The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

Barnes, Paul W.

2021


http://hdl.handle.net/10138/346953
https://doi.org/10.1111/gcb.15841

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer and preventing global increases in solar ultraviolet-B radiation (UV-B; 280–315 nm) at Earth’s surface (McKenzie et al., 2019). This international agreement has also been one of the most important societal actions to mitigate global warming, as many of the ozone-depleting substances and their substitutes that are regulated by the Montreal Protocol are also potent greenhouse gases (Velders et al., 2007). Ozone depletion itself contributes to climate change in some regions (Robinson & Erickson III, 2015), and climate change modifies the exposure of humans, plants, animals, and materials to UV-B as well as UV-A radiation (315–400 nm; Barnes et al., 2019). Thus, changes in stratospheric ozone, UV radiation, and climate are inextricably linked in a number of critical ways that influence human health and the environment (Figure 1).

The Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme regularly assesses the interactive effects of changes in stratospheric ozone, UV radiation, and climate on the environment. Findings from our updates (Neale et al., 2021) and full assessments (EEAP 2018 Assessment;
https://pubs.rsc.org/ja/journals/articlecollectionlanding?sercode=pp&themuid=034015c8-12de-4196-9526-18090345cf96
delete that, because of the Montreal Protocol, changes in surface UV-B radiation over the past 20 years have been relatively small (ca. <±4% per decade). For most regions over this period, changes in cloud cover and aerosols have had a larger effect than changes in stratospheric ozone on variation in UV radiation. Climate change is exerting an increasing effect on exposure to UV radiation as a consequence of changes in phenology, cloud cover, aerosols, snow and ice cover, species distributions, water quality, and extreme weather events. Moreover, stratospheric ozone depletion over Antarctica is strongly linked to the climate of the Southern Hemisphere (e.g., Damiani et al., 2020). It is estimated that by 2050 the Montreal Protocol will have prevented global warming over land of 1.5–4°C, depending on the region (Goyal et al., 2019).

While their magnitude has been limited by the Montreal Protocol, ongoing and projected changes in UV radiation and climate still pose a threat to food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics. Exposure to solar UV radiation increases the decomposition of organic matter in both terrestrial and aquatic ecosystems, which releases carbon dioxide, methane, and other greenhouse gases to the atmosphere—an important feedback effect on the climate system. Modeling studies estimate that the Montreal Protocol will prevent millions of cases of skin cancers and cataracts in the United States alone. However, exposure to solar UV radiation also has benefits for health. Most notably, it generates vitamin D (which is critical for bone and muscle health), disinfects surface waters of pathogens, and also plays an important role in immune function, an effect that is important in light of the COVID-19 pandemic. Balancing the positive and negative effects of UV exposure on human health would have been difficult to achieve in a world without the Montreal Protocol.

In today’s rapidly changing world, the Montreal Protocol continues to play a critical role in protecting Earth’s inhabitants and ecosystems by addressing many of the UN Sustainable Development Goals (Figure 1; Neale et al., 2021).

KEYWORDS
climate change, ecosystems, human health, Montreal Protocol, stratospheric ozone, sustainability, ultraviolet radiation, UV-B

ACKNOWLEDGEMENTS

CONFLICT OF INTERESTS
The authors declare no competing financial or other interests.

DATA AVAILABILITY STATEMENT
Data sharing not applicable—no new data generated.

Paul W. Barnes1
Janet F. Bornman2
Krishna K. Pandey3
Germar H. Bernhard4
Alkiviadis F. Bais5
Rachel E. Neale6
Thomas Matthew Robson7
Patrick J. Neale8
Craig E. Williamson9
Richard G. Zepp10
Sasha Madronich11
Stephen R. Wilson12
Anthony L. Andrady13
Anu M. Heikkilä14
Sharon A. Robinson15

1Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana, USA
2Food Futures Institute, Murdoch University, Perth, Western Australia, Australia
3Department of Wood Properties and Uses, Institute of Wood Science and Technology, Bangalore, India
4Biospherical Instruments Inc., San Diego, California, USA
5Department of Physics, Laboratory of Atmospheric Physics, Aristotle University, Thessaloniki, Greece
6Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
7Organismal & Evolutionary Biology (OEB), Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland
8Smithsonian Environmental Research Center, Edgewater, Maryland, USA
9Department of Biology, Miami University, Oxford, Ohio, USA
10ORD/CEMM, US Environmental Protection Agency, Athens, Georgia, USA
11Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
12School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
13Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
14Finnish Meteorological Institute, Helsinki, Finland
LETTER TO THE EDITOR

Securing Antarctica’s Environmental Future, Global Challenges Program & School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia

Correspondence
Paul W. Barnes, Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, Louisiana, USA.
Email: pwbarnes@loyno.edu

Sharon A. Robinson, Securing Antarctica’s Environmental Future, Global Challenges Program & School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
Email: sharonr@uow.edu.au

ORCID
Paul W. Barnes https://orcid.org/0000-0002-5715-3679
Janet F. Bornman https://orcid.org/0000-0002-4635-4301
Krishna K. Pandey https://orcid.org/0000-0001-6563-6219
Germar H. Bernhard https://orcid.org/0000-0002-1264-0756
Alkiviadis F. Bais https://orcid.org/0000-0003-3899-2001
Rachel E. Neale https://orcid.org/0000-0001-7162-0854
Thomas Matthew Robson https://orcid.org/0000-0002-8631-796X
Patrick J. Neale https://orcid.org/0000-0002-4047-8098
Craig E. Williamson https://orcid.org/0000-0001-7350-1912
Richard G. Zepp https://orcid.org/0000-0003-3720-4042
Sasha Madronich https://orcid.org/0000-0003-0983-1313
Stephen R. Wilson https://orcid.org/0000-0003-4546-2527
Anthony L. Andrady https://orcid.org/0000-0001-8683-9998
Anu M. Heikkilä https://orcid.org/0000-0002-1050-5673
Sharon A. Robinson https://orcid.org/0000-0002-7130-9617

REFERENCES


