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Abstract  15 

1. Areas that contain ecologically distinct biological content, called bioregions, are a central 16 

component to spatial and ecosystem-based management. We review and describe a variety 17 

of commonly-used and newly-developed statistical approaches for quantitatively 18 

determining bioregions.  19 

2. Statistical approaches to bioregionalisation can broadly be classified as two-stage 20 

approaches that either ‘Group First, then Predict’ or ‘Predict First, then Group’, or a newer 21 

class of one-stage approaches that simultaneously analyse biological data with reference to 22 

environmental data to generate bioregions. We demonstrate these approaches using a 23 

selection of methods applied to simulated data and real data on demersal fish. The methods 24 

are assessed against their ability to answer several common scientific or management 25 

questions. 26 

3. The true number of simulated bioregions was only identified by both of the one-stage 27 

methods and one two-stage method. When the number of bioregions was known, many of 28 

the methods, but not all, could adequately infer the species, environmental, and spatial 29 

characteristics of bioregions. One-stage approaches however, do so directly via a single 30 

model without the need for separate post-hoc analyses and additionally provide an 31 

appropriate characterisation of uncertainty.  32 

4. One-stage approaches provide a comprehensive and consistent method for objectively 33 

identifying and characterising bioregions using both biological and environmental data. 34 

Potential avenues of future development in one-stage methods include incorporating 35 

presence-only and multiple data types as well as considering functional aspects of bioregions.   36 

 37 
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1. Introduction 40 

As human pressures on natural systems increase, understanding and predicting the distribution of 41 

biodiversity has become vital for managing marine habitats. One important task is to define 42 

coherent and ecologically meaningful spatial units that can aid in planning, evaluating and 43 

implementing spatial management options. These spatial units are particularly useful for a diverse 44 

range of applications including: designing monitoring efforts, managing human activities (especially 45 

in marine protected area designation) and informing the relative scales required for ecosystem 46 

based assessments (Koubbi et al. 2011; Baker & Hollowed 2014; Rose et al. 2016; Hill et al. 2017; 47 

Stephenson et al. 2018; Koen-Alonso et al. 2019). This task requires identifying where different 48 

groups of species, or distinct assemblages, are found and has been variously termed 49 

ecoregionalisation, biogeographic classification, ecological mapping, and bioregionalisation (Woolley 50 

et al. 2019). Here we use ‘bioregionalisation’ to describe the process of identifying individual 51 

‘bioregions’ which are geographic regions that are relatively homogeneous and distinct in terms of 52 

their biological contents.  53 

Bioregionalisation is not a new concept. Early marine bioregionalisations drew on data from limited 54 

biological collections and expert knowledge to draw spatial boundaries (Ekman 1953; Hedgpeth 55 

1957) and many global or large-scale bioregionalisations still rely heavily on the input of expert 56 

knowledge in various forms (GOODS UNESCO (2009), MEOW Spalding et al. (2007)). Since the 57 

widespread availability of remotely-sensed data, many bioregionalisations have used statistical 58 

methods to classify environmental data into distinct groups (Raymond 2014; Roberson et al. 2017; 59 

Sayre et al. 2017). The assumption underlying this approach is that different environments are 60 

representative of distinct habitats and should contain different assemblages of species, thus 61 

reflecting biogeographic patterns. However, evidence supporting this assumption is equivocal 62 

(Rickbeil et al. 2013; Ware et al. 2018). Where a reasonable amount of biological data exists for a 63 

region of interest, an alternative, and arguably more representative, approach is to explicitly 64 
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incorporate it into a quantitative analysis. Quantitative, biologically-derived bioregions incorporate 65 

patchy biological data into statistical models that directly relate the distribution and abundance of 66 

multiple species to broader-coverage environmental data (Rubidge, Gale & Curtis 2016; Hill et al. 67 

2017; Woolley et al. 2019). We refer readers to (Woolley et al. 2019) for a detailed discussion on the 68 

current state of marine bioregionalisation. Presently, quantitative bioregionalisations that explicitly 69 

incorporate biological data are most feasible at small to large regional scales. We also note that 70 

while we focus on marine systems, terrestrial bioregionalisation and vegetation classification have 71 

undergone analogous evolution (Köppen 1884; Lyons, Foster & Keith 2017) and most of the concepts 72 

and analytical approaches that we discuss are applicable to terrestrial systems. 73 

Analytical approaches to bioregionalisation that incorporate both biological and environmental data 74 

can broadly be classified into two-stage or one-stage approaches (Woolley et al. 2019). Two-stage 75 

approaches are most common, in which either biological groups are first determined and then 76 

related to their environment (‘Group First, then Predict’) or species are related to their environment 77 

and then biological groups identified (‘Predict First, then Group’). Ferrier and Guisan (2006) provide 78 

a definition of these approaches in a related setting. Within the ‘Predict First, then Group’ approach, 79 

methods that predict the turnover in community composition (beta diversity) rather than the 80 

species themselves are becoming increasingly popular for bioregionalisation (Ferrier et al. 2007; 81 

Leaper et al. 2011; Ellis, Smith & Pitcher 2012; Stephenson et al. 2018). The introduction of models 82 

that jointly predict multiple species distributions, but not bioregions per se (e.g. Warton et al. 83 

(2015a); Ovaskainen et al. (2017)) with reported superiority in predicting community-level patterns 84 

(Norberg et al. 2019) also advance two-stage methods. In a one-stage approach, biological groups 85 

and their relationship with the environment are defined in a single model (i.e. analysed 86 

simultaneously), and various implementations of this have recently become available (ter Braak et al. 87 

2003; Dunstan, Foster & Darnell 2011; Foster et al. 2013). Noted advantages of one-stage 88 

approaches are the direct ecological interpretation of bioregions and appropriate characterisation of 89 



5 
 

uncertainty in the distribution of bioregions (Hill et al. 2017; Lyons et al. 2017; Fiorentino, Lecours & 90 

Brey 2018). 91 

As many jurisdictions are moving rapidly toward implementation of marine spatial planning and 92 

ecosystem approaches to management that require bioregion information as a key input (e.g. Koen-93 

Alonso et al. (2019)), it is timely to review recent methodological developments for 94 

bioregionalisation. We categorise a range of modelling approaches available for bioregionalisation 95 

into one of the three approaches listed above and apply a selection of methods to simulated data 96 

and a more complex, real dataset of occurrences of demersal fishes on the Kerguelen Plateau.  97 

We demonstrate each of the approaches and focus our comparison on how the approaches answer 98 

five core questions that allow ecologists and managers to interpret and use bioregionalisations:  99 

i) How many bioregions are there? 100 

ii) What is the spatial distribution of each bioregion across our region of interest? 101 

iii) What species characterise these bioregions? 102 

iv) What are the environmental characteristics of each bioregion? 103 

v) How certain are we about the distribution of bioregions and their composition? 104 

We acknowledge that for particular applications other aspects, such as spatial scale and coherence, 105 

may also be relevant, but do not consider them in detail here. We then explore the advantages and 106 

disadvantages of the approaches from a statistical and ecological viewpoint. Finally, we discuss 107 

future research directions for statistical approaches to bioregionalisation.  108 

2. Materials and Methods 109 

2.1 Categorising quantitative approaches to bioregionalisation  110 

Quantitative approaches are categorised as two-stage if they separate the two components of 111 

bioregionalisation (i.e. identifying biological groups and relating biology to environmental 112 

characteristics), and one-stage if they delineate bioregions based on a simultaneous use of biological 113 



6 
 

data and their relationship to environment. Two-stage approaches can be further divided according 114 

to which component occurs first, and by how the biological components are modelled. Here we give 115 

an overview of the approaches (Fig. 1) and their ability to address key questions (Table 1). We very 116 

briefly introduce the methods selected for comparison and refer readers to Appendix 1 for a 117 

comprehensive description of each method. 118 

  119 

Fig. 1. Conceptual framework for bioregionalisation approaches and a selection of approaches that 120 

fall within each of these categories. Asterix (*) indicate methods compared in this paper and 121 

described in detail in Appendix 1. 122 

2.1.1. Two-Stage Analyses: Group First, then Predict 123 
In a ‘Group First, then Predict’ approach, biological data at sampled sites are first clustered to 124 

represent groups of relatively homogenous species composition, and these groups are secondarily 125 

related to environmental data. The first stage (clustering) addresses how many groups or bioregions 126 

can be defined. While there are many approaches to clustering data (Kaufman & Rousseeuw 1990), 127 

here we focus on hierarchical clustering because it is a popular approach used by ecologists (e.g. 128 

Rubidge et al. (2016); Bloomfield, Knerr and Encinas-Viso (2018)). Similarly, many metrics are 129 

available to determine the optimal number of clusters and we use the popular metric, average 130 
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silhouette width (Rousseeuw 1987). The second stage relates thegroups into which each site has 131 

been clustered toenvironmental data to allow prediction of bioregions. This is typically done using a 132 

single model for each group (e.g. Cooper et al. (2019)), or by using a multinomial technique (e.g. 133 

Rubidge et al. (2016)). Here for the second stage of our analysis we used Random Forests (RF; 134 

Breiman (2001), a method that produces an ensemble of classification trees, because it generally has 135 

a high predictive power and is becoming increasingly popular for single species distribution 136 

modelling. Characterising the bioregions produced by the ‘Group First, then Predict’ approaches 137 

usually involves generating summary statistics from the clustered site data (Table 1).  Note that 138 

many methods for predicting bioregions can produce estimates of uncertainty, but these only 139 

represent a portion of the variability in the analysis as they do not account for variability in 140 

clustering. This includes the methods demonstrated in this work.  141 

2.1.2. Two-Stage Analyses: Predict First, then Group 142 
Under a ‘Predict First, then Group’ approach, the distribution of individual species or a 143 

representation of community turnover is modelled and predicted across the region of interest, and 144 

these predictions are subsequently clustered to represent bioregions. We divide this approach into: i) 145 

stacked species distribution models, which model each species independently and then compile 146 

(‘stack’) predictions to generate species composition for each prediction cell (Norberg et al. 2019); ii) 147 

multi- species distribution models , that jointly model and predict the distribution of multiple species 148 

at once (Ovaskainen et al. 2017); and iii) community turnover approaches, which depict how the 149 

composition of communities change through space as a function of the environment (Ferrier et al. 150 

2007; Ellis et al. 2012). Common to all ‘Predict First, then Group’ approaches, the number of groups 151 

and their spatial distribution is determined in the second stage of the analysis by clustering the 152 

predicted species composition, turnover of species composition or transformed environmental 153 

space at cells in the region of interest. Like the ‘Group First, then Predict’ approaches, the species 154 

and environmental characteristics of groups are usually determined by summarising classified site 155 

data and uncertainty is only characterised for one of the stages (Table 1).  156 
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In the stacked species distribution approach, there are a multitude of methods for modelling single 157 

species distributions ranging from variations on linear and generalised linear models (GLM) to a vast 158 

array of machine learning approaches. We use Random Forests to model the distribution of each 159 

species individually because of the advantages noted above and to facilitate fair comparisons 160 

between the approaches. 161 

In the multi-species distribution approach we use the recently-developed, Bayesian Joint Species 162 

Distribution modelling framework called Hierarchical Modelling of Species Communities (HMSC; 163 

(Ovaskainen et al. 2017)). This framework is built upon multi-response generalised linear models 164 

(GLMs) and has shown promise for a number of distribution modelling applications (Ovaskainen et al. 165 

2017). Our implementation uses latent variables to account for spatially structured species’ co-166 

occurrences and enhance spatial prediction capacity. We also use a recently- developed multi-167 

species implementation of the machine learning method Artificial Neural Networks (Mistnet, Harris 168 

(2015)) as neural networks are inherently able to model complex and non-linear relationships and 169 

interactions, a counter point to HMSC which is based on GLMs, and have been shown to have good 170 

predictive ability.  171 

Of the compositional turnover (beta diversity) approaches, we used the popular Generalised 172 

Dissimilarity Modelling (GDM) and Gradient Forests (GF) methods. In GDM a pairwise biological 173 

dissimilarity metric (e.g. Jaccard) is modelled as the response variable and the corresponding site-174 

wise differences in each of the environmental variables as the predictor variables in a regression 175 

spline GLM (Ferrier et al. 2007). Spatial predictions are made by transforming the environmental 176 

differences between pairs of prediction cells using the function identified by the GDM model and 177 

processing the outputs as described in section 3.1.1. Recently a bootstrapped version of GDM 178 

(bbGDM) has been developed to account for that fact that pairwise dissimilarities are not 179 

independent and violate the assumptions of GLMs (Woolley et al. 2017). Gradient Forests aggregate 180 

information from single-species Random Forests to build functions of how species composition 181 
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changes along environmental gradients (Ellis et al. 2012). Predictions are made by transforming the 182 

environmental covariates at all cells across the region of interest using these functions followed by 183 

clustering. 184 

2.1.3. One-stage Analyses 185 
In a One-Stage approach to bioregionalisation, biological groups and their relationship with 186 

environmental data are defined in a single model or analysed simultaneously. This means that 187 

groups (and their associated species composition) can be directly predicted across the region of 188 

interest with measures of uncertainty that encapsulate the entire analytical process. Also, the 189 

species composition and environmental characteristics of groups are derived directly from model 190 

parameters (Woolley et al. 2013; Leaper et al. 2014; Hill et al. 2017). As opposed to silhouette width 191 

or other discrimination metrics, the number of groups within one-stage approaches is currently 192 

chosen based on the model likelihood, using the Bayesian Information Criterion (BIC). Limited 193 

methods are available for one-stage approaches, which currently include Species Archetype Models 194 

(SAMs; Dunstan et al. (2011); Dunstan et al. (2013)), Regions of Common Profile models (RCPs; 195 

Foster et al. (2013) but also see ter Braak et al. (2003)) and Multivariate Regression Trees (MRTs; 196 

De'ath (2002) and Appendix 1). Here we focus on SAMs and RCPs that are both types of finite 197 

mixture models. This means that they can both handle data with non-constant mean-variance 198 

relationships (e.g. abundance data; Warton et al. (2015b)). The difference between SAMs and RCPs 199 

is that SAMs form groups of species based on the species’ responses to environmental data (Dunstan 200 

et al. 2011), whereas RCPs group sites and model those sites grouping as a function of the 201 

environment data (Foster et al. 2013). 202 

2.1.1. Comparison of methods using simulated and real data: 203 

In this section, we run a selection of methods for bioregionalisation on a simulated and a real 204 

dataset. For the simulated data, we generated eight environmental variables across a hypothetical 205 

region of interest. We randomly assigned thirty species exclusively to one of three groups. These 206 
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groups responded to two of the eight environmental variables (temperature and oxygen, Table A3.1, 207 

Fig. A3.2) and we refer to the spatial distributions of these groups as the ‘true’ distributions. These 208 

data were designed to generate a distinct bioregional pattern with minimal spatial overlap between 209 

groups (see Figs. A3.3-5). Presence-absence data were randomly drawn from the probability of 210 

occurrence for each of the 30 species at 200 sites (a subset of all sites) and used as the biological 211 

data input for all methods. Further details for the simulation process are given in Appendix 3. 212 

Our real dataset consisted of the presence-absence of demersal fish recorded in 524 trawls from 213 

random stratified surveys conducted during 2006, 2010 and 2013 on the Kerguelen Plateau in the 214 

Southern Indian Ocean. For illustration purposes, the 20 species that occurred in at least 10 trawls 215 

were retained for analyses. Eight environmental variables representing seafloor (e.g. depth) and sea 216 

surface (e.g. chlorophyll-a) conditions likely to affect the distribution of demersal fish were sourced 217 

at a 0.1 degree resolution. Details on the demersal fish and associated environmental data are in 218 

Appendix 4. 219 

We compared nine modelling methods spread across the three broad modelling approaches 220 

discussed above. The approaches and the way that they answer our five key bioregionalisation 221 

questions are outlined in Table 1. As a final comparison we clustered the environmental data directly, 222 

representing bioregionalisations that do not incorporate biological data. Overall, we tried to ensure 223 

as much consistency as possible amongst the analysis steps for the different approaches to enable a 224 

fair comparison. Implementation details for each method and the derivation of comparison plots 225 

and statistics are in Appendix 2. R code to run the analyses for both the simulation and demersal fish 226 

data are provided in the supplementary material.   227 
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3. Results 228 

3.1. Simulated Data 229 

3.1.1. How many bioregions are there and what is their spatial distribution? 230 

The type of bioregion outputs produced by the different methods can be described as either hard-231 

class, where each site is assigned uniquely to a particular bioregion, or probabilistic, where each site 232 

has some chance of belonging to more than one bioregion. The three ‘true’ bioregions derived from 233 

the simulated data have a probabilistic and distinct spatial distribution (Fig. 2a). Two-stage 234 

approaches that used hierarchical clustering in the second stage produce hard classes (Fig. 2b), while 235 

the one-stage approaches have a probabilistic output (fig. 2c).  236 

Most two-stage methods identified two bioregions as optimal (Fig. 2b,c). The exceptions were the 237 

Hierarchical Bayesian Model (HMSC_HC) and multi-response neural network (MNet_HC) ‘Predict 238 

First, then Cluster’ methods, where three and five bioregions respectively were selected as optimal.  239 

Most methods that identified two bioregions discriminated bioregions 1 and 3 but did not 240 

distinguish bioregion 2. There are several options for presenting the outputs of naïve and 241 

bootstrapped GDM models (Ferrier et al. 2007). Here we cluster the predicted cell-wise 242 

dissimilarities directly (Fig. 2b, GDM_Dissim_HC) as well as the environmental space which has been 243 

transformed using the GDM model’s spline functions (Fig. 2b, GDM_TransEnv_HC). The latter is most 244 

comparable to the Gradient Forest approach. In this instance, the overall pattern in the distribution 245 

of bioregions is similar using either technique. Clustering the environmental data directly, and 246 

without any biological information, results in 11 bioregions whose distribution looks like a 247 

‘patchwork quilt’ and does not resemble the distribution of ‘true’ bioregion distributions (Fig. 2a). 248 

While the two-stage BioHC_RF method produces a probabilistic output that broadly distinguishes 249 

two groups, it has an increased degree of patchiness in predictions compared to the methods with 250 
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hard-class outputs (Fig. 2c). There are no estimates of uncertainty of the entire analysis process for 251 

BioHC_RF though – these probabilistic maps are only for the second stage. 252 

The one-stage approaches produce probabilistic outputs of the entire analytical process and 253 

distinguish three bioregions that largely correspond to the ‘true’ distribution of bioregions. It should 254 

be noted however, that the model used to simulate bioregions most closely resembles the SAMs 255 

model. The RCP method predicts distinct groups that have a high probability of occurrence and do 256 

not overlap except at the boundaries of the bioregions. The SAM method produces bioregions with a 257 

lower probability of occurrence with less distinct boundaries between groups (Fig. 2c). This results 258 

from a fundamental difference in philosophy and implementation of the SAM and RCP 259 

methodologies; SAM models groups of species with a common response to the environmental data, 260 

while RCP models groups of sites with a common species composition and environmental profile. 261 

Therefore, often more than one SAM group is likely at a location. The RCP model assumes that there 262 

is a single assemblage type at each location, and the model is trying to find that type.  263 
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Fig. 2. The number and spatial distribution of bioregions selected as optimal for each method. A) The ‘true’ 265 

bioregion distribution from the simulation. Colour ramp corresponds to probability of occurrence. B) Hard-266 

classes resulting from hierarchical classification in the ‘Predict First, then Group’ methods. Groups are colour-267 

coded to reflect the best match to the ‘true’ bioregions. C) Probability of occurrence for one-stage and ‘Group 268 

First, then Predict’ methods. Only the one-stage methods (SAM and RCP) and the two-stage method HMSC_HC 269 

correctly identify the number of bioregions and their approximate distribution. Note that the BioHC_RF 270 

probabilities represent only the second-stage of the analysis. Acronyms match those in Table 1. 271 

The number of bioregions chosen as optimal has a large influence on the results of the different 272 

approaches. For the remainder of the simulation results, we remove this influence and assume we 273 

know there are three bioregions (Fig. 3). Approaches that produce probabilistic outputs were 274 

converted to hard-class bioregions by assigning each cell its most probable bioregion. When the 275 

number of bioregions was fixed at three, the distribution of groups in many of the approaches bears 276 

strong resemblance to the simulated true number of bioregions. Nearly all methods overestimate 277 

the spatial extent of bioregion 2. The clustering of the environment alone (Env_Only), divides 278 

bioregions 1 and 3 into an E-W direction and displaces the distribution of bioregion 2 to the NE of its 279 

true region. The ‘Group First, then Predict’ method (BioHC_RF) again produces groups with a 280 

patchier distribution than other methods. Clustering the spline transformed environmental space 281 

from the bootstrapped GDM model (bbGDM_TransEnvHC) produces a different spatial  pattern, 282 

although investigations (not shown here) using many different starts and numbers of bootstraps 283 

produced one of two contrasting patterns suggesting some instability in the model or influential 284 

sites even after many bootstraps. 285 
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 286 

Fig. 3.  Distribution of simulated bioregions for each method when the number of bioregions has been fixed 287 

at three and where cells for methods with probabilistic outputs are assigned their most likely bioregion 288 


















































































































