv and Nilsson 2020; Magar et  al. 2011). However, the confusion about 
different carbon accounting practices and the ‘carbon debt’ debate has shed doubt on the sus-
tainability of the pellet trade (Parish et  al. 2018) and wood-based bioenergy more generally 
(Searchinger et al. 2018), which may swing the pendulum of the publics’ perception against 
increased bioenergy use (Vainio et al. 2018). Whether the use of imported pellets from the US 
results in net GHG savings in the EU is contested, and depends on different modelling assump-
tions. Over longer timescales and with a landscape approach, lifecycle GHG emission reduc-
tions are generally assumed (Dwivedi et al. 2019; Galik and Abt 2016; Jonker et al. 2014). The 
reinforcing public support loop (R7) in Fig. 9 illustrates the boosting effect of public support 
for bioenergy on political support for bioenergy, which incentivises technological innovation in 
the field, potentially finding solutions to sustainability issues of bioenergy production, further 
increasing public support. If public support dwindles, however, the feedback effect dampens 
research in the bioenergy field, which leaves sustainability issues unsolved.

4.2.6  The natural environment

Changes to temperatures, precipitation patterns, frequency and intensity of extreme events or 
occurrence of wildfires could alter growing conditions of forests and plantations, such as soil 
properties or the extent of the growing season. This in turn would affect forest health, growth 
and productivity, regeneration success and forest structure (Halofsky et al. 2018). Damaged or 
stressed trees are less able to withstand e.g. strong winds or pathogen infestations (McNichol 
et al. 2019), exacerbating the vulnerability of the forest to climate change impacts.

Geographically, the southeast US is a climatic transition zone between temperate and tropi-
cal climates (Carter et al. 2018), and ecosystems are in many places located at thresholds where 
even relatively small climatic changes can trigger ecological regime shifts. Especially reduc-
tions in winter air temperature extremes will likely have a significant impact on species distri-
butions, with implications for both forest tree species competition and the prevalence of tree-
damaging insects and pathogens (Carter et al. 2018; Halofsky et al. 2018). The southern pine 
beetle already causes major economic damage to pine plantations, and increased winter temper-
atures may further increase over-wintering survival rates and prolong the breeding season of the 
insect (McNulty et al. 2013). A westward migration of tree species due to changing precipita-
tion patterns has been noticed in the region (Fei et al. 2017), and a transformation of forests into 
more open woodlands due to hotter and drier conditions in the southeast is considered one of 
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the most profound potential impacts of climate change on the US (McNulty et al. 2013). Such 
changes to species distributions and compositions could affect the viability of the forest industry 
in the region in the long term (Lal et al. 2011). The balancing forest transformation loop (B2) 
in Fig. 10 illustrates how climate change induced species redistributions and ecological regime 
shifts negatively affect the profitability of the forest industry, which causes a reduction in har-
vesting operations. This results in forests slowly reverting to a more natural state, which is gen-
erally believed to improve the resilience of forests to climate change. If forests are perceived to 
be in a resilient state, pressure from the public to protect forests decreases and political support 
for logging operations are free to ensue, increasing harvesting operations once more.

Many of the ecosystem services that southeast communities depend on could degrade 
because of climate change, which would further increase social vulnerability in the area 
(Carter et al. 2018). This is illustrated in Fig. 10 by the reinforcing ecosystem services 
loop (R8), which shows how climate change adversely affects ecosystem resilience and 
therefore the provision of ecosystem services, exacerbating social vulnerability. This 
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ple), and the human and social environment (in turquoise) are connected to the natural environment (in 
green). More connections mean greater potential for climate change impacts (in blue) to cascade through 
the network. R8 refers to the ecosystem services loop and B2 to the forest transformation loop described 
in the text. Some connections identified in the previous CLDs, but not directly related to the new connec-
tions, have been removed to improve readability. LQW = low-quality wood, HQW = high-quality wood. A 
description of every node and link can be found in Table 8 in the Appendix
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in turn decreases the adaptive capacity of the community, resulting in less forest adap-
tation management measures being implemented, hence increasing the vulnerability 
of forests to climate change. This in turn causes social vulnerability to increase even 
further.

4.3  Summary of�results

The most important direct climate change impacts on the wood pellet supply chain, as well as 
potential cascading impacts stemming from the other sub-systems, are presented in Table 1. 
Direct impacts on plantations, production, storage and transportation can affect the supply of 
pellets in the short-term, due to e.g. extreme weather events, or in the long-term if growing 
conditions become less favourable in the southeast US. Furthermore, framing the wood pellet 
supply system in a wider socio-economic-environmental context shows that the availability 
of raw material for pellet production is affected by competing uses, while trends on the global 
bioenergy market may cause price volatility or fluctuations in demand. Policies pursuing more 
stringent climate and energy targets may push for an increase in the use of bioenergy, while 
sustainability and quality requirements may complicate the procurement of raw material.

The availability of raw material depends on forest owners’ decision to harvest, which 
is conditioned on their economic situation and social context. Increased awareness of 
climate change among both forest owners and the public may result in increased support 
for bioenergy, while recognition of sustainability issues concerning carbon neutrality or 
adverse impacts on biodiversity may have the opposite effect. These complex linkages 
within the social system are further complicated by the connections to the natural 
environment, where climate change can reinforce existing trends, negatively affecting 
growing conditions, tree species distributions or the prevalence of pests and pathogens.

The CLD approach allows for an examination of potential future trajectories of 
change based on whether the effects of the feedback loops are reinforcing (indicating a 
highly dynamic situation) or balancing (indicating a more stable situation). The analysis 
reveals a large number of connections and feedback loops, of which only a handful 
received further scrutiny (see Table 2). The feedback loops described here were chosen 
as plausible examples of feedback effects within each of the sub-systems. An interesting 
observation is the fact that most of the loops in the system are reinforcing as opposed to 
balancing, which indicates a system in disequilibrium and may point to a tendency for 
amplification of climate change impacts on the system.

Taking a closer look at the complex network of connections in Fig. 10, which incorporates 
all the sub-systems, reveals many counteracting forces in the system as well as several links and 
potential cascading impacts that are not perhaps obvious but still highly relevant for the continua-
tion of pellet supply to the EU (see the Appendix for explanations with references for all the nodes 
and links in the CLDs). For instance, an increased awareness of climate change among private 
forest owners in the US may have either an increasing or a decreasing effect on international pel-
let trade, depending on the situation: On the one hand, the forest owners may start implementing 
adaptation management measures in their forests, which would increase the amount of low-quality 
residues for pellet feedstock, thus decreasing the quality of and hence demand for US pellets, con-
sequently dampening international trade. On the other hand, increasing adaptation management 
measures may also lead to reduced vulnerability of forests to climate change, which would lead 
to reduced pressure from the public to protect forests and simultaneously increase public support 
for pellet production, thus increasing the political support for bioenergy, which is the main driver 
of the international pellet trade. Additionally, increased climate change awareness may also lead 
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to reduced willingness of forest owners to engage in harvesting, thus reducing harvesting opera-
tions and hence the profitability of the forest industry. This may increase social vulnerability in the 
affected communities, which decreases adaptive capacity and hence reduces adaptation manage-
ment measures implemented by land owners, resulting in increased vulnerability of the natural 
environment to climate change, increased conservation pressure from the public and decreased 
political support for bioenergy and hence international pellet trade. Tangling out all of the inter-
connections and the potential cascading impacts they may entail for the pellet supply system 
would be an interesting task that is beyond the scope of this paper.

Table 1  Summary of the most important direct and cascading impacts on the wood pellet supply chain. SLR 
sea level rise

Sub-system Climate change impacts

The supply chain Tree damage/mortality due to high temperatures, droughts, wildfires
Logging and harvesting impeded by wildfires and extreme weather
Pellet mills at risk from wildfires, flooding, hurricanes
Storage is more challenging due to high temperatures and moist air, 

and facilities are at risk from wildfires, flooding, SLR, hurricanes
Transportation is vulnerable to SLR, hurricanes, storm surges, flood-

ing
Other sectors and infrastructure Increased competition for scarce resources

Decreased forestry activity reduces feedstock availability
Increased demand from agriculture/tourism/nature conservation may 

redirect forest use towards agricultural expansion/recreation/protec-
tion

Electricity outages or ICT disruptions impede mill/port operations and 
transport

Increased competition for electricity and ICT services
Global bioenergy market Increased prices due to adverse impacts on feedstock supply

Increased or decreased supply depending on the impacts on the timber 
market

Changes to demand because of lower quality feedstock
Competition from other forms of biomass
Increased demand due to technological innovations

Policies and regulatory frameworks Increased demand due to ramping up of climate targets
Changes to BMPs because of climate change induced/anticipated 

damages
Reduced supply from small-scale forestry due to stricter sustainability 

criteria and uncertain political milieu
Human and social environment Increased or decreased supply depending on forest owners’ decisions 

to harvest and engage in adaptation and mitigation measures
Social vulnerability impedes adaptation and exacerbates climate 

change impacts
Reduced labour productivity/availability due to climate change 

induced health issues
Increased opposition to pine plantations, harvesting or bioenergy 

production by NGOs and citizens
Natural environment Reduced growing conditions

Increased prevalence of insects and pathogens
Changes to species distributions and competitions
Transformation of forests into open woodland could adversely affect 

the forest industry
Ecosystem disturbances may exacerbate vulnerability and degrade 

ecosystem services
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5  Discussion

The study shows how a seemingly straightforward bioenergy supply chain is in fact nested 
within a highly complex and interconnected network of social, environmental, political 
and economic sub-systems, predisposing the supply chain to various cascading impacts 
of climate change that traverse different domains and are compounded or diminished 
by internal and external factors. The tendency for feedback effects in the system to be 
reinforcing rather than balancing, as highlighted by the CLD analysis, indicates that the 
system is likely to be highly dynamic in terms of future trajectories of change.

As is evident from the progressively more complicated CLDs, incorporating all the sub-
systems from the analytical framework leads to an abundance of connections and causal 
loops. While the results give an early indication of the systemic connections and potential 
cascading impacts and risks, no framework, diagram or model can completely capture all the 
connections, causal links and effects in a complex system, and hence, this representation is 
inevitably a rough simplification of the supply network and its vulnerabilities. Nevertheless, 
it does give an indication of the importance of better understanding cascading impacts in a 
globally connected energy system, and how not accounting for the interdependencies within a 
system may exacerbate the risk of maladaptation and the implementation of policies that are 
not fit for purpose.

There are two main issues that may bring further uncertainties to the results. First, scenarios 
concerning bioenergy demand, production and supply potential and resource availability vary 
tremendously between studies due to e.g. differences in objectives, timeframe, resource type, 
studied potentials (e.g. technical, economic or theoretical), approach and methodology, and 
underlying assumptions of e.g. sustainability, economic and technological development and 
population growth (Batidzirai et al. 2012). Börjesson et al. (2017) show that scenarios assuming 
substantial energy efficiency improvements and high electrification rates in all sectors produce 
substantially lower values for bioenergy demand than scenarios with slower efficiency improve-
ments and more limited electrification. Slade et al. (2014) highlight shortcomings and limita-
tions with global biomass potential scenarios and conclude that these are bound with uncertain-
ties and idealistic assumptions. Therefore, the assumption made here of increasing bioenergy 
utilisation is uncertain.

Second, there are issues related to modelling and data. For example, modelling of bioen-
ergy crop production to determine availability needs to be developed (Surendran Nair et al. 
2012). Nguyen and Tenhunen (2013) criticise energy crop production simulation models 
for not properly including socio-economic factors or local climate change impacts in their 
assumptions on future yields and production ranges. Similarly, data collection on the current 
state of bioenergy utilisation and trade within countries or regions is hampered by the insuf-
ficient detail on the origin of biomass resources, and unregistered and cascaded uses of bio-
mass. Additionally, direct and indirect trade is insufficiently covered in statistics (Dafnomilis 
et al. 2017). As a result, the assumption that the southeast US will remain a major hub for 
pellet production and the main trade partner to the EU is debatable.

In addition, surprising events or wild cards may have unforeseen effects on interconnected 
systems, suddenly and surprisingly changing the status quo. For instance, the Trump admin-
istration in the US shook the climate policy arena to its core by withdrawing support for the 
Paris Agreement and stepping down from the climate leadership role. As previously mentioned, 
retracting the US from the Paris Agreement would have resulted in difficulties for many private 
forest owners to show compliance with EU pellet sustainability criteria, perhaps forcing the EU 
to look for other trade partners (Webster 2019). Similarly, the COVID-19 pandemic brought the 
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whole world to a standstill and caused permanent changes to the economic, political and social 
domains. How the pandemic interacted with climate change impacts and what implications it 
will have for future trade or political relations important for bioenergy supply systems is yet to be 
seen (van den Hurk et al. 2020).

The results of this study are important for actors, organisations and governments that are 
engaged in any part of a bioenergy supply system. Despite a recognition among researchers 
and experts of the importance of using systems thinking within organisational management 
(Williams et  al. 2017), cascading risks, failures or impacts within international supply sys-
tems are rarely acknowledged in management or adaptation strategies of companies (Goldstein 
et al. 2018; Tenggren et al. 2019). Additionally, cascading or cross-border impacts are rarely 
accounted for in national adaptation strategies or plans (Groundstroem and Juhola 2018). Dif-
ferent types of system-based analysis tools, such as the one highlighted here, are considered 
to become ever more important in supporting adaptation action in the future (Lawrence et al. 
2020).

6  Conclusions

A climate change assessment of bioenergy supply systems is a perfect example of a complex prob-
lem. The supply chain is embedded in a network of economic, political, social and environmental 
sub-systems, all of which are affected by climate change. Due to the uncertainties as to how the 
global bioenergy market, the political arena and human behaviour will develop in the future and 
how climate change impacts will affect them, there is a pressing need to further develop analyses 
and methodological approaches to capture some of these impacts and potential feedback loops.

This study presents an analysis of cascading impacts on the wood pellet supply chain between 
the US and the EU. How future demand and supply of bioenergy will be affected by EU policies 
is still uncertain, and therefore, this study is merely an example of one of many potential biomass 
supply systems that the EU may rely upon in the future. The development of pellet imports into 
the EU depends on many factors, such as the evolvement of sustainability criteria, increased local 
demand in the US, pellet price fluctuations and developments, fossil fuel price developments and 
the emergence of new low-carbon technologies (Mandley et al. 2020). Nevertheless, the wood 
pellet supply system reflects an already established supply network, which is projected to become 
even more important in the future, and as such is well suited for the purpose of this study.

In addition to advancing and improving methodologies to assess cascading impacts, it will 
become more pertinent to develop policies regarding adaptation to these risks. Even though sup-
ply chain management is the responsibility of companies, incorporation of climate risks and 
adaptation, especially concerning indirect, cross-border and cascading impacts, is insufficient 
among private companies for a variety of reasons (Goldstein et al. 2018; Tenggren et al. 2019). 
Hence, national governments should be involved in setting up regulatory frameworks or coopera-
tion strategies for strengthening adaptation to such risks within companies that provide commod-
ities or services of national importance, such as bioenergy. Identifying and planning for potential 
cascading impacts stemming from international bioenergy supply networks, should be a top pri-
ority for governments promoting national bioeconomies.
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Description with references of the links between variables in the CLDs
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