CHROMOSOMENSTUDIEN AN ARANEEN

MIT BESONDERER BERÜCKSICHTIGUNG DER GESCHLECHTSCHROMOSOMEN

VON

WALTER HACKMAN

MIT 2 TABELLEN, 1 DIAGRAMM UND 13 TAFELN

With an English summary

HELSINGFORSIAE 1948
HELINGSFORS 1948
DRUCK VON A.-G. TILGMANN
Inhalt.

Vorwort ... 4
I. Einleitung .. 5
II. Material und Methoden ... 7
III. Die Chromosomenverhältnisse der untersuchten Arten 13
 1. Lycosidae .. 13
 2. Pisauridae ... 24
 3. Oxyopidae ... 25
 4. Agelenidae ... 26
 5. Argyronetidae .. 29
 6. Therididae ... 30
 7. Linyphiidae .. 32
 8. Micryphanthidae ... 33
 9. Argiopidae ... 34
 10. Tetragnathidae .. 38
 11. Drassidae .. 39
 12. Clubionidae ... 40
 13. Anyphaenidae .. 41
 14. Sparassidae .. 42
 15. Xysticidae ... 43
 16. Philodromidae ... 45
 17. Salticidae ... 47
 18. Dictynidae ... 49
IV. Diskussion .. 55
 1. Die Chromosomenzahlen und die Chromosomenmorphologie der Spinnen .. 55
 2. Bemerkungen über die Meiose der Spinnen 60
 3. Das Verhalten der Geschlechtschromosomen 64
 4. Die Phylogenese der Geschlechtschromosomen der Spinnen 70
V. Zusammenfassung der Ergebnisse 72
VI. Summary .. 74
Literatur .. 77
Tafelerklärungen .. 80
Vorwort.

Meinem verehrten Lehrer in Genetik und Zytologie, Herrn Professor Harry Federley, der mit Interesse meine Arbeit verfolgt hat und sie durch viele wertvolle Hinweise, Ratschläge und durch seine Kritik gefördert hat, spreche ich meinen tief gefühlten Dank aus.

Besonders will ich auch dem Assistenten des Genetischen Instituts, Herrn Dozent Esko Suomalainen danken, der mir die Arbeit in bezug auf Methodik und Literatur wesentlich erleichtert und mir mit Ratschlägen in Chromosomenfragen beigestanden hat.

In Dankbarkeit erwähne ich ferner Herrn Professor Holger Klingstedt (†) und Herrn Dozent Tarvo Oksala, mit denen ich während meiner Arbeit unzählige Male verschiedene zytologische Probleme habe diskutieren dürfen und die mich liebenswürdigst in viele Fragen der Chromosomenforschung eingeführt haben.

Herrn Professor Pontus Palmgren, der mir die Anregung gab, die Spinnen als Objekt meiner Untersuchungen zu wählen, mir auch die nötige Artkenntnis beibrachte und mir beim Einsammeln des Materials wichtige Fingerweise gab, spreche ich meinen herzlichsten Dank aus.

Dank dem freundlichen Entgegenkommen von Herrn Professor Alex. Luther erhielt ich die Gelegenheit, während der Sommer 1945—47 an der Zoologischen Station in Tvärmínne den grössten Teil des Materials einzusammeln und zu fixieren.

Für einige im vorliegenden Zusammenhang wertvolle mikrotechnische Anleitungen bin ich Herrn Mag. phil. Osmo Tuurala sehr dankbar.
Die eigentlichen Spinnen, die Araneen, sind in zytologischer Hinsicht darum besonders interessant, weil bei ihnen ein sonst im Tierreich seltener Mechanismus der Geschlechtsbestimmung ganz allgemein vorkommt.

Das heterogametische Geschlecht, bei den Spinnen das Männchen, hat zwei X-Chromosomen, X₁ und X₂, die bei der ersten Reifeteilung in dieselbe Tochterzelle gelangen. Bei der zweiten Reifeteilung werden sie aequationell geteilt. Es entstehen Spermien mit zwei X-Chromosomen und solche ohne Geschlechtschromosomen. Der Mechanismus ist also vom Typus X₁X₂ oder, wenn man besonders hervorheben will, dass Y-Chromosomen im System nicht vorkommen, X₁X₂O. Bei einem solchen Mechanismus sind im Soma des homogametischen Geschlechts vier X-Chromosomen vorhanden.

Der X₁X₂-Mechanismus ist bei den Spinnen von früheren Autoren ziemlich oberflächlich untersucht worden. Ich habe deshalb in vorliegender Arbeit das Verhalten der Geschlechtschromosomen besonders berücksichtigt und auch die bei den Spinnen sehr vernachlässigte Ovogenese untersucht.

Platynhelminthes: Schistosomum haematobium (LINDNER 1914)
Nematoda: Belascaris triqueta (WALTON 1924)
Ganguleterakis spinosa (WALTON 1924)
Apterygogenea: Lepisma domestica (CHARLTON 1921, PERROT 1933)
Insecta:
Plecoptera: Perla marginata (JUNKER 1923)
Perla cephalotes (MATTHEY 1946b)
Isogenus spp. (MATTHEY 1946a)
Coleoptera: Cicindela spp. (GOLDSMITH 1919)
Hemiptera: Syromastes marginatus (GROSS 1904, WILSON 1909a, b)
Stomaphis yanois (HONDA 1921)
Phylloxera spp. (MORGAN 1909)

(Einige zweifelhafte Fälle sind hier nicht beachtet worden.)

Der X₁X₂-Mechanismus ist bei den Spinnen von früheren Autoren ziemlich oberflächlich untersucht worden. Ich habe deshalb in vorliegender Arbeit das Verhalten der Geschlechtschromosomen besonders berücksichtigt und auch die bei den Spinnen sehr vernachlässigte Ovogenese untersucht.

Schon CARNOY studierte die Spermatogenese bei Spinnen, aber seine Arbeit «La cytodiérèse chez les arthropodes» (1885), wo auch Spinnen be-
handelt werden, hat für uns lediglich historisches Interesse. Dasselbe kann auch von den Arbeiten WAGNERS (1896 a, b) und BÖSENBERGS (1904) gesagt werden, die ebenfalls sehr veraltet sind und hauptsächlich die Spermmiohistogenese behandeln. WAGNER (1896 b) bildet zwar einige meiotische Prophasestadien ab, hat sie aber nicht richtig deuten können.

Alle bisher erwähnten Arbeiten haben die Spermatogenese behandelt.

WHITE (1940) hat in einem Aufsatz über multiple Geschlechtschromosomen auch den Spinnen einen Abschnitt gewidmet (vgl. auch WHITE 1945), wo er die Möglichkeit betont, dass bei den Spinnen X_1 und X_2 homolog und der Mechanismus vom uniken Typus $XX:XXXX$ wäre. Dies hat mich angeregt, besonders die Frage der eventuellen Homologie zu studieren und das Verhalten der X-Chromosomen während der Meiose bei vielen verschiedenen Spinnenarten zu vergleichen.

II. Material und Methoden.

Mein Material stammt hauptsächlich aus der Nähe der Zoologischen Station in Tvarminne (Prov. N) ist aber zum Teil auch in den Umgebungen
von Helsingfors, bei Borgå (N), in Sibbo: Kitö (N), bei Heinola (Ta) und in Jyväskylä (Tb) eingesammelt worden.

Tabelle I. Das Material.

<table>
<thead>
<tr>
<th></th>
<th>G.</th>
<th>Anzahl Individ.</th>
<th>Stadium</th>
<th>Monat</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therididae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theridium tepidariorum C. L. Koch</td>
<td>♂</td>
<td>6 ad.</td>
<td>VIII</td>
<td>Hangö, Gewächshaus</td>
<td></td>
</tr>
<tr>
<td>Steatoda bipunctata L.</td>
<td>♂</td>
<td>4 subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Linyphiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptyphanthes minutus Blackw.</td>
<td>♂</td>
<td>3 ad.</td>
<td>VIII</td>
<td>Ekenäs, Gullö</td>
<td></td>
</tr>
<tr>
<td>Drapetisca socialis Sund.</td>
<td>♂</td>
<td>3 subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Linyphia resupina domestica Deg.</td>
<td>♂</td>
<td>2 »</td>
<td>VIII</td>
<td>Hangö</td>
<td></td>
</tr>
<tr>
<td>» sp.</td>
<td>♂</td>
<td>3 »</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Micryphantidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gongylidium rufipes Sund.</td>
<td>♂</td>
<td>2 »</td>
<td>VI</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>Argiopidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta reticulata L.</td>
<td>♂</td>
<td>2 »</td>
<td>VII</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>Aranea angulata L. (?)</td>
<td>♂</td>
<td>1 »</td>
<td>V</td>
<td>Grankulla (pr. Helsingfors)</td>
<td></td>
</tr>
<tr>
<td>» sexpunctata L.</td>
<td>♀</td>
<td>1 juv.</td>
<td>V</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>» dumetorum Vill.</td>
<td>♂</td>
<td>1 ad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>»</td>
<td>♀</td>
<td>5 ad. & subad.</td>
<td>VI</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>»</td>
<td>♀</td>
<td>5 »</td>
<td>VIII</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>»</td>
<td>♀</td>
<td>2 ad.</td>
<td>VIII</td>
<td>»</td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td>Anzahl Individ.</td>
<td>Stadium</td>
<td>Monat</td>
<td>Ort</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Aranea foliata Fourcr.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td>Täcktom (pr. Hangö)</td>
<td></td>
</tr>
<tr>
<td>Teteグラナティダイン</td>
<td>Tetragnatha extensa L.</td>
<td>3</td>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agalenidae</td>
<td>Tegenaria derhami Scop.</td>
<td>1</td>
<td>V</td>
<td>Grankulla</td>
<td></td>
</tr>
<tr>
<td>Hahnia nava Blackw.</td>
<td>1</td>
<td>subad.</td>
<td>VII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Argyronetidae</td>
<td>Argyroneta aquatica L.</td>
<td>1</td>
<td>subad.</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Pisauridae</td>
<td>Pisaura listeri Scop.</td>
<td>1</td>
<td>juv.</td>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>Dolomedes fimbriatus L.</td>
<td>2</td>
<td>subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Lycosidae</td>
<td>Tarentula pulverulenta Cl.</td>
<td>3</td>
<td>V</td>
<td>Helsingfors</td>
<td></td>
</tr>
<tr>
<td>Xerolycosa nemoralis West.</td>
<td>1</td>
<td>ad.</td>
<td>IV</td>
<td>Grankulla</td>
<td></td>
</tr>
<tr>
<td>Lycosa saccata L.</td>
<td>2</td>
<td>subad.</td>
<td>V</td>
<td>Helsingfors</td>
<td></td>
</tr>
<tr>
<td>paludicola Cl.</td>
<td>1</td>
<td>subad.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>abgel. Eier</td>
<td>4</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td>An-zahl Individ.</td>
<td>Stadium</td>
<td>Monat</td>
<td>Ort</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>---------</td>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Lycosa fluviatilis Blackw.</td>
<td>♂ 3 ad.</td>
<td>VI</td>
<td>Helsingfors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 »</td>
<td>VI Tvärminne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 juv.</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 4 ad.</td>
<td>VI Helsingfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 4 subad.</td>
<td>V Helsingfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 subad.</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 ad.</td>
<td>VI Tvärminne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ abgel. Eier</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monticola Cl.</td>
<td>♂ 2 subad.</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 ad.</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ abgel. Eier</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tarsalis Thor.</td>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pullata Cl.</td>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>riparia C. L. Koch</td>
<td>♂ abgel. Eier</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochosa ruricola De Geer</td>
<td>♂ 7 subad.</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 juv.</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 4 »</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 4 subad.</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 10 ad.</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 3 »</td>
<td>VI Sibbo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ abgel. Eier</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinipalpis Cambr.</td>
<td>♂ 1 ad.</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctosa leopardus Sund.</td>
<td>♂ 2 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 subad.</td>
<td>VIII Täcktom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirata piscatorius Oliv.</td>
<td>♂ 1 »</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 3 »</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 ad.</td>
<td>V Helsingfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 subad.</td>
<td>VIII Tvärminne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uliginosus Thor.</td>
<td>♂ Haplodrassus cognatus Walck.</td>
<td>♂ 1 »</td>
<td>VI Täcktom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>IX Tvärminne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>II Granlkulla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 3 ad.</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 »</td>
<td>VI Helsingfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyopidae</td>
<td>♂ 1 juv.</td>
<td>VII Granlkulla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 3 subad.</td>
<td>VIII Täcktom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 »</td>
<td>IX Tvärminne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>II Granlkulla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 2 »</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>VI Helsingfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drassidae</td>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callilepis nocturna L.</td>
<td>♂ 1 »</td>
<td>VI Tvärminne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlandina cinerea Mg.</td>
<td>♂ 1 subad.</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drassodes lapidosus Walck.</td>
<td>♂ 1 ad.</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂ 1 »</td>
<td>V Granlkulla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnaphosa muscorum C. L. Koch.</td>
<td>♂ 1 »</td>
<td>VI Tvärminne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zelotes subterraneus C. L. Koch</td>
<td>♂ 2 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poecilochroa variana C. L. Koch</td>
<td>♂ 1 »</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td>Anzahl Individ.</td>
<td>Stadium</td>
<td>Monat</td>
<td>Ort</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Clubionidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clubiona holosericea L.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>phragmitidis C. L. Koch</td>
<td>1</td>
<td>ad.</td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsultans Thor.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micaria decorata Tullgr.</td>
<td>1</td>
<td>ad.</td>
<td>VI</td>
<td>Sibbo</td>
<td></td>
</tr>
<tr>
<td>Anyphaenidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anyphaena accentuata Walck.</td>
<td>4</td>
<td></td>
<td>VIII</td>
<td>Ekenäs, Gullö</td>
<td></td>
</tr>
<tr>
<td>Sparassidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrommata viridissima De Geer</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xysticidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xysticus viaticus L.</td>
<td>4</td>
<td>subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>ulmi Hahn</td>
<td>1</td>
<td></td>
<td>VIII</td>
<td>Ekenäs, Gullö</td>
<td></td>
</tr>
<tr>
<td>Misumena vatia L.</td>
<td>2</td>
<td>subad.</td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodromidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodromus laeipes L.</td>
<td>1</td>
<td>subad.</td>
<td>IX</td>
<td>Helsingfors</td>
<td></td>
</tr>
<tr>
<td>emarginatus Schrk.</td>
<td>2</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aureolus Oliv.</td>
<td>4</td>
<td></td>
<td>VI</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>histrio Latr.</td>
<td>3</td>
<td></td>
<td>VIII</td>
<td>Jyväskylä</td>
<td></td>
</tr>
<tr>
<td>Thanatus formicinus Oliv.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td>Lappvik</td>
<td></td>
</tr>
<tr>
<td>Tibellus oblongus Walck.</td>
<td>3</td>
<td></td>
<td>VIII</td>
<td>Heinola</td>
<td></td>
</tr>
<tr>
<td>Salticidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrmarachne formicaria De Geer</td>
<td>4</td>
<td></td>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitticus terebratus Cl.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td>Heinola</td>
<td></td>
</tr>
<tr>
<td>Pseudicus encarpatus Walck.</td>
<td>1</td>
<td></td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Salticus scenicus L.</td>
<td>2</td>
<td>ad.</td>
<td>V</td>
<td>Helsingfors</td>
<td></td>
</tr>
<tr>
<td>Dendryphanthes rudis Sund.</td>
<td>1</td>
<td>subad.</td>
<td>VIII</td>
<td>Tvärminne</td>
<td></td>
</tr>
<tr>
<td>Evarcha falcata Cl.</td>
<td>4</td>
<td></td>
<td>VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictynidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyna arundinacea L.</td>
<td>3</td>
<td></td>
<td>VIII</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>VI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objektträger abfallen, habe ich sie nach Entfernung des Paraffins mit einem dünnem Celloidinhäutchen überzogen.

III. Die Chromosomenverhältnisse der untersuchten Arten.

Beider Besprechung der Lycosiden habe ich eine eingehende Beschreibung der Meiose von Trochosa ruricola gegeben.

1. Lycosidae.

a. Die Arten und ihre Chromosomengarnituren. Die Arten in meinem Material vertreten die Gattungen Tarentula, Xerolycosa, Lycosa, Trochosa, Arctosa

Die Chromosomen der untersuchten Lycosiden sind im allgemeinen relativ gross (vgl. Fig. 1–24). Es ist mir leider nicht möglich gewesen, die Chromosomenlängen innerhalb eines Sortiments exakt zu messen, da sowohl in mitotischen als in meiotischen Teilungen nur selten mehrere, keinesfalls alle Chromosomen ihrer ganzen Länge nach in derselben Ebene oder in miteinander parallelen Ebenen liegen. Dies gilt überhaupt für die Spinnen in meinem Material. Die Zahlverhältnisse treten allerdings bei den Lycosiden am deutlichsten in der Metaphase der ersten Spermatozytenteilung hervor, aber die variierende Form der Bivalente erschwert einen Vergleich der Chromosomenlänge innerhalb des Sortiments. Dasselbe Bivalent kann in verschiedenen Platten derselben Art oder sogar desselben Individuums in verschiedener Form auftreten. So findet man z. B. bei *Trochosa ruricola* in einer Platte 8 mehr oder weniger lang V-förmige Chromosomen (Fig. 1), in einer anderen Platte (Fig. 2) dagegen 10 solche. Die in den erwähnten Platten kurz stäbchenförmig oder sogar punktförmig erscheinenden Chromosomen sind in der Tat Kreuz- bzw. Stabvitalente, die ihrer Länge nach in der Richtung der Spindelfasern orientiert sind. Bei Arten, deren Chromosomen in der besprochenen Metaphase stärker kondensiert sind (z. B. *Tarentula pulverulenta*, *Lycosa*
tarsalis, L. paludicola, L. fluviatilis), tritt die relative Grösse der Chromosomen innerhalb des Sortiments deutlicher hervor. Bei Lycosa tarsalis habe ich in dem einzigen anwendbaren Präparat dieser Art ein Mikrochromosomenpaar gefunden (Fig. 10). Sonst findet man bei den untersuchten Lycosiden, wenn man noch die Metaphaseplatten der zweiten Spermatozytenbildung betrachtet, keine besonders auffallenden Grössenunterschiede innerhalb des Sortiments. Es ist mir darum meistens nicht möglich gewesen, ein bestimmtes Chromosom in verschiedenen Metaphaseplatten desselben Individuums oder derselben Art zu identifizieren. Auch die Geschlechtschromosomen sind von derselben Grössenordnung wie die Mehrzahl der Autosomen im Sortiment.

Bei allen untersuchten Lycosiden sind sämtliche Chromosomen akrozentrisch (sacrocentric, WHITE 1945), d.h. das Zentromer liegt offenbar ganz nahe dem einen Ende des Chromosoms. Dieses Ende wird das Proximalende genannt. Besonders deutlich tritt der akrozentrische Bau der Chromosomen in Blastomerenmitosen älterer Eier von Lycosa-Arten (L. paludicola, L. riparia) in Erscheinung. In diesen Mitosen sind die Chromosomen auffallend lang und fadenförmig (Fig. 21, 22). In der Metaphase liegen nur die Proximalenden der Chromosomen in der Äquatorialebene, und in der Anaphase sind diese Enden gerade gegen die Pole ausgestreckt. Eine exakte Lokalisierung des Zentromers ist nicht möglich, da weder eine deutliche Einschnürung noch eine achromatische Partie in den proximalen Enden der fadenförmigen Chromosomen sichtbar ist.

b. Die somatischen Mitosen sind bei den Lycosiden und überhaupt bei den Spinnen für karyologische Studien wenig geeignet. Die Chromosomen liegen in den Metaphasen meistens sehr dicht und überdecken einander. Nur in äusserst seltenen Fällen ist es mir gelungen, sie in somatischen Mitosen annähernd zu zählen. Fig. 23 und 24 stellen Metaphasen somatischer Mitosen von Trochosa ruricola dar, die eine (Fig. 23) aus einem Drüsengewebe im Hinterleib eines adulten Weibchens, die andere (Fig. 24) aus einem mehrere Tage alten Ei. Die Proximalenden der langgestreckten Chromosomen befinden sich in der Äquatorialebene, aber die distalen Teile ragen in allerlei Richtungen aus der Platte hervor. In der in Fig. 23 abgebildeten Metaphase habe ich 28 Chromosomen gezählt. Die Follikelmitosen sind bei den Spinnen im Gegensatz zu denjenigen mancher Insekten besonders ungünstig für Chromosomenstudien. Die Blastomerenmitosen sind schon oben besprochen worden.

Bei *Trochosa ruricola* wie auch bei anderen von mir untersuchten Lycosiden habe ich stets 8 Spermatozyten erster Ordnung in einer Zyste gefunden; HARD (*op. c*) gibt für *Schizocosa crassipes* nur vier an.

Die spermatogonialen Mitosen sind für karyologische Studien fast ebenso ungünstig wie die somatischen. Bei *Trochosa ruricola* ist es mir gelungen, die Chromosomenzahl aus älteren Prophasen (Fig. 27) zu bestimmen. Sie beträgt 26, welches besagt, dass beide X-Chromosomen als je ein Chromosomenindividuum vorhanden sind, denn *T. ruricola* hat 12 Paar Autosomen. Bei *Lycosa saccata* sind die spermatogonialen Chromosomen in einer Gonienplatte (Fig. 28) im Material auffallend kurz und liegen nicht so dicht beieinander wie bei *Trochosa*. Als ihre Zahl ergibt sich ziemlich deutlich 28, es sind demgemäss 13 Paar Autosomen und zwei X-Chromosomen vorhanden.

In verschiedenen Teilungsphasen der Gonien habe ich bei *Trochosa ruricola* ein bis zwei basophile Körperchen beobachtet (Fig. 29), die dem Kern angehören, aber keine positive FEULGEN-Reaktion geben. Vielleicht handelt es sich hier um die sog. Planosomen PAINTERS (1914). Diese Körperchen können noch in der Meiose beobachtet werden, wenn andere Färbmethoden (z. B. Eisenhämatoxylin) als die FEULGENsche verwendet werden.

d. Die früheren Stadien der Meiose beim Männchen. Nach der letzten Gonienteilung beginnt die Spermatozytenentwicklung ohne vorangehende Ruheperiode. Die Despiralisation der Telophasechromosomen beginnt in den Proximalenden, die fadenartig ausgezogen werden (Fig. 264). Eine Lockerung des »relic spiral« (DARLINGTON 1937) ist jedoch im ganzen Chromosom bemerkbar (Fig. 30). Die dünnen Proximalenden dieser präleptotänen Prochromosomen sind alle in derselben Hälfte des Kerns, oft in einem beschränkten Bereich nahe der Membran zu finden. HARD (1939) beschreibt auch diese gut färbbaren Prochromosomen, hat aber in ihnen bei *Schizocosa* eine longitudinale Spalte (»presynaptic split«, *op. c.*) gefunden. Diese Spalte soll deutlich in dem distalen Teil der Chromosomen hervortreten, aber nicht in dem dünnen proximalen

Das folgende Stadium, das Leptotän (Fig. 32) ist dadurch gekennzeichnet, dass die Autosomen sich fast ganz in dünne dichtgewundene Fäden aufgelöst haben. Die Orientierung der Proximalenden bleibt bestehen, sonst aber ist es nicht möglich, den Verlauf einzelner Leptonemata zu verfolgen. Die beiden heteropyknotischen X-Chromosomen, die von den Autosomen schon im präleptotänen Stadium durch kompakteres Aussehen und stärkere Färbarkeit (Hämatoxylin, HEIDENHAIN) zu unterscheiden sind (Fig. 31), verbleiben im Leptotän kompakt und liegen etwas isoliert dem proximalen Pol des Kerns (»proximal pole«, HARD op. c.) genähert. Die Leptonemata füllen meistens nicht den Kernraum gleichmässig aus, sondern sind im Zentrum des Kerns bisweilen sogar synizesisartig geknäuelt. Es könnte sich vielleicht um ein vom Fixiermittel hervorgerufenes Artefakt handeln. Die ganz an der Kernmembran liegende äusserste proximale Spitze jedes Chromonemas wird besonders von Hämatoxylin (HEIDENHAIN) sehr scharf gefärbt. HARD (op. c.) hat solche färbbaren Endkörnchen bei *Schizocosa* als die Zentromeren gedeutet. Es scheint mir aber wahrscheinlicher, dass diese stärker färbbare äusserste Spitze ein sehr kurzes heterochromatisches Segment ist.

Der Übergang zum Zygotän ist nicht leicht zu verfolgen. Es dürfte jedenfalls am wahrscheinlichsten sein, dass die Konjugation der homologen Chromonemata in den polar orientierten Proximalenden beginnt. In einigen Präparaten scheint es, wie wenn eine Paarung der proximalen Enden der homologen Autosomen schon im präleptotänen Stadium eingeleitet worden sei. Typische Zygotänstadien (vgl. Fig. 33, 34) sind in meinem Material überhaupt selten.

Im Pachytän (Fig. 35, 36, 267) ist die polare Orientierung im Kern sehr deutlich, die Chromonemata sind merkbar kürzer und dicker geworden, und man kann die Autosomen, bei *Trochosa ruricola* haploid 12, ungefähr zählen. Nur die Proximalenden sind gegen den Pol orientiert. Die beiden X-Chromosomen liegen im Pachytän einander sehr nahe und oft parallel. Sie sind wie im Leptotän und Zygotän stark heteropyknotisch, aber etwas länger als in den erwähnten früheren Stadien. Das ältere Pachytän ist bei dem subadulten *Trochosa ruricola*-Männchen im Spätsommer ein im Testis häufig vorkommendes Stadium. Die Spalte zwischen den homologen Chromosomen und das »relational coiling« (DVRLINGTON 1937) sind gut wahrnehmbar (Fig. 37). Die heteropyknotischen X-Chromosomen liegen jetzt dicht nebeneinander und zum Teil umeinander gewunden. Ihre Proximalenden sind spitz ausgezogen.
Walter Hackman, Chromosomenstudien an Araneen

(Fig. 36). Bei Lycosa saccata, vielleicht auch bei anderen Lycosa-Arten, überwintern die meisten Spermatozyten in diesem Stadium, das wahrscheinlich die einzige längere Ruhepause in der Meiose ist.

e. Tetradengenese. Während des Dihotäns verbleiben die Chromosomen gut färbar und werden also nicht diffus. Die Umrisse der Autosomen sind jedoch etwas rauh. Das »relational coilings« löst sich auf und die Chromosomen werden kürzer und dicker. Die polare Orientierung verschwindet, aber die proximalen Enden der Chromosomen liegen, wie auch Hard (1939) für Schizocosa angibt, immer noch dicht der Kernmembran an. Je länger das Dihotänsstadium fortschreitet, desto deutlicher wahrnehmbar sind die Chiasmata (Fig. 38, 39). Man muss sich jedoch hüten, die durch »relational coiling« hervorgerufenen Überkreuzungsstellen als Chiasmata zu deuten.

Da die Chiasmata im jüngeren Dihotän nur ausnahmsweise in den Bivalenten deutlich sichtbar sind, ist es schwer zu sagen, wo die Chiasmata in der Regel entstehen. Im mittleren Dihotän (Fig. 39) habe ich bei Trochosa (wenn die seltenen Ringbivalente ausser acht gelassen werden) in Fällen, wo überhaupt im Präparat ein Chiasma deutlich hervortritt, dieses in der proximalen Hälfte der Chromosomen gefunden. Wenn im Bivalent nur ein Chiasma gebildet wird, so entsteht dieses also wahrscheinlich in der proximalen Hälfte der gepaarten Chromosomen. In den Ringbivalenten (vgl. Fig. 260) ist das distale Chiasma in sämtlichen beobachteten Fällen ganz terminal; das proximale befindet sich dann nahe der Zentromerenregion.

Im Dihotän liegen die beiden X-Chromosomen noch nebeneinander, ihre Umrisse sind aber nicht mehr so scharf wie in den vorangehenden Stadien.

In der Diakinese (Fig. 42, 44), wo sämtliche Chromosomen eine ziemlich starke Kondensation erreicht haben, sind die Bivalente gleichmässig im Kern
Die meisten Bivalente sind bei Trochosa ruricola und auch bei den anderen Lycosiden in der Diakinese von Kreuz- oder V-Form (Fig. 43). Die V-förmigen sind eine Art von Bivalenten (vgl. Fig. 257) mit proximal gelegenem Chiasma, wie die grösseren Bivalente bei der Heuschrecke Mecostethus grossus (White 1936). Stabförmige Bivalente mit einem subterminalen Chiasma (vgl. Fig. 259) sind bei Trochosa ruricola ein bis zwei an der Zahl im Sortiment zu finden. Bei Arctosa leopardus habe ich sogar vier solche in derselben Metaphaseplatte (Fig. 3) beobachtet. Die seltenen Ringbivalente sind schon besprochen worden. Bei den Tarentula- und Lycosa-Arten erscheinen die Bivalente bisweilen infolge starker Kondensation semmelförmig.

Die X-Chromosomen liegen in der Diakinese sowohl bei Trochosa als bei anderen Lycosiden in meinem Material dicht nebeneinander (Fig. 42, 43).

f. Die Reifeteilungen. Die in der Diakinese deutlich vorhandene Kernmembran löst sich in der Prometaphase der ersten Spermatozytenteilung auf, und die Spindel wird angelegt. In den mit Eisenalaunhämatoxylin (Heidenhain) und mit Bordeaux-R als Kontrast gefärbten Präparaten treten die Spindelfasern gut hervor. Das merkwürdige in den Prometaphasen ist ihre Anaphasenähnlichkeit, die ich auch bei mehreren anderen Spinnen beobachtet habe und auf welche schon im Referat der Untersuchungen Revels (Dallingon 1945) aufmerksam gemacht wird. Bei Trochosa findet man in diesem Stadium mehrere (3—6) Bivalente an dem einen oder an beiden Polen angehäuft. Die im Zentrum der Zelle liegenden Bivalente sind bisweilen lang in der Richtung der Spindelfasern ausgezogen (Fig. 47). Die beiden X-Chromosomen aber, die jetzt deutlich longitudinal gespalten sind, haben sich schon mit ihren spitz ausgezogenen Proximalenden gegen den einen Pol orientiert. Sie liegen peripher in der Spindel nebeneinander in der Richtung der Fasern. Beide X-Chromosomen sind mittels je einer chromosomalen Spindelfaser mit dem Pol verbunden. In verschiedenen Spermatozyten dieses Stadiums bei Trochosa habe ich die X-Chromosomen stets in derselben Position zwischen der Äquatorialebene und dem einem Pol gefunden (Fig. 45—47).

In der Metaphase haben die Bivalente die normale Äquilibriumposition in der Äquatorialebene eingenommen. Das Aussehen der Metaphasechromosomen wurde schon auf S. 14 besprochen. Die X-Chromosomen findet man ausserhalb der Platte ganz in derselben Position wie in der Prometaphase. Auch ihre Abstände zu dem Pol, gegen welchen sie orientiert sind, haben sich nicht merkbar verändert. Bei Trochosa ruricola und noch deutlicher bei Lycosa fluviatilis is zu bemerken, dass X₁ und X₂ nicht ganz gleich lang sind. Da beide X-Chromosomen fast parallel nebeneinander liegen, ist das Stadium für diesen Vergleich günstig.

Frühere Anaphasen, wo die Dyaden auseinanderrücken, sind in den Präparaten von *Trochosa* und auch anderen Lycosiden sehr selten. Etwas häufiger ist das Stadium, wo die Zelle und die Spindel verlängert werden und die Chromosomen offenbar schon ihre Bewegungen gegen die Pole beendet haben (vgl. Belar 1929 und Ris 1943). In frühen Telophasen findet man bei *Trochosa*, dass die beiden X-Chromosomen demjenigen Pol, gegen welchen sie orientiert sind, nicht merkbar näher gekommen sind als in der Prometaphase (vgl. Fig. 51). In späteren Telophasen ist eine interzonale Faserverbindung zwischen den beiden Tochterzellen vorhanden (Fig. 52). Wallace (1909) hat etwas ganz ähnliches bei *Agalena naevia* beobachtet.

Die X-Chromosomen können in der Telophase bei *Trochosa ruricola* deutlich von den Autosomen unterschieden werden (Fig. 52). Sie sind während der Interkinese kurz und kompakt, also stark heteropyknotisch, und liegen bald dicht nebeneinander, bald deutlich voneinander getrennt. Bei *Tarentula pulverulenta* sind sie in diesem Stadium fast kugelig (Fig. 55). In der Interkinese ist eine Kernmembran vorhanden.

In der zweiten Reifeteilung teilen sich sowohl die Autosomen als die beiden X-Chromosomen äquationell. Bei *Trochosa ruricola* lassen sich X₁ und X₂ in den Metaphaseplatten nicht von den Autosomen unterscheiden. Bei *Lycosa monticola* habe ich in einem Präparat zwei etwas intensiver gefärbte (Hämatoxylin, HEIDENHAIN) Chromosomen als X₁ und X₂ gedeutet. Diese liegen in einer Platte nahe beieinander, in einer anderen Platte aber weiter voneinander entfernt. Bei *Trochosa* findet man Metaphasen mit 12 und mit 14 Chromosomen. In den Platten mit 14 liegen alle Chromosomen, also auch die hier vorhandenen X-Chromosomen, deutlich getrennt. Aus Profilspindeln geht hervor, dass in allen Chromosomen beide Chromatiden in der Nähe des proximalen Endes zusammenhaften (Fig. 59). Bei *Lycosa monticola* weisen die Chromosomen der Metaphase in einigen Präparaten stärkere Kondensation als in anderen auf (vgl. Fig. 17, 18). Die zweite Reifeteilung erfolgt in allen Chromosomen annähernd synchron, und weder »vorauseilende« noch »nachhinkende« Chromosomen sind beobachtet worden.

Die kleinen auf S. 16 erwähnten FEULGEN-negativen Körperchen habe ich bei *Trochosa ruricola* auch in den Reifeteilungen beobachtet. Ihr Verhalten

Die Spermiobistogenese fällt ausserhalb des Rahmens meiner Untersuchung. Bei *Trochosa* stimmt sie jedenfalls gut mit den Befunden HARDS (1939) bei *Schizocosa* überein.

g. Die früheren Ovogenesestadien bis zur Wachstumsperiode. Die Ovogonien sind bei den Lycosiden noch weniger günstige Studienobjekte als die Spermatogonien. Die Ovogonienteilungen unterscheiden sich nicht merkbar von den somatischen Mitosen. Fig. 62 zeigt eine Ovogonienmetaphase bei *Lycosa fluitatilis*. Die Chromosomen sind hier stabförmig und liegen dicht und unregelmässig zusammengehaucht in der Platte und überdecken einander. Ihre Anzahl kann nur approximativ geschätzt werden. Bei *Trochosa* habe ich in meinen Material nur in einem halberwachsenen Weibchen eine verspätete Ovogonienmetaphase gefunden. Hier liegen die Chromosomen ebenso dicht gehäuft wie im vorigen Fall bei *Lycosa fluitatilis*.

Die früheren meiotischen Stadien habe ich bei *Trochosa ruricola* an ganz jungen Individuen (vgl. S. 12) studiert. Nach der letzten Gonienteilung treten hier ähnliche Prochromosomen auf, wie in der Spermatogenese. Die Despiralisation beginnt auch hier in den proximalen Enden, die fadendünn werden. In der Regel sind fast alle Chromosomen in derselben Hälfte des Kerns zu finden (Fig. 63).

Das Leptotän (Fig. 65) zeigt aber eine weniger ausgeprägte Polarität. Die meisten proximalen Chromosomenenden befinden sich nahe bei der Kernmembran in derselben Hälfte des Kerns. Keine synizesisartigen Erscheinungen sind im Material beobachtet worden. Was aber beim Vergleich mit der Spermatogenese sofort auffällt, ist, dass keine heteropyknotischen Chromosomen vorhanden sind.

Der Übergang zum Zygotän (Fig. 66) ist schwer zu verfolgen. Es ist mir nicht möglich gewesen, sicher festzustellen, wo in den Chromosomen die Konjugation der Homologen eingeleitet wird. Typische Pachytänstadien sind in den Ovarien junger Spinnen nicht selten. Das Pachytän (Fig. 67, 68) zeigt bei *Trochosa ruricola* keine besonders ausgeprägte polare Orientierung. Versucht man die Pachynemata zu zählen, erhält man annähernd die haploide Zahl (bei *Trochosa 14*). Die X-Chromosomen sind hier nicht heteropyknotisch und können nicht von den Autosomen unterschieden werden. In den mit Eisenhämatoxylin (HEIDENHAIN) gefärbten Präparaten treten in diesem Stadium ein bis zwei relativ grosse Nukleolen auf (Fig.68). Sie sind wie echte Nukleolen FEULGEN-negativ.
Nach dem Pachytän vollzieht sich eine offenbar schnelle Veränderung im Ovozytenkern. Das nächste Stadium, das ich in den Präparaten von *Trochosa ruricola* gefunden habe, weist diffuse sog. »Lampenbürstenchromosomen« auf (Fig. 69). Solche sind schon längst bei mehreren Tieren besonders aus der Ovogenese bekannt und werden schon von RÜCKERT (1892) beschrieben. Das erwähnte Stadium bei *Trochosa* ist ein Diplotän, wo die diffusen Chromosomen alle nahe der Kernmembran und fast gleichmässig verteilt liegen. Die Chromosomen haben schon merkbar ihre Färbarkeit (Feulgen) eingebüsst. Die Nukleolen sind grösser geworden und meistens zu einem einzigen fusioniert (Fig. 70). Jetzt beginnt das Stadium des enormen Wachstums der Ovozyte. Das diffuse Chromatin gibt bald keine positive Feulgen-Reaktion mehr. Ich werde den Wachstumsprozess hier nicht näher beschreiben, da er ausserhalb des Themas fällt.

h. **Die späteren Ovozytensstadien.** Nachdem die Ovozyte ihre maximale Grösse erreicht hat und der während des Wachstumsstadiums riesige Kern nach der Peripherie gewandert und kleiner geworden ist, werden die Chromosomen wieder im Präparat sichtbar. In einem kleinen Bereich der noch ziemlich grossen Kernblase treten sehr schwach Feulgen-positive, dicht gewundene, lange Chromosomenfäden hervor (Fig. 71). Indem diese ein wenig später reicher an Nukleinsäure werden, erkennt man deutlich das Stadium als ein Diplotän. Ein »relational coiling« ist kaum vorhanden, und die homologen Chromonemata werden offenbar nur von den Chiasmata zusammengehalten. Die Chromosomen liegen jedoch so dicht beisammen dass es nicht möglich ist, den Verlauf der einzelnen Fäden genau zu verfolgen. Die Spiralisation ist hier nicht merkbar stärker als im Leptotän. MONTGOMERY (1908) beschreibt dieses Stadium bei *Theridium tepidariorum*. Das Resultat meiner Stichproben an Spinnen verschiedener Gruppen (*Drassodes lapidosus, Misumena vatia, Pisauro listeri*) macht es wahrscheinlich, dass ein solches Diplotän bei den Spinnen allgemein vorkommt.

Auch die älteren Diplotänstadien bei *Trochosa ruricola* sind schwer näher zu analysieren, weil die jetzt allerdings etwas kürzer und dicker gewordenen Chromosomen (Fig. 73) auf einen beschränkten Raum zusammengedrängt sind. Es ist darum nicht möglich sicher zu sagen, ob mehr als ein Chiasma in den Bivalenten vorkommen kann. Ein typisches Diakinesestadium mit gleichmässig verteilten Bivalenten habe ich weder bei *Trochosa* noch bei anderen Spinnen gefunden.

i. **Die Reifeteilungen im Ei.** Die Prometaphase der ersten Ovozyten teilung ist in meinem Material von *Trochosa ruricola* leider nicht vertreten (vgl. Aranea diademata, S. 38). Es ist äusserst schwierig solche Metaphaseplatten zu erhalten, wo die Chromosomen genau gezählt werden können. Da die Bivalente meistens dicht aneinander gedrückt sind, muss die Schnittebene
möglichst parallel mit der Äquatorialebene der Spindel liegen, da sonst die Chromosomen einander im Präparat überdecken. Bei *Trochosa ruricola* habe ich in zwei Metaphaseplatten deutlich 14 Bivalente, also 12 Autosom- und zwei X-Bivalente zählen können (Fig. 77, 78). Eine Identifizierung der X-Chromosomen ist hier nicht möglich. Alle Chromosomen erscheinen in Polansicht semmel oder nierenförmig. Aus den in meinen Präparaten zahlreich vorkommenden Profilen (es sind mehr als 30 vorhanden) sieht man, dass die Chromatiden der Bivalente proximal schmal und spitz ausgezogen, distal dagegen stark kondensiert sind (Fig. 76). Die ebenbeschriebenen Bivalente haben meistens deutlich ein interstitielles Chiasma und sind vom Kreuztypus. Es ist jedoch nicht ganz ausgeschlossen, dass in einigen Fällen Ringbildungen mit zwei Chiasmata in Frage kommen können. Das Aussehen einiger Bivalente im Diplotän (Fig. 75) spricht gleichfalls dafür.

Bei *Trochosa* besteht also ein gewisser Unterschied im Aussehen der Metaphasechromosomen der ersten Reifeteilung in der Spermatogenese und in der Ovogenese. In Ovozyten von *Lycosa saccata* und *Arctosa leopardus* habe ich dagegen Bivalente ganz ähnlich denjenigen in der Spermatogenese gefunden. Es ist möglich, dass sich die Form der Bivalente während der offenbar lange andauernden ersten Metaphase im Ei verändern kann.

Die erste Reifeteilung ist auch in der Ovogenese für alle Chromosomen eine Reduktionsteilung, da die Zentromeren ungeteilt bleiben. Die zweite Reifeteilung habe ich bei *Lycosa fluviatilis* studiert. Ohne vorangegangene interkinetische Ruhepause haben sich die Chromosomen 10 bis 15 Minuten nach der Eiablage zur zweiten Teilung eingestellt. Die Chromosomen sind im Profil der Metaphase semmelförmig, aber von den Polen gesehen mehr oder weniger punktförmig (Fig. 80). Wenigstens in vier Platten konnten mit Sicherheit 15 Chromosomen gezählt werden. Es sind hier 13 Autosomen und 2 X-Chromosomen, die nicht von den ersteren unterschieden werden können, vorhanden.

In einem *Trochosa ruricola*-Ei von unbekanntem Alter habe ich eine Telophase der zweiten Teilung gefunden (Fig. 82). Die Chromosomen sind hier kugelförmig kondensiert. Daneben befand sich in demselben Schnitt auch die Teilungsspinde des ersten Polkörpers (Fig. 81). Die Dyaden lagen hier etwas unregelmässig und nicht in derselben Ebene, aber ihre Zahl konnte als 14 (12 + X₁ + X₂) festgestellt werden.

Trotzdem die hier beschriebenen Ovogenesestadien einander nicht lückenlos folgen, kann jedoch festgestellt werden, dass die X-Chromosomen des Weibchens zwei Bivalente bilden und während der Meiose sich ganz wie die Autosomen verhalten und keine Heteropyknose zeigen.
Walter Hackman, Chromosomenstudien an Araneen

2. Pisauridae.

Zytologisch sind die beiden Arten einander ziemlich ähnlich. Die haploide Zahl der Autosomen beträgt bei *Pisaura listeri* 13 (Fig. 83). Bei *Dolomedes fimbriatus* habe ich dagegen nur 11 gefunden (vgl. Fig. 84). Diese Art ist ein etwas ungünstigeres Studienobjekt als *Pisaura*, denn die Chromosomen liegen in meinen Präparaten in beiden Reifeteilungen ziemlich dicht gehäuft. Ich habe ihre Zahl bei *Dolomedes* in mehreren Diakinesekernen und einer Prometaphase der ersten Reifeteilung festgestellt. Bei beiden Arten sind zwei X-Chromosomen, X_1 und X_2 beim Männchen vorhanden. *Dolomedes fontanus* aus Nordamerika hat nach Painter (1914) 13 Paar Autosomen und zwei X-Chromosomen. Ein Autosomenpaar bei dieser Art ist als Mikrochromosomen zu bezeichnen.

Die Stadien von der letzten Gonienteilung bis zum Zygotän sind ganz wie bei *Trochosa*. Im Pachytän (Fig. 87) liegen die beiden heteropyknotischen X-Chromosomen oft noch deutlich von einander getrennt, jedoch nahe dem proximalen Pol des Kerns. Bei *Pisaura* sind in diesem Stadium X_1 und X_2 spiralg gewunden. Im Diplotän (Fig. 88) und in der Diakinese sind sie kürzer geworden und liegen dicht nebeneinander. Die Tetradengenese der Autosomen weicht bei *Pisaura* nicht prinzipiell von derjenigen der Lycosiden ab, und man findet hier ganz dieselben Bivalenttypen (Fig. 89). Auch Ringbivalente kommen vereinzelt im Sortiment vor.

In der Metaphase der ersten Spermatozytenteilung befinden sich die X-Chromosomen ausserhalb der Äquatorialalebene zwischen dieser und dem einen Pol, gegen welchen sie orientiert sind (Fig. 90). Beide sind gleich lang und deutlich longitudinal gespalten. Sie liegen nicht so nahe beieinander wie die X-Chromosomen der untersuchten Lycosiden im entsprechenden Stadium. In der Anaphase und in der Interkinese ist ihr Verhalten ganz wie bei *Trochosa*.

In den Metaphaseplatten der zweiten Reifeteilung sind die Chromosomen bei *Pisaura* kurz stabförmig, bei *Dolomedes fimbriatus* fast punktiform wie z. B. bei *Lycosa saccata*. Wenigstens bei *Pisaura* sind alle Chromosomen etwa
derselben Grössenklasse. Die X-Chromosomen können nicht von den Autoso-
men unterschieden werden.

Aus der Ovogenese habe ich von *Pisaura listeri* nur zwei Stadien in meinem
Material, ein Diplotän nach der Wachstumsperiode der Ovozyte und eine
Metaphase der ersten Reifeteilung. Das erwähnte Diplotän ist ganz wie bei
Trochosa (vgl. S. 22). In der Metaphaseplatte (Fig. 86) konnte nicht die Chro-
mosomenzahl genau festgestellt werden. Hier zeigen aber wenigstens diejenigen
Bivalente, deren Bau im Präparat sichtbar ist, ganz ähnliche Formen wie in
der ersten Reifeteilung der Spermatogenese.

3. *Oxyopidae*.

Die Familie ist in meinem Material durch die einzige einheimische Art
Oxyopes ramosus vertreten. Die Reifeteilungen finden beim Männchen haupt-
sächlich im Frühling und Vorsommer statt. Bei den subadulten Exemplaren
der August-September-Materials kann man jedoch in den Testes vereinzelte
Zysten mit Reifeteilungen finden. Die allermeisten Spermatozyten über-
wintern aber im Pachytänstadium. Ich habe einige Exemplare von *Oxyopes*
den Winter über in Gefangenschaft gehalten und sie von Oktober bis Januar
im Freien der Kälte ausgesetzt, dann aber wieder bei Zimmertemperatur
gehalten. Ein Männchen wurde Ende Februar fixiert; die meisten Spermato-
zyten befanden sich aber noch im Pachytänstadium und die Reifeteilungen
waren in den Testes fast ebenso selten wie bei den im Herbst fixierten Indivi-
duen. Ovozyten aus einem Weibchen mit maximal aufgeschwollenem Abdomen
wurden Ende Juni fixiert.

Bei *Oxyopes ramosus* sind die Chromosomen auffallend gross; die Art wird
in dieser Hinsicht nur von wenigen Spinnen in meinem Material übertroffen.
Von den Spermatogonienteilungen ist es mir gelungen, zwei Metaphaseplatten
zu erhalten, wo die Chromosomen genau gezählt werden können. In beiden
Platten konnte ich die Zahl 21 feststellen. Die meistens relativ kurzen Chromo-
somen liegen ungefähr in derselben Ebene, und einige von ihnen sind in
der einen Platte (Fig. 91, 269) durch dünne Chromatinbrücken miteinander
verbunden. Ein Chromosom erscheint im Präparat deutlich durch eine helle
Zone in zwei ungleich lange *Arme* geteilt. Da dieses Chromosom keinen Partner
hat, muss es offenbar das »X« sein. Dasselbe Chromosom habe ich auch in
zwei anderen Platten erkannt, wo die Zahl nicht genau festgestellt werden
könnte. *Oxyopes ramosus* hat also 10 Paar Autosome, die akrozentrisch
 sind, und nur ein wahrscheinlich metazentrisches X-Chromosom.

In den früheren Meiosestadien beim Männchen verhalten sich die Autosome
wie bei *Trochosa*. Im Leptotän ist das X-Chromosom kurz und kompakt
und seine Zweiteiligkeit tritt nicht hervor (Fig. 96). In den folgenden Stadien,
Zygotän und Pachytän, werden die Enden des X etwas ausgezogen und das ganze Chromosom weist eine spiralenartige Krümmung auf (Fig. 98). Im Diplotän wird das X kürzer und in der Diakinese ist es von den ebenfalls stark kondensierten Autosomen kaum zu unterscheiden. Bei Oxyopes sind die Bivalente in der Diakinese meistens von Kreuztypus, doch kommen auch Stabbivalente mit terminalem oder fast terminalem Chiasma vor. Ringbivalente sind nicht beobachtet worden.

In der Metaphase der ersten Spermatozytenteilung sind alle Chromosomen in meinen Präparaten stark kondensiert. Die Autosomen erscheinen von den Polen gesehen in der Platte meistens semmelförmig (Fig. 92). Das deutlich longitudinal gespaltene X-Chromosom liegt schon in der Prometaphase ziemlich nahe dem einen Pol. Die Querteilung im X ist aber nicht deutlich. In der Interkinese ist das X stark kondensiert. In der zweiten Reifeteilung findet man Metaphaseplatten mit 10 und mit 11 Chromosomen, die alle kurz und dick sind (Fig. 93, 94). In einer Platte mit 11 Elementen habe ich ein grösseres Chromosom als das X gedeutet. In einer Metaphase der zweiten Teilung habe ich gefunden, dass sich ein Chromosom früher als die übrigen geteilt hat. Es befinden sich nämlich in diesem Stadium schon zwei Tochterchromosomen nahe den Polen.

In der ersten Reifeteilung im Ei liegen leider die Chromosomen im Präparat in der Platte so dicht gehäuft, dass sie nicht genau gezählt werden können. Der Bivalentenbau ist nach einigen Profilen zu schliessen ähnlich wie im entsprechenden Stadium der Spermatogenese. Es ist mir nicht gelungen, das X-Chromosom zu identifizieren.

4. Agalenidae.

Tegenaria derhami ist durchaus kein günstiges Studienobjekt, denn die Chromosomen liegen in den Metaphasen der Spermatozytenteilungen in meinen Präparaten meistens sehr dicht beisammen. In einer Platte der ersten Reifeteilung (Fig. 106) habe ich die Zahl der Autosomen als 16 gedeutet. Die ausserhalb der Äquatorialebene liegenden X-Chromosomen sind drei an der Zahl. Wie schon in der Einleitung (S. 6) erwähnt wurde, hat Sokolska (1925) eine Hausspinne untersucht, die sie _T. domestica_ Cl. benennt. Im Werke »Die Tierwelt Mitteleuropas« (Roewer 1929) findet man jedoch diesen Namen nicht verzeichnet; _Tegenaria domestica_ ist wahrscheinlich ein Kollektivname und die besprochene Art mit _T. derhami_ Scop. identisch. Sokolska hat drei X-Chromosomen beim Männchen dieser Hausspinne gefunden. Die Zahl der Autosomen wird als 18 angegeben. Revell hat gleichfalls bei _Tegenaria_ sp. drei X-Chromosomen festgestellt (Darlington 1945).

In den Spermatogonien von _Tegenaria derhami_ habe ich nicht die X-Chromosomen identifizieren können. Die von Sokolska (op. c.) erwähnten ruhenden Spermatogonien mit heteropyknotischen X-Chromosomen könnten wahrscheinlich Epithelzellen mit ihren Chromozentren sein.

Im Leptotän liegen die heteropyknotischen X-Chromosomen mitten in dem Leptonemaknäuel und können in meinen Präparaten nicht näher studiert werden. Im Zygotän und Pachytän liegen alle drei, X₁, X₂ und X₃, dicht nebeneinander und sind zum Teil umeinander gewunden. Dass ihre Zahl wirklich drei ist, tritt nicht besonders deutlich hervor. Sie sind im Pachytän wie die Pachynemata mit dem einen Ende gegen den proximalen Pol des Kerns orientiert (Fig. 104, 105). Im Diplotän liegen die X-Chromosomen immerfort nebeneinander. In meinen Präparaten habe ich kein typisches Diakinese-stadium gefunden. Wenn die Bivalente ihre maximale Kondensation erreicht haben, zeigen sie V- oder Kreuzform.

Die Prometaphase der ersten Spermatozytenteilung zeigt eine Anaphasesähnlichkeit, wie schon von Revell (vgl. S. 19) beobachtet worden ist. Wenigstens dort, wo in diesem Stadium die X-Chromosomen im Präparat gefunden
wollen können, liegen sie noch zusammen und sind gegen denselben Pol orientiert. In Metaphaseprofilen lässt sich in meinen Präparaten in zwei Fällen besonders deutlich feststellen, dass die X-Chromosomen drei an der Zahl sind. Zwischen dem einem Pol und der Äquatorialebene findet man hier zwei nebeneinander liegend und das dritte von diesen beiden bedeutend entfernt (Fig. 108). Alle drei liegen in der Richtung der Spindelfasern in der Peripherie der Spindel. In allen übrigen (26) Fällen sind sämtliche drei einander dicht genähert (Fig. 107). Man kann auch wahrnehmen, dass eines von ihnen ein wenig länger als die anderen zwei ist.

In der zweiten Reifeteilung sind alle Chromosomen kurz stabförmig. Meistens liegen sie so dicht gehäuft, dass sie nicht sicher gezählt werden können. In einem Fall habe ich jedoch ziemlich deutlich 19 Chromosomen feststellen können (Fig. 109). In einer anderen Platte konnten annähernd 16 gezählt werden. Sokolska (op. c.) hat 19 bzw. 18 gefunden und auf diesem Grund angeommen, dass die drei X-Chromosomen in den Spermatozyten mit 19 Chromosomen ein Sammelchromosom bilden. Es scheint mir jedoch wahrscheinlich dass sie sich hinsichtlich der Chromosomenzahl geirrt hat.

Es wäre natürlich interessant, auch andere Tegmaria-Arten zu untersuchen um eventuell das Problem der Entstehung des dritten X-Chromosoms zu lösen. Leider ist mir aber kein Material zugänglich gewesen.

Die Spermatogenese von Hahnia nava zeigt nicht viel von besonderem Interesse. In den Spermatogonienteilungen liegen die langstabförmigen Chromosomen in den Metaphasen sehr dicht beisammen und können nicht gezählt werden. Im Leptotän kann keine polare Orientierung der Chromomemata deutlich nachgewiesen werden. In Stadien, die als Zygotän zu deuten sind, tritt schon eine Bukettorientierung hervor, die im Pachytän bisweilen sehr deutlich ist (Fig. 110). Das Verhalten der beiden heteropyknotischen X-

In der Metaphase der ersten Spermatozytenteilung (Fig. 111, 112) zeigen die Bivalente denselben Bau wie bei Tegenaria. Die Chiasmata sind, wenigstens wo der Bivalentenbau in den im Präparat spärlich vorkommenden Metaphasen sichtbar ist, interstitiell. Die X-Chromosomen liegen in der Peripherie der Spindel ausserhalb der Metaphaseplatte (Fig. 112) nebeneinander und verhalten sich in der Teilung ganz wie bei Trochosa. \(X_1 \) und \(X_2 \) sind etwa gleich lang. Die im Präparat wenigen Metaphasen der zweiten Reifeteilungen ermöglichen keine genaue Zählung der stabförmigen dicht gehäuften Chromosomen.

5. Argyronetidae.

Die früheren Stadien der Meiose sind wegen der geringen Kerngrösse schwer zu analysieren. Das von mir als Leptotän gedeutete Stadium zeigt im Präparat das Synizesisphänomen. Die Leptonemata sind in der einen Kernhälfte zusammengeknäult und nur einzelne freie Enden ragen hervor. In der anderen Kernhälfte befinden sich die beiden heteropyknotischen X-Chromosomen, die schon in diesem Stadium sehr dicht nebeneinander liegen (Fig. 101). Im Zygotän (Fig. 102) bis Pachytän ist eine nicht besonders ausgeprägte polare Orientierung der Chromonemata vorhanden. Die X-Chromo-
somen liegen dicht parallel aneinander nahe der Kernmembran in der proximalen Hälfte des Kerns.

Die Tetradengenese ist bei *Argyroneta* in ihren Einzelheiten schwer zu verfolgen. Die Bivalente sind in der Diakinese denjenigen von *Pisaura listeri* (vgl. Fig. 89) ähnlich.

In der ersten Metaphase liegen die X-Chromosomen meistens beieinander und immer in der Peripherie der Spindel (Fig. 103). Sie sind etwa in der Richtung der Spindelfasern orientiert und befinden sich in der Regel näher dem einen Pol. In einer von den Metaphasen kann wahrgenommen werden, dass hier wirklich zwei und nicht ein einziges metazentrisches X vorhanden ist, da X_1 und X_2 hier proximal deutlich getrennt sind.

In der Interkinese liegen beide X-Chromosomen sehr dicht beisammen und sind wie gewöhnlich bei den Spinnen heteropyknotisch. In der Metaphase der zweiten Teilung sind alle Chromosomen sehr dicht gehäuft und überdecken einander in den Platten. Wie sich die X-Chromosomen hier verhalten, kann nicht ermittelt werden.

6. Therididae.

Bei beiden Arten habe ich zehn Paar Autosomen und zwei X-Chromosomen beim Männchen gefunden. Die Chromosomen des Sortiments sind unter sich etwa gleich gross (vgl. Fig. 114, 115, 124, 125) und alle akrozentrisch.

Spermatogonienmetaphasen fehlen in meinem Material. Aus dem Leptotän geht bei beiden Arten deutlich hervor, dass die heteropyknotischen X-Chromosomen als zwei selbständige Individuen vorhanden sind. In einigen Fällen liegen nämlich X_1 und X_2 in diesem Stadium getrennt (Fig. 116). Sogar noch im Pachytän können sie bei *Theridium tepidariorum* beträchtlich weit von einander entfernt sein (Fig. 117). Meistens liegen aber die X-Chromosomen schon vom Leptotän an dicht beieinander. In den früheren Meiosestadien ist
die Polarität der Chromosomen weniger deutlich als z. B. bei den Lycosiden. Die proximalen Enden der Leptonemata befinden sich nahe der Kernmembran, jedoch nicht auf einen beschränkten Bereich gehäuft. Im inneren des Korns bilden die Leptonemata ein dichtes Gewirr. In einem Fall bei Steatoda tritt die Orientierung der Chromonemata etwas deutlicher hervor. Dabei konnte ich beobachten, dass freie Enden ausgesprochen paarweise aus dem zentralen Fadenknäuel hervorragen. Offenbar ist hier die Konjugation in den proximalen Enden eingeleitet (Fig. 122). Es ist jedoch meistens schwer, die Grenze zwischen Leptotän und Zygotän zu ziehen, da es im Präparat nicht möglich ist wahrzunehmen, ob die Chromonemata im Zentrum des Korns gepaart sind oder nicht. Bei Theridium ist die polare Orientierung auch im Pachytän nicht besonders deutlich, obwohl die meisten Proximalenden der Pachynemata in derselben Hälfte des Korns liegen.

Im Diplotän und in der Diakinese liegen die beiden stark kondensierten X-Chromosomen dicht nebeneinander. Im letztgenannten Stadium beobachtet man bei Theridium tepidariorum, dass die Chiasmata mehrerer Bivalente subterminal oder terminal sind. Wegen der starken Kondensation der Chromosomen ist es bisweilen nicht leicht zu entscheiden, ob die Chiasmata terminal sind oder nicht. In der Metaphase der ersten Reifeteilung erscheinen diese Bivalente von den Polen gesehen in der Platte fast punktförmig, im Profil etwa hantelförmig. Bei Steatoda bipunctata sind die Bivalente meistens vom Kreuztypus. V-förmige Bivalente mit proximal gelegenem Chiasma kommen auch bei dieser Art vor (Fig. 121). Dagegen sind stabförmige Bivalente mit subterminalen Chiasmen selten.

Das Verhalten der X-Chromosomen während der ersten Reifeteilung ist charakteristisch. Sie sind sowohl bei Theridium tepidariorum als bei Steatoda bipunctata ebenso kurz und dick wie in der meiotischen Prophase und sind schon in der Prometaphase dem einen Pol stark genähert (Fig. 123). Sie sind in der Anaphase ganz unbeweglich.

In der Metaphase der zweiten Teilung liegen die Chromosomen bei Theridium in der Platte sehr dicht beisammen und zeigen von den Polen gesehen kugelige Form. Bei Steatoda liegen sie weniger dicht und können genau gezählt werden. Ich habe in ein und demselben Präparat zwei Platten gefunden, wo die Chromosomen eine recht verschiedene Stufe der Kondensation aufweisen. In der einen Platte sind die Chromosomen von der Form eines Kommas oder eines Stäbchens, in der anderen sind sie viel kürzer (vgl. Fig. 124, 125). In den zwei abgebildeten Platten findet man 12 Chromosomen, also 10 Autosomen und zwei X-Chromosomen, welche nicht von den Autosomen unterschieden werden können. Die zweite Reifeteilung vollzieht sich normal ohne ein »Nachhinken« von Chromosomen.

Wie schon erwähnt, hat Montgomery (1908) einige Stadien aus der
Ovogenese von *Theridium tepidariorum* untersucht. Er hat nach dem Wachstum Stadium der Ovozyte ein ähnliches Diplotän gefunden, wie ich es schon bei *Trochosa ruvicola* beschrieben habe. Aus der Abbildung bei Montgomery (op. c., Taf. 4, Fig. 2 a, b) kann ebenfalls geschlossen werden, dass die homologen Chromonomemata nur an den Stellen der Chiasmata zusammenhängen und dass wenigstens in den abgebildeten Bivalenten nur je ein Chiasma vorhanden ist. Das folgende von Montgomery untersuchte Stadium ist die Telophase der ersten Reifeteilung. Er hat auch Platten der zweiten Reifeteilung abgebildet (vgl. op. c., Taf. 4, Fig. 20). Die Chromosomen sind hier deutlich 12. Wenn man annimmt, dass die X-Chromosomen hier zwei Bivalente gebildet haben, stimmt die Zahl 12 gut mit meinen Befunden bezüglich der Spermatogenese derselben Art überein.

7. *Linyphiidae.*

Die Epithelzellen im Testis haben bei *Leptyphanthes minutus, Drapetisca socialis* und *Linyphia* sp. (Fig. 263) im Vergleich zu denjenigen der Spermatogonien und der Spermatozyten riesige Kerne, die nach den zahlreichen Chromatinbrocken zu schliessen, polypliod sind (vgl. Micryphantidae: *Gongylidiun rufipes*, Fig. 133).

In der schon erwähnten Spermatogonienmetaphase von *Drapetisca socialis* (Fig. 126) findet man 24 langgestreckte akrozentrische Chromosomen, deren proximale Enden in der Äquatoriallebene liegen. In der Abbildung sehen zwei Chromosomen punktförmig aus, in Wirklichkeit sind sie aber von derselben
Form wie die anderen, jedoch in der Richtung der Spindelachse orientiert. Die X-Chromosomen können hier nicht identifiziert werden.

Die früheren Stadien der Meiose bis zum Pachytän sind wegen der geringen Kerngröße bei den Linyphiiden schwer in ihren Einzelheiten zu studieren. Die beiden X-Chromosomen sind hier wie gewöhnlich stark heteropyknotisch und liegen meistens dicht nebeneinander. Im Pachytän ist eine deutliche polare Orientierung der Pachynemata vorhanden, wobei ihre proximalen Enden an der Kernmembran in einem ziemlich beschränkten Bereich gesammelt erscheinen. In diesem Bereich befinden sich auch die X-Chromosomen (Fig. 132).

In betreff der Chiasmatypie sei erwähnt, dass man in der Diakinese bei den Linyphiiden in meinem Material meistens V- und kreuzförmige, seltener stabförmige Bivalente findet. Das einzige Chiasma ist in der Regel noch in der ersten Metaphase interstitiell.

In den Metaphaseplatten der ersten Spermatozytenteilung liegen die Bivalente oft so, dass sie einander teilweise überdecken. Nur bei Drapetisca socialis habe ich eine Platte gefunden (Fig. 127), wo alle Bivalente fast in derselben Ebene liegen. Von diesen sind sieben V-förmig. In einer Platte bei Leptyphanthes minutus ist auch die V-Form in 9 Bivalenten vertreten. Die übrigen zwei treten im Präparat weniger deutlich hervor (Fig. 129). Bei den beiden Linyphia-Arten sind die Bivalente stärker kondensiert (Fig. 128) und liegen oft sehr dicht. Die beiden X-Chromosomen befinden sich bei sämtlichen Linyphiiden meines Materials ziemlich nahe dem einen Pol und sind nur selten deutlich voneinander getrennt (Fig. 130, 131).

In der Metaphase der zweiten Spermatozytenteilung sind alle Chromosomen stark kontrahiert und liegen so dicht, dass sie nur annähernd gezählt werden können.

Schon Painter (1914) hat einige Stadien der Spermatogenese einer Linyphiide, Linyphia marginata, untersucht. Er hat nicht genau die Autosomen zählen können, aber gibt für diese Art zwei X-Chromosomen an, die sich ganz ähnlich wie bei den hier untersuchten Arten verhalten.

8. Micryphantidae.

Von Gongylidiium rufipes, der einzigen Micryphanthide in meinem Material, habe ich zwei subadulte Männchen Anfang Juni fixiert. Die Art zeigt zytologisch viel Ähnlichkeit mit den untersuchten Linyphiiden, ist aber wegen der äußerst geringen Chromosomengrösse ein ungünstigeres Objekt als die letzteren.

Die haplode Zahl der Autosomen ist sehr wahrscheinlich 10, denn wenigstens in einer Metaphaseplatte der ersten Reifeteilung (Fig. 134) konnte ich deutlich 10 Bivalente zählen. Zwei X-Chromosomen sind vorhanden und sind
Walter Hackman, Chromosomenstudien an Araneen

in der Meiose heteropyknotisch. Sämtliche Chromosomen im Sortiment sind akrozentrisch und scheinen etwa gleich gross zu sein.

Wie bei einigen Linyphiiden, kommen auch bei Gongylidium rufipes grosse polyplioide Epithelzellen im Testis vor (Fig. 133).

In den im Präparat nur spärlich vorkommenden Metaphaseplatten der ersten Reifeteilung zeigen die Bivalente in Polansicht Semmel- und kurze V-Form. Die beiden X-Chromosomen liegen bald zusammen, bald deutlich getrennt (Fig. 135) nahe dem einen Pol.

In der zweiten Reifeteilung habe ich die in den Platten sehr dicht liegenden Chromosomen nicht zählen können.

Die Chromosomen sind bei den untersuchten Argiopiden viel grösser als bei den Linyphiiden. Bei Aranea dumetorum sind die metazentrischen Chromo-
somen etwa doppelt so lang wie die akrozentrischen. Dies tritt am besten in den Spermatogonienmetaphasen und in der zweiten Reifeteilung zum Vor­schein (vgl. Fig. 158, 159). Bei den übrigen Argiopiden können keine besonders auffallenden Größendifferenzen innerhalb des Sortiments beobachtet werden.

Bei Aranea dumetorum habe ich in vier Spermatogonienplatten die Chromosomen genau zählen können und dabei 10 V-förmige und 4 stabförmige gefunden (Fig. 144, 145). Die fünf metazentrischen Autosompaare sind also hier deutlich von den übrigen Chromosomen zu unterscheiden. Von den vier akrozentrischen Chromosomen müssen zwei die X-Chromosomen sein. In zwei Metaphasen und einer späten Prophase (Fig. 146) verhalten sich zwei stabförmige Chromosomen merkwürdig. Sie berühren einander mit beiden Enden. Vielleicht sind diese zwei Chromosomen X_1 und X_2. Bei Aranea sericata (Epeira scolopetaria) hat Berry (1906) nur ein einziges spermatogoniales X-Chromosom gefunden. Das in der Meiose beobachtete heteropyknotische X-Doppelgebilde haben sowohl Berry (op. c.) als Painter (1914) jedoch als zwei Chromosomen gedeutet. Eine erneute Untersuchung dieses Falles ist nötig, um die Sache endgültig klarzulegen. Bei Aranea foliata überdecken die akrozentrischen Chromosomen in den Spermatogonienmetaphasen einander oft, und nur in einem Fall (Fig. 147) konnte ich die Zahl 24 sicher feststellen. Die X-Chromosomen können hier nicht identifiziert werden.

Die früheren Stadien der Meiose habe ich besonders bei Aranea diademata und A. dumetorum studiert. Bei diesen Spinnen erfolgt offenbar auf die letzte Spermatogonienteilung eine mehr gleichmässige Despiralisation der Autosomen als bei den Lycosiden, denn Hardsche Prochromosomen (vgl. S. 16 und Hard 1939) sind nicht in den Präparaten gefunden worden. Im Leptotän (Fig. 160) habe ich keine polare Orientierung der Chromonemata nachweisen können. Die letzteren füllen den Kernraum oft bis auf einen kleinen Bereich aus, wo die beiden heteropyknotischen X-Chromosomen nahe an der Membran einander dicht genähert liegen. In dem als Zygotän zu bezeichnenden Stadium tritt noch keine Bukettorientierung hervor. Wo sich die freien Enden befinden, kann nur bei wenigen Chromosomen wahrgenommen werden. Wo die Konjuga­tion eingeleitet wird und ob in dieser Hinsicht ein Unterschied zwischen
akrozentrischen und metazentrischen Chromosomen im Falle *Aranea dumetorum* besteht, lässt sich leider nicht feststellen. Im Pachytän ist eine Bukett-orientierung bei *Aranea diademata* deutlich vorhanden. Die beiden Enden der Pachynemata befinden sich nahe der Kernmembran in derselben Kernhälfte. Hier liegen auch die beiden stark kondensierten X-Chromosomen ganz dicht beieinander (Fig. 163). Bei *Aranea dumetorum* (Fig. 161) dagegen ist die polare Orientierung der Pachynemata weniger deutlich. Ich habe nur feststellen können, dass wenigstens das eine Ende jedes Pachynemamas in derselben Kernhälfte nahe an der Membran zu finden ist. Die X-Chromosomen verhalten sich wie bei *Aranea diademata*.

Zahl der Ringbivalente in der Zelle: 0 1 2 3 4 5 6
Zahl der Zellen: 2 8 15 13 12

Auch bei anderen Individuen der fraglichen Art fand ich oft 3—5 Ringbivalente in den Kernen. Wo in den metazentrischen Chromosomen nur ein Chiasma vorkommt, ist dieses im späteren Diploätän und in der Diakinese meistens subterminal.

Während des Diploätans (Fig. 162, 164) und in der Diakinese liegen die beiden stark kondensierten X-Chromosomen bei sämtlichen untersuchten Arten dicht beieinander nahe der Kernmembran.

In der ersten Spermatozytenteilung sind die X-Chromosomen bei sämtlichen Arten meines Materials fast kugelig kondensiert. Sie befinden sich zwischen der Äquatorialalebene und dem einen Pol, oft nahe dem letzteren,
und haben sich nicht voneinander getrennt. Bei den Arten mit lauter akrozentrischen Chromosomen sind die Bivalente in der Platte meistens semmel- oder kurz V-förmig, d.h. die Chiasmata sind noch interstitiell. Stabförmige Bivalente mit subterminalem oder terminalem Chiasma kommen bei *Aranea foliata*, *A. diademata* (Fig. 148) und *A. cucurbitina* (Fig. 153) spärlich vor. Diese Bivalente erscheinen in den Metaphaseplatten fast punktförmig. Bei *Aranea dumetorum* können die Ringbivalente in den Metaphaseprofilen sofort erkannt werden (Fig. 152, vgl. auch Fig. 262); in Polansicht tritt ihr Bau dagegen nicht deutlich hervor. Im Profil sind auch die metazentrischen Chromosomen mit nur einem Chiasma sehr charakteristisch (vgl. Fig. 261). Das einzige akrozentrische Autosomenpaar hat ein semmelförmiges Bivalent gebildet, das etwa halb so gross wie die anderen Bivalente ist.

Bei einem Männchen von *Aranea diademata* fand ich ausserhalb der Metaphaseplatte in acht Spermatozyten ausser den X-Chromosomen noch zwei univalente Chromosomen. In fünf Zellen befanden sich die univalente Chromosomen paarweise gegenüber jederseits der Platte, in drei Zellen auf derselben Seite und einander mehr oder weniger genähert (vgl. Fig. 169—172).

Beim *Aranea dumetorum* tritt auch in der zweiten Spermatozytenteilung der Unterschied zwischen den metazentrischen und den akrozentrischen Chromosomen deutlich hervor. Die fünf metazentrischen Chromosomen sind in Polansicht in der Metaphase kurz V-förmig. Ausser diesen fünf findet man in den Platten, wo die X-Chromosomen mit zugehen sind (Fig. 159), drei kurz stabförmige Chromosomen und in den Platten, wo die X-Chromosomen fehlen (Fig. 158), nur ein solches. Im ersteren Fall liegen (in 4 Platten, wo sämtliche Chromosomen deutlich hervortreten) zwei der drei stabförmigen Chromosomen, wahrscheinlich X₃ und X₄, sehr nahe beieinander und etwa parallel (Fig. 159). In den Metaphaseplatten der zweiten Reifeteilung bei *Aranea foliata* und *A. sexpunctata* liegen sämtliche Chromosomen sehr dicht beisammen. Weder bei diesen zwei *Aranea*-Arten noch bei *A. diademata* und *A. angulata* (?) (Fig. 156) können die X-Chromosomen in der zweiten Teilung identifiziert werden. Alle Chromosomen sind hier kurz und dick.

Die erste Reifeteilung im Ei habe ich bei *Aranea diademata* und *A. dum-
Walter Hackman, Chromosomenstudien an Araneen

torum untersucht. Von ersterer Art habe ich eine Prometaphase erhalten (Fig. 167), wo die schon früher (S. 19) in dieser Arbeit erwähnte Anaphasenähnlichkeit zum Vorschein kommt. Die Bivalente haben alle ein subterminales oder terminales Chiasma. Aus zwei Metaphaseplatten (Fig. 165, 166) in der Schnittebene und aus mehreren Metaphaseprofilen (vgl. Fig. 168) habe ich 13 Chromosomen zählen können. Die vier X-Chromosomen des Weibchens bilden also hier zwei Bivalente, die aber nicht von denjenigen der Autosomen unterschieden werden können. Bei Aranea dumetorum ist es mir nicht gelungen, Metaphaseplatten in der Schnittebene zu erhalten. In den Präparaten liegen die Platten schräg oder in Profilsicht. Da die Chromosomen sehr dicht gehäuft erscheinen, habe ich nur annähernd 8 zählen können. Der Bau der fünf von metazentrischen Chromosomen gebildeten Bivalente tritt nicht deutlich hervor.

10. Tetragnathidae.

Die Stadien vom Leptotän bis zum Pachytän sind wegen der geringen Kerngrösse schwer in Einzelheiten zu verfolgen. Die beiden X-Chromosomen sind heteropyknotisch und liegen oft bis zum älteren Pachytän getrennt, später aber dicht nebeneinander in der Nähe des proximalen Kernpols.

Bezüglich der Chiasmatypie kann erwähnt werden, dass in den Bivalenten in der Regel je ein Chiasma zu finden ist. In einem einzigen Fall habe ich bei Tetragnatha sp. einen Diakinesekern mit zwei Ringbivalenten gefunden (Fig. 143). Im Diplotän und in der Diakinese bleiben die stark kondensierten X-Chromosomen dicht beisammen.

In der ersten Spermatozytenteilung zeigen die Autosombivalente V- oder Kreuzform (Fig. 137). Die X-Chromosomen liegen entweder dicht nebeinannder oder etwas voneinander entfernt (Fig. 138) in der Nähe des einen Pols. Beide sind deutlich longitudinal gespalten. In der zweiten Teilung sind alle Chromosomen kurz stabförmig, bisweilen aber fast kugelig kondensiert.

11. Drassidae.

In den Spermatogonienplatten liegen in der Regel die Chromosomen dicht gehäuft. Nur bei *Berlandina cinerea* habe ich eine Platte (Fig. 173) gefunden, wo die Chromosomenzahl 22 annähernd festgestellt werden konnte. Die Chromosomen sind hier kürzer als sonst in den Gonien dieser Spinnen.

Die früheren Meiosestadien zeigen bei allen Drassiden in meinem Material ein sehr ähnliches Bild und stimmen wesentlich mit denjenigen der Lycosiden (vgl. *Trochosa ruricula* S. 00) überein. Die X-Chromosomen sind wie gewöhnlich heteropyknotisch und nahe dem proximalen Pol des Kerns zu finden (Fig. 183, 184). Sie sind bisweilen bis zum früheren Pachytän getrennt, liegen aber in späteren Stadien der meiotischen Prophase immer dicht parallel nebeneinander.

Die Tetradengeneze zeigt nichts besonderes von Interesse. Es sei erwähnt, dass in meinem Material keine Ringbivalente zu finden sind. Die Bivalente
haben stets nur ein Chiasma, das noch in der Metaphase der ersten Reifeteilung interstitiell ist. Sowohl V- als kreuzförmige Bivalente kommen vor.

In der ersten Reifeteilung findet man die X-Chromosomen nebeneinander in der Peripherie der Spindel und in der Faserrichtung orientiert. Meistens liegen sie so, dass ihre Distalenden von der Äquatorialebene durchschnitten werden. In der Regel sind sie langgestreckt und ihre Proximalenden zugespitzt, bei dem einzigen Individuum von Berlandina cinerea in meinem Material sind sie dagegen kurz und gedrungen (Fig. 178). Auch die Autosomen sind in der ersten Reifeteilung bei diesem Individuum auffallend stark kondensiert.

In den X-Chromosomen trat im Azetokarminpräparat von Haplodrassus cognatus die longitudinale Spalte zwischen den Chromatiden besonders deutlich hervor (Fig. 175).

In der zweiten Reifeteilung findet man bei den untersuchten Arten Platten mit 10 und solche mit 12 kurz stabförmigen Chromosomen (Fig. 179—182). Es ist mir nicht gelungen, die X-Chromosomen von den Autosomen zu unterscheiden.

12. Clubionidae.

Im Leptotän bis Pachytän verhalten sich die Autosomen ganz wie bei Trochosa, und die polare Orientierung der Chromonemata tritt besonders im Pachytän deutlich hervor (Fig. 186). Die beiden heteropyknotischen X-Chromosomen liegen vom Leptotän an nahe dem proximalen Pol des Korns und können bis zum späteren Pachytän deutlich voneinander getrennt sein. Im Diplotän liegen sie aber immer dicht nebeneinander und haben sich stärker kondensiert (Fig. 187).

Sowohl bei Micaria decorata wie bei den drei Clubiona-Arten liegen in der ersten Spermatozyten teilung die beiden X-Chromosomen in der Peripherie der Spindel zwischen der Äquatorial ebene und dem einen Pol und sind dicht nebeneinander in der Faserrichtung orientiert (Fig. 189, 190). In der Interkinese tritt wie gewöhnlich bei den Spinnern die Heteropyknose der X-Chromosomen wieder zum Vorschein. Sie sind stark kondensiert und liegen dicht beisammen. In der zweiten Teilung befinden sich sämtliche Chromosomen sehr dicht in der Platte und sind kurz und dick (Fig. 191).

In der ersten Reifeteilung im Ei bei Clubiona phragmitidis sind die meisten Bivalente fast stabförmig, d.h., die Chiasmata sind subterminal. Ich habe in meinen Präparaten leider nur zwei Metaphasen (im Profil) gefunden, und die Chromosomen können hier nicht genau gezählt werden.

Bei Anyphaena accentuata finden die Reifeteilungen der Spermatogenese wahrscheinlich hauptsächlich im Juli statt, denn die im August fixierten Männchen in meinem Material sind etwas zu alt. Es ist mir jedoch gelungen, die wichtigsten Stadien der Meiose zu erhalten. Ältere Ovozyten aus zwei adulten Weibchen wurden im Juni fixiert.

Die Art hat beim Männchen 12 Paar Autosomen und zwei X-Chromosomen. Es möge bemerkt werden, dass PAINTER (1914) bei Anyphaena saltibunda

In den Metaphaseplatten der ersten Spermatozyltenteilung ist es nicht so leicht, die Autosomen exakt zu zählen, weil einige von ihnen sehr nahe beieinander liegen und hier sowohl punktförmige (Stabbivalente in Polansicht) als semmelförmige (Kreuzbivalente in Polansicht) Elemente vorkommen (Fig. 193). Durch Vergleich mit Diakinesekernen habe ich jedoch die Autosomenzahl 12 festgestellt. Die X-Chromosomen liegen nebeneinander in der Peripherie der Spindel. In verschiedenen Metaphasen im Präparat sind sie aber verschieden weit von dem Pol, gegen welchen sie orientiert sind, entfernt. In einem extremen Fall befindet sich das eine X etwa äquidistant zwischen beiden Polen (vgl. Fig. 194). Man erkennt hier deutlich, das dieses X-Chromosom seiner ganzen Länge nach in der Richtung der Spindelfasern liegt. Das andere X liegt ein wenig näher dem einem Pol. In anderen Metaphaseprofilen befinden sich beide X-Chromosomen ziemlich nahe dem Pol, gegen welchen sie mit ihren proximalen Enden orientiert sind. Vergleicht man die in meinen Präparaten vorhandenen früheren Telophasen, so findet man ganz entsprechend die X-Chromosomen bald näher dem Pol, bald weiter vom Pol entfernt. In der zweiten Reifeteilung konnten die dichtliegenden Chromosomen nicht genau gezählt werden.

In der ersten Reifeteilung im Ei sind die Bivalente bei *Anynphaena accentuata* wie bei *Clubiona phragmitidis* gebaut. In jedem Bivalent findet man ein subterminales Chiasma (Fig. 195). Aus einem schrägen Metaphaseprofil habe ich 14 Chromosomen, also 12 Autosom- und zwei X-Bivalente gezählt.

14. Sparassidae.

Von *Micrommata viridissima*, der einzigen einheimischen Sparasside, ist es mir leider nicht gelungen, Männchen im Frühjahr zu finden, wenn bei dieser Art die Reife eintritt. Das einzige Männchen (subadult) in meinem Material
ist Ende August fixiert worden und zeigt noch keine Reifeteilungen in den Testes. Ovozyten aus einem adulten Weibchen wurden für die Untersuchung der ersten Reifeteilung Ende Juni fixiert.

Es hat mir Schwierigkeiten bereitet, aus dem ungenügenden Material bei dieser Art die Chromosomenzahl festzustellen. Bei dem Männchen zeigt das Präparat zwar mehrere Gonienmetaphasen, aber meistens liegen die langgestreckten akrozentrischen Chromosomen in den Platten sehr ungünstig und überdecken einander. In einer Platte habe ich annähernd 35 zählen können (Fig. 196). In einer Prometaphase der ersten Reifeteilung, dem ältesten Meiosestadium im Präparat, habe ich 16 Bivalente gefunden (Fig. 200). Die Zahl der offenbar in diesem Stadium dicht nebeneinander liegenden X-Chromosomen lässt sich hier nicht feststellen. Die früheren Meiosestadien lassen aber vermuten, dass die X-Chromosomen bei dieser Art drei sind.

In mehreren Kernen im Leptotän habe ich nahe der Membran deutlich drei kurze heteropyknotische Chromosomen gefunden. Eine polare Orientierung der Leptonemata ist vorhanden (Fig. 197). Die proximalen Enden der Autosomen sind in einem kleinen Bereich des Kerns gesammelt. Im Pachytän sind die heteropyknotischen Chromosomen ziemlich lang und liegen parallel nebeneinander in der Richtung der Pachynemata, die deutlich polar orientiert sind (Fig. 198). Es ist sehr wahrscheinlich, dass alle diese drei heteropyknotischen Chromosomen X-Chromosomen sind. Mehr Material ist jedoch rötig, um dies endgültig klarzulegen. In der obenerwähnten Prometaphase der ersten Spermatozytenteilung zeigen die Bivalente Kreuz- und V-Form.

Von der ersten Reifeteilung im Ei habe ich in meinen Präparaten nur Metaphaseprofile gefunden. Hier liegen aber die Bivalente so dicht, dass sie nicht annähernd gezählt werden können.

15. Xysticidae.

Sowohl bei den beiden *Xysticus*-Arten wie bei *Misumena* habe ich 11 Paar Autosomen gefunden. Diese Zahl gibt auch Painter (1914) für *Xysticus triguttatus* an. Bei *Xysticus ulmi*, *X. viaticus* und *Misumena vatia* ist beim
Männchen nur ein X-Chromosom vorhanden. Nach Painter soll X. trigulatus zwei X-Chromosomen haben, nach den von ihm gegebenen Abbildungen (op. c., Taf. 33, Fig. 95, 96) zu schliessen, scheint es mir jedoch wahrscheinlich, dass auch diese Art dem Typus XO zufällt. Misumena hat etwas grössere Chromosomen als die beiden Xysticus-Arten in meinem Material. Bei den untersuchten Arten sind sämtliche Chromosomen akrozentrisch.

Von Xysticus viaticus ist es mir gelungen, sogar zwei Spermatogonienmetaphasen zu erhalten, wo die Chromosomen genau gezählt werden können. Die Zahl ist hier 23 (Fig. 201), was schon andeutet, dass hier nicht der bei den Spinnen gewöhnliche X₁X₂-Typus vorhanden ist. Die Chromosomen sind relativ kurz und liegen nicht besonders dicht in der Platte.

relict spiral (Fig. 206) und das ganze X-Chromosom wird im Zygotän lang und dünn und liegt meistens seiner ganzen Länge nach dicht an der Kernmembran. Sein proximales Ende, wo die Despiralisation begonnen hat, ist zugespiitzt und befindet sich nahe dem proximalen Pol, bei welchem auch die proximalen Enden der meisten Zygonemata gesammelt sind. Das X-Chromosom ist deutlich dicker als die Zygonemata und kann ausserdem an seiner stärkeren Färbarkeit (Heidenhain, Feulgen) und seiner isolierten Lage im Kern erkannt werden (Fig. 207). Im Pachytän wird das X etwa doppelt so dick wie die Pachynemata (Fig. 208, 209, 268). Im Diplotän zeigen sowohl die Autosomen als das X-Chromosom etwa denselben Zustand der Spiralisat. In dem stabförmigen X lässt sich jetzt eine longitudinalale Spalte wahrnehmen.

In der Metaphase der ersten Reifeteilung liegt das stabförmige X-Chromosom in der Peripherie der Spindel in der Fasernrichtung orientiert und mit seinem proximalen Ende nahe dem einen Pol (Fig. 204). In den Metaphaseplatten tritt bei den drei Arten in meinem Material die Zahl der Autosomen (11) meistens deutlich hervor, weil die Bivalente nicht besonders dicht liegen (vgl. Fig. 202, 203). In der Interkinese ist das X stärker kondensiert als in der Metaphase der ersten Teilung. In der zweiten Spermatozytenteilung sind alle Chromosomen kurz stabförmig. Sie liegen aber in den Metaphase-
platten ziemlich dicht gehäuft und sind deshalb meistens schwer genau zu zählen. In einer Platte von *Xysticus ulmi* und in einer von *Misumena vatia* tritt jedoch die Zahl 11 hervor. In vier Anaphasen der zweiten Teilung konnte ich bei einem Individuum von *X. viaticus* beobachten, dass ein Chromosom sich später als die übrigen geteilt hat (Fig. 211).

Die vier *Philodromus*-Arten sind einander karyologisch sehr ähnlich. Sie haben beim Männchen 13 Paar Autosomen und zwei X-Chromosomen. Die
letzteren sind **verschieden lang**, was am deutlichsten in Profilen der ersten Spermatozytenteilung hervortritt (Fig. 222). Das eine X ist etwa 2/3 so lang wie das andere. Die Autosomen zeigen innerhalb des Sortiments keine auffallenden Größendifferenzen. *Ph. laevipes* hat etwas größere Chromosomen als die drei übrigen Arten (vgl. Fig. 212—215). *Thanatus formicinus* hat wie die *Philodromus*-Arten 13 Paar Autosomen, aber die beiden X-Chromosomen sind etwa gleich lang. Bei *Tibellus oblongus* dagegen habe ich nur 11 Paar Autosomen gefunden. Die beiden X-Chromosomen sind bei dieser Art ungleich lang. Das eine X ist etwa um ein Viertel kürzer als das andere. Bei allen erwähnten Philodromiden sind sämtliche Chromosomen akrozentrisch.

In bezug auf den Verlauf der Spermatogenese zeigen diese Spinnen eine grosse Übereinstimmung mit den Lycosiden. Die beiden heteropyknotischen X-Chromosomen liegen im Leptotän und bisweilen noch im Zygotän deutlich voneinander getrennt, aber immer nahe der Kernmembran (vgl. Fig. 217). Im Pachytän liegen sie dicht nebeneinander (Fig. 218), so auch im Diplotän und in der Diakinese.

In jedem Autosombivalent wird nur ein Chiasma gebildet, das in der Regel in der Metaphase der ersten Spermatozytenteilung deutlich interstitiell ist. Die Bivalente sind meistens kreuz- oder V-förmig.

In meinen Präparaten von *Philodromus emarginatus* und *Ph. laevipes* habe ich Prometaphasen der ersten Spermatozytenteilung gefunden, in welchen die schon mehrmals in dieser Arbeit besprochene Anaphasenähnlichkeit zum Vorschein kommt (vgl. Fig. 219). In den Metaphaseplatten bei den Philodromiden zeigen die Bivalente in Polansicht meistens V- oder Semmelform. Es kommen vereinzelt auch solche Bivalente vor, die fast punktförmig erscheinen (*Ph. emarginatus*, Fig. 213; *Ph. histrio*, Fig. 214). Die Chiasmata sind hier subterminal. In der in Fig. 215 abgebildeten Platte von *Ph. laevipes* sind alle Chromosomen stark kondensiert, und der Bau der Bivalente tritt dadurch im Präparat weniger deutlich hervor. Die X-Chromosomen liegen bei den untersuchten Philodromiden nebeneinander in der Peripherie der Spindel und meistens näher dem einen Pol, gegen welchen sie mit ihren proximalen Enden orientiert sind. Bei *Philodromus aureolus, Ph. emarginatus* und *Tibellus oblongus* können sie bisweilen in fast äquidistanter Lage hinsichtlich der Pole gefunden werden. In den wenigen Metaphasen im Präparat von *Ph. laevipes* sind X_1 und X_2 nahe dem einen Pol gelegen. Bei dieser Art habe ich die in meinen Präparaten überhaupt seltene frühe Anaphase der ersten Reifeteilung gefunden (Fig. 223). In diesem Fall haben sich die homologen Chromosomen in der Peripherie der Platte getrennt und sind ein wenig gegen die Pole gerückt. Im Zentrum der Äquatoriallebene hängen sie aber noch als Bivalente zusammen. Es ist bemerkenswert, dass in diesem Fall der Abstand zwischen Zentromer und Pol für sämtliche Chromosomen in Frage
etwa gleich ist. Aus dieser einzigen Beobachtung lassen sich jedoch keine generellen Konklusionen ziehen. In frühen Telophasen habe ich bei *Philodromus emarginatus* und *Ph. aureolus* (Fig. 224) deutlich feststellen können, dass die X-Chromosomen ganz ähnlich wie bei *Trochosa ruricola* (vgl. S. 20) den Autosomen nachbleiben.

In der zweiten Spermatozytenteilung sind bei den vier *Philodromus*-Arten und *Tibellus oblongus* alle Chromosomen kurz stabförmig (vgl. Fig. 227—229). Bei *Thanatus formicinus* erscheinen sie in den Platten fast kugelig (Fig. 230, 231). Da die Chromosomen meistens deutlich voneinander getrennt liegen, können sie in den Platten genau gezählt werden. Es ist aber nicht möglich, die X-Chromosomen von den Autosomen zu unterscheiden.

Die erste Reifeteilung im Ei habe ich bei *Philodromus aureolus* untersucht. Es ist mir leider nicht gelungen, Metaphaseplatten in der Schnittebene zu erhalten, aus mehreren Profilen und einer Prometaphase (Fig. 226) lässt sich jedoch feststellen, dass die Bivalente von ähnlicher Bau wie in der Spermatogenese sind. Die beiden X-Bivalente habe ich nicht von denjenigen der Autosomen unterscheiden können.

17. Salticidae.

Die spermatogonialen Chromosomen sind bei *Evarcha* und *Myrmarachne* lang stabförmig, liegen aber dicht in den Metaphaseplatten und überdecken einander. Es ist mir deshalb nicht möglich gewesen, sie genau zu zählen.

Im präleptotänen Stadium (Fig. 238) findet man Prochromosomen von ähnlicherm Typus wie bei *Trochosa ruricola*. Bei *Evarcha falcata* können die kompakten X-Chromosomen leicht von den in diesem Stadium infolge der beginnenden Despiralisation etwas gelockerten Autosomen unterschieden wer-
den. Der Übergang vom Leptotän zum Zygotän ist schwer zu verfolgen. Im späteren Zygotän und im Pachytän ist eine Bukettorientierung der Chromosomen, ähnlich derjenigen bei *Trochosa* und vielen anderen Spinnen in meinem Material, deutlich vorhanden. Vom Leptotän bis zum Pachytän liegen die beiden heteropyknotischen X-Chromosomen (bei den Arten mit zwei solchen) in der Regel nahe beieinander an dem proximalen Pol des Kerns. Bei *Evarcha falcata* sind sie aber oft noch im Pachytän deutlich voneinander getrennt (Fig. 240). Bisweilen berühren sie einander mit ihren zugespitzten Proximalenden (Fig. 241). Dicht parallel gelagerte X-Chromosomen kommen bei dieser Art im Pachytän nur selten vor. X$_1$ und X$_2$ sind bei *Evarcha falcata*, *Salticus scenicus* und *Dendryphanthes rudis* im Zygotän und Pachytän auffallend lang. Im Diplotän haben sie sich jedoch stärker kondensiert und liegen parallel nebeneinander. Bei *Myrmarachne formicaria* ist das X-Chromosom ebenfalls heteropyknotisch (Fig. 244) und im Zygotän und Pachytän merkbar länger als in den folgenden Stadien der meiotischen Prophase.

In den Autosombivalenten kommt in der Regel nur je ein Chiasma vor, das meistens noch in der ersten Spermatozytenteilung interstitiell ist. Die Bivalente sind dann von V- und Kreuzform. Stabförmige Bivalente mit fast vollständig terminalisiertem Chiasma habe ich vereinzelt im Sortiment bei *Evarcha falcata* und *Dendryphanthes rudis* gefunden. Ringbivalente mit zwei Chiasmata können bei *Pseudicius encarpatus* vorkommen, denn in einer der wenigen Metaphasen im Präparat ist ein solches vorhanden (Fig. 233).

Aus den Metaphaseplatten der ersten Spermatozytenteilung kann die Zahl der Autosomen bei den Salticiden ohne besondere Schwierigkeiten festgestellt werden. Die Bivalentenform wurde schon oben besprochen. Es möge noch hinzugefügt werden, dass in den Platten von *Myrmarachne formicaria* mehrere Bivalente auffallend lang V-förmig sind (Fig. 237). Das Chiasma ist in diesen Bivalenten proximal gelegen. Bei *Sitticus terebratus* erscheinen die Chromosomen in den Platten stark kondensiert und in Polansicht durchgehends semmelförmig (Fig. 236). Bei den Arten mit zwei X-Chromosomen sind diese in der ersten Metaphase kurz und dick, bei *Evarcha falcata* nur halb so lang wie im Pachytän. Sie befinden sich ausserhalb der Metaphaseplatte, liegen aber deutlich voneinander getrennt und ziemlich nahe dem einen Pol (Fig. 242, 243). Eine longitudinale Spalte kann in den X-Chromosomen deutlich wahrgenommen werden. Bei *Myrmarachne* ist das X relativ lang und liegt in der Richtung der Spindelfasern orientiert. Sein proximales Ende befindet sich nahe dem einen Pol (Fig. 245).

In der Interkinese liegen die heteropyknotischen X-Chromosomen (bei den Arten mit zwei solchen) meistens dicht beisammen (Fig. 247), aber bei *Evarcha falcata* können sie bisweilen voneinander weit getrennt im Kern liegen (Fig. 246). In der zweiten Spermatozytenteilung (Fig. 248, 271) zeigen
alle Chromosomen etwa dieselbe Kondensationsstufe wie in der ersten Teilung. Sie liegen oft so ungünstig in der Platte, dass sie nicht genau gezählt werden können. Die Dyaden sind in Profil V-förmig, d.h., die Chromatiden hängen nur proximal zusammen. Eine solche Dyade kann leicht als zwei einander teilweise überdeckende Chromosomen gedeutet werden (vgl. Fig. 248).

Bei einem Individuum von *Myrmarachne formicaria* habe ich in 5 Fällen beobachtet, dass ein Chromosom in der zweiten Spermatozytenteilung sich später als die anderen geteilt hat (Fig. 249). Es ist bemerkenswert, dass ich dasselbe Phänomen auch bei *Xysticus viaticus*, einer Art, die im männlichen Geschlecht ebenfalls ein X-Chromosom hat, beobachtet habe. Eventuell könnte das »nachhinkende« Chromosom das X sein.

18. Dictynidae.

Das Leptotän ist schwer näher zu analysieren, weil der Kern fast ganz von einem Fadengewirr angefüllt ist. Die X-Chromosomen treten nicht deutlich hervor. Im Zygotän ist schon eine deutliche polare Orientierung der Zygonemata vorhanden. Es scheint, wie wenn alle freien Enden in derselben Hälfte des Korns zu finden wären. In der anderen Hälfte des Korns sind die medianen Partien der Zygonemata in einem beschränkten Bereich nahe der Membran dicht zusammengedrängt. Hier liegt auch das heteropyknotische X-Doppelgebilde (Fig. 251). Nur in zwei Kernen scheinen, wie oben erwähnt wurde, zwei getrennte X-Chromosomen vorhanden zu sein. Im Pachytän ist noch die beschriebene Orientierung der Chromonemata zu finden. Jetzt befinden sich aber die freien Enden näher einander, und die medianen Partien der Chromonemata liegen weniger dicht (Fig. 252). Das X-Doppelgebilde hat seine
Tabelle II. Die Chromosomensahlen der zytologisch untersuchten Spinnen.

<table>
<thead>
<tr>
<th>Ordnung</th>
<th>Famille</th>
<th>G.</th>
<th>Diplo.</th>
<th>I. Zyte</th>
<th>II. Zyte</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthognatha</td>
<td>Aviculariidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dugesiella hentzi</td>
<td></td>
<td>♂</td>
<td></td>
<td>21 + X0</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Labidognatha</td>
<td>Ecribellatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spermaphora meridionalis</td>
<td></td>
<td>♂</td>
<td></td>
<td>? + X1O + X2O</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Therididae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theridium tepidariorum</td>
<td></td>
<td>♂</td>
<td></td>
<td>10 + X1O + X2O</td>
<td>10 12 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>♀</td>
<td></td>
<td>12</td>
<td>12 12</td>
<td></td>
</tr>
<tr>
<td>Steatoda bipunctata</td>
<td></td>
<td>♂</td>
<td></td>
<td>10 + X1O + X2O</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Linyphiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophanthes minutus</td>
<td></td>
<td>♂</td>
<td></td>
<td>11 + X1O + X2O</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Drapetisa socialis</td>
<td></td>
<td>♂</td>
<td></td>
<td>11 + X1O + X2O</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Linyphia marginata</td>
<td>resupina domestica</td>
<td>♂</td>
<td></td>
<td>11 + X1O + X2O</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Micryphantidae</td>
<td>Gongylidium rufipes</td>
<td>♂</td>
<td></td>
<td>10 + X1O + X2O</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Argiopidae</td>
<td>Meta reticulata</td>
<td>♂</td>
<td></td>
<td>11 + X1O + X2O</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Aranea sericata</td>
<td>♂</td>
<td>23(?)</td>
<td>11 + X₁O + X₂O</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>"angulata?"</td>
<td>♂</td>
<td>−</td>
<td>11 + X₁O + X₂O</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>"sexpunctata"</td>
<td>♂</td>
<td>−</td>
<td>11 + X₁O + X₂O</td>
<td>−</td>
<td>−</td>
<td>13</td>
</tr>
<tr>
<td>"dumetorum"</td>
<td>♂</td>
<td>−</td>
<td>6 + X₁O + X₂O</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>"foliata"</td>
<td>♂</td>
<td>24</td>
<td>11 + X₁O + X₂O</td>
<td>−</td>
<td>−</td>
<td>13</td>
</tr>
<tr>
<td>"diademata"</td>
<td>♂</td>
<td>−</td>
<td>11 + X₁O + X₂O</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>"cucurbitina"</td>
<td>♂</td>
<td>−</td>
<td>11 + X₁O + X₂O</td>
<td>−</td>
<td>−</td>
<td>13</td>
</tr>
<tr>
<td>Zilla stroemi</td>
<td>♂</td>
<td>−</td>
<td>11 + X₁O + X₂O</td>
<td>−</td>
<td>−</td>
<td>13</td>
</tr>
</tbody>
</table>

Tetragnathidae

Tetragnatha extensa | ♂ | ±22 | 10 + X₁O + X₂O | 10 | 12 | 12 |

Agalenidae

Agalena naevia | ♂ | − | 16? + X₁O + X₂O | − | − | 18? | WALLACE 1909 (beurt. nach Abb.)

Tegenaria derhami | ♂ | − | 16? + X₁O + X₂O + X₃O | 16? | 19? | 19? |

Hahnia nava | ♂ | − | 18(?) + X₁O + X₂O + X₃O | 18(?) | 19 | 21(?) | SOKOLSKA 1925 |

Argyronetidae

Argyroneta aquatica | ♂ | − | 11? + X₁O + X₂O | − | − | 13? |

Pisauridae

Pisaura listeri | ♂ | − | 13 + X₁O + X₂O | 13 | 15 | 15 | PAINTER 1914

Dolomedes fimbriatus | ♂ | − | 11 + X₁O + X₂O | 11 | − | 13 |

fontanus | ♂ | − | 12 + m + X₁O + X₂O | − | − | 15 |
<table>
<thead>
<tr>
<th>Species</th>
<th>G.</th>
<th>Diplo.</th>
<th>I. Zyte</th>
<th>II. Zyte</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lycosa inopita</td>
<td>♂</td>
<td>—</td>
<td>13+X₄O+X₂O</td>
<td>13 15 15</td>
<td></td>
</tr>
<tr>
<td>Schizocosa crassipes</td>
<td>♀</td>
<td>28(?)</td>
<td>13(?)+X₄O+X₂O</td>
<td>— 15(?, 15(?)</td>
<td></td>
</tr>
<tr>
<td>Trochosa ruricola</td>
<td>♂</td>
<td>22</td>
<td>10+X₄O+X₂O</td>
<td>10 12 12</td>
<td></td>
</tr>
<tr>
<td>Pirata piraticus</td>
<td>♂</td>
<td>—</td>
<td>12+X₄O+X₂O</td>
<td>— 14 14</td>
<td></td>
</tr>
<tr>
<td>Arctosa leopardus</td>
<td>♂</td>
<td>—</td>
<td>12+X₄O+X₂O</td>
<td>— 14 14</td>
<td></td>
</tr>
<tr>
<td>Oxyopes ramosus</td>
<td>♂</td>
<td>21</td>
<td>10+XO</td>
<td>10 11 11</td>
<td></td>
</tr>
<tr>
<td>Oxypidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Montgomery 1905
Painter 1914
Hard 1936
Painter 1914
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Sex</th>
<th>Chromosome Numbers</th>
<th>Painted Numbers</th>
<th>Painted Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drassidae</td>
<td>Callilepis nocturna</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>imbecilla</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Berlandina cinerea</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Drassodes lapidosus</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Haplodrassus cognatus</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Gnaphosa muscorum</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Zelotes subterraneus</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Poecilochroa variana</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Clubionidae</td>
<td>Clubionia holosericea</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>subsultans</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>phragmitidis</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Micaria decorata</td>
<td>♂</td>
<td>10 + X₁O + X₂O</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Anyphaenidae</td>
<td>Anyphaena accentuata</td>
<td>♂</td>
<td>12 + X₁O + X₂O</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>saltibunda</td>
<td>♂</td>
<td>9 + X₁O + X₂O</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Sparassidae</td>
<td>Micrommata viridissima</td>
<td>♂</td>
<td>16? + X₁O + X₂O + X₃O?</td>
<td>—</td>
<td>19?</td>
</tr>
<tr>
<td>Xysticidae</td>
<td>Xysticus triguttatus</td>
<td>♂</td>
<td>11 + X₁O + X₂O (?)</td>
<td>11</td>
<td>13(?)</td>
</tr>
<tr>
<td></td>
<td>viaticus</td>
<td>♂</td>
<td>11 + XO</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>ulmi</td>
<td>♂</td>
<td>11 + XO</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Misumena vatia</td>
<td>♂</td>
<td>11 + XO</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Genus</td>
<td>I. Zyte</td>
<td>II. Zyte</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodromidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philodromus laevisipes</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» emarginatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>» aureolus</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» histrio</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thanatus formicinus</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibellus oblongus</td>
<td>11 + X_1O + X_2O</td>
<td>11 13 13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salticidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrmarachne formicaria</td>
<td>11 + X_0</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maevia vittata</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>» vittata</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitticus terebratus</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudicius encarpatus</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salticus scenicus</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendryphanthes rudis</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evancha falcata</td>
<td>13 + X_1O + X_2O</td>
<td>13 15 15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cribellatae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictynidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyna arundinacea</td>
<td>11? + X_1O + X_2O</td>
<td>11 13? (12) 13?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaurobidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaurobius sylvestris</td>
<td>16 + X_1O + X_2O</td>
<td>16 18 18</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Metaphaseprofilen der ersten Spermatozytenteilung tritt der metazentrische Bau der Autosomen deutlich hervor. Die Bivalente zeigen nur je ein einziges terminales oder subterminales Chiasma (Fig. 254). In keinem Fall konnten Ringbivalente gefunden werden. Das X-Doppelgebilde liegt ziemlich nahe dem einen Pol. Wegen der dichten Häufung der Bivalente ist es mir nicht gelungen, die Zahl der Autosomen in den Metaphaseplatten genau festzustellen.

In den Platten der zweiten Spermatozytenteilung habe ich laut V-förmige Chromosomen gefunden. In zwei Platten konnte ich 11 Chromosomen zählen (vgl. Fig. 256). In einer dritten scheinen 12 vorhanden zu sein (Fig. 255). Auch wenn die X-Chromosomen wirklich zwei an der Zahl sind, ist es möglich, dass sie dicht nebeneinander liegen und dann nicht von einem V-förmigen Autosom unterschieden werden können. In den übrigen Metaphaseplatten in meinen Präparaten liegen alle Chromosomen sehr dicht und können nur annähernd gezählt werden.

IV. Diskussion.

1. Die Chromosomenzahlen und die Chromosomenmorphologie der Spinnen.

Nach FEDERLEY (1938) ist die Chromosomenzahl ein phänotypisches Merkmal, das teils von Genen, teils von der Umwelt bestimmt wird. Bei Lepidopteren, Trichopteren, Heteropteren und Homopteren besitzen wahr-
Walter Hackman, Chromosomenstudien an Araneen

Walter Hackman, Chromosomenstudien an Araneen

nur akrozentrische Autosomen vorkommen. Es lohnt sich nicht zu spekulieren, wie sich der Vorgang in diesem Fall in seinen Einzelheiten abgespielt hat. Es ist aber weniger glaublich, dass eine so weitgehende strukturelle Veränderung, an der zehn Chromosomen beteiligt sind, auf einmal geschehen ist. Es wäre hier von Interesse, *A. dumetorum* aus verschiedenen geographischen Gebieten zu untersuchen. Jedenfalls kann sich eine solche Veränderung für die Artbildung sehr günstig gestalten, da offenbar eine genetische Isolierung hervorgerufen wird.

Metazentrische Autosomen habe ich sonst nur bei *Dictyna arundinacea* gefunden. Da keine anderen Dictyniden untersucht worden sind, kann hier keine Parallele zum *Aranea dumetorum*-Fall gezogen werden. Das sehr wahrscheinlich metazentrische X-Chromosom bei *Oxyopes ramosus* und bei *Dugesiella hentzi* werde ich später (S. 59) besprechen.

Drüsenzellen im Weibchen von *Maevia vittata* festzustellen. Es ist ihm in einem Fall gelungen, 29 Chromosomen zu zählen. Er nimmt jedoch an, dass sie in Wirklichkeit 30 sind. Da diese Art im Soma 26 Autosomen hat, wären hier also vier X-Chromosomen vorhanden.

Bei *Oxyopes ramosus*, zwei Xysticus-Arten, *Misumena vatia* und *Myrmarachne formicaria* habe ich nur ein X-Chromosom beim Männchen gefunden. Im Falle *Dugesia hentzi* kommt trotz der Angabe *Painter* (1914), dass diese Art zwei X-Chromosomen haben soll, sehr wahrscheinlich nur ein einziges metazentrisches vor, denn *Painter* schreibt (p. 537) folgenderweise: »In the maturation division the accessory chromosome usually appears as a bent rod... It goes undivided to one pole during this division and as it approaches the centrosome, it bends in such a way that it appears as two rods. The spindle thread attachments seem to be in the middle of the rod.» Der Fall von *Xysticus triguttatus* scheint mir von *Painter* (op. c.) ebenfalls unrichtig gedeutet worden zu sein. Hier kommt wahrscheinlich nur ein akrozentrisches X vor. Ob bei *Oxyopes ramosus* das X ein metazentrisches Chromosom oder eventuell ein Sammelchromosom ist, das aus zwei nur temporär fusionierten Elementen besteht, ist mir nicht ganz klar, da ich dieses Chromosom nur in der Spermatogenese habe studieren können.

Bei *Tegenaria derhami* und wahrscheinlich auch bei *Micrommata viridissima* sind beim Männchen drei X-Chromosomen vorhanden (vgl. S. 27, 43). Im Soma des Weibchens müssten ihrer demgemäss sechs zu finden sein.

2. Bemerkungen über die Meiose der Spinnen.

Nach der Telophase der letzten Gonienteilung beginnt die Meiose ohne vorher eingeschaltete Ruhepause. Bei den meisten Spinnen in meinem Material habe ich die charakteristischen von Hard (1939) beschriebenen präleptotänen Prochromosomen gefunden, bei welchen die proximalen Enden (bei Arten mit akrozentrischen Chromosomen) fadendünn geworden sind, die distalen Partien dagegen noch mehr oder weniger kompakt bleiben. Wie schon im Zusammenhang mit der Spermatogenese der Lycosiden (S. 16) erwähnt wurde, hat Hard (op. c.) bei Schizocosa in dem kompakten Teil dieser Chromosomen eine longitudinale Spalte gefunden, die er aber nicht in dem dünnen proximalen Teil nachweisen konnte. Er nimmt jedoch an, dass diese Spalte dem ganzen Chromosom entlang verläuft. Ich habe in keinem Fall eine solche Spalte sicher wahrnehmen können, obwohl diese Prochromosomen von Trochosa bisweilen distal ein undeutlich gegabeltes Aussehen haben. Das Vorhandensein einer präleptotänen Spalte scheint nicht möglich, mit der Präkozitätstheorie der Meiose (Darlington 1937) in Einklang zu bringen. Hard erwähnt auch (op. c., p. 139): »...the failure to observe a split condition in the leptotene or pachytene threads has led many cytologists to disbelieve the occurrence of such«. Es scheint mir jedoch eine Lösung des Problems möglich. Vielleicht ist wirklich eine Spalte im distalen Teil der Leptonemata bei Schizocosa vorhanden. Dadurch könnte gemäß Darlington’s Theorie eine Konjugation der ungeteilten proximalen Partien der homologen Chromonemata stattfinden. Es sei auch erwähnt, dass White (1945) seine Chiasmatheorie auf eine nicht simultan geschehende Spaltung der Chromonemata begründet.

Die präleptotänen Prochromosomen sind bei vielen Spinnen (Lycosiden, Drassiden, Salticiden u.a.) mit ihren dünnen fadenförmigen Proximalenden gegen den proximalen Pol des Kerns orientiert. Diese Orientierung bleibt noch bestehen, wenn die Despiralisation der distalen Teile der Autosomen
vollzogen ist, also im Leptotän. Die distalen Partien der Leptonemata bilden dann im Inneren des Kerns ein dichtes Gewirr und sind nicht selten in den Präparaten synizesisartig in der distalen Hälfte des Kerns zusammengeballt. Im letzteren Fall könnte vielleicht ein Fixierungsartefakt in Frage stehen. Bei Theridium tepidariorum ist die Orientierung weniger ausgesprochen und besteht nur darin, dass sich die Proximalen nahe bei der Kernmembran, aber nicht in einem bestimmten Bereich gesammelt haben. Bei Aranea-Arten scheint die Despiralisation der Autosomen mehr gleichmässig zu geschehen und die soeben besprochenen Prochromosomen sind nicht im Präparat zu finden. Das Leptotän zeigt hier keine deutliche polare Orientierung der Chromonemata.

Wenn eine Ruhepause überhaupt in der Spermatogenese vorkommt, so ist sie in das ältere Pachytän verlegt. Bei manchen Spinnen (Lycosa spp., Pisaura, Oxyopes, Misumena u.a.) überwintern die Spermatozyten hauptsächlich in diesem Stadium. Es ist jedoch wichtig hervorzuheben, dass die Chromosomen in jenem Stadium nicht diffus werden, was sonst für ein Ruhe-

Klingstedt (1939) hat die Periode vom Leptotän bis zum Pachytän (synaptic period) mit einer ganzen Mitose verglichen. Eine solche Parallele kann gut hinsichtlich der Ovogenese der Spinnen gezogen werden. Wenn man die Veränderungen der Spiralisierung der Chromosomen verfolgt, so findet man im Leptotän bis Zygotän lange fadenförmige, schwach spiralisierte Chromonemata. Nach der synaptischen Periode, also im Diplo-

vollzogen ist, also im Leptotän. Die distalen Partien der Leptonemata bilden dann im Inneren des Kerns ein dichtes Gewirr und sind nicht selten in den Präparaten synizesisartig in der distalen Hälfte des Kerns zusammengeballt. Im letzteren Fall könnte vielleicht ein Fixierungsartefakt in Frage stehen. Bei Theridium tepidariorum ist die Orientierung weniger ausgesprochen und besteht nur darin, dass sich die Proximalen nahe bei der Kernmembran, aber nicht in einem bestimmten Bereich gesammelt haben. Bei Aranea-Arten scheint die Despiralisation der Autosomen mehr gleichmässig zu geschehen und die soeben besprochenen Prochromosomen sind nicht im Präparat zu finden. Das Leptotän zeigt hier keine deutliche polare Orientierung der Chromonemata.

Besonders wo eine polare Orientierung schon vom präleptotänen Stadium an vorhanden ist, ist es oft schwer, die Grenze zwischen Leptotän und Zygotän zu ziehen, denn in einigen Fällen (z. B. bei Trochosa) scheint es, wie wenn eine Konjugation schon in den dün-

Ringbivalente mit zwei Chiasmata sind selten. Bei Trochosa ruricola, Arctosa leopardus, Pisaura mirabilis, Tetragnatha sp. und Pseudicius encarpatus findet man in meinen Präparaten bisweilen ein, höchstens zwei (bei Tetragnatha sp.) im Sortiment. In diesen Ringbivalenten ist das eine Chiasma proximal, das andere distal und terminal (vgl. Fig. 260). Dies gilt für die Stadien vom späteren Diplotän bis zur ersten Metaphase. Ob eine Lokalisation des distalen Chiasmata vorkommt, lässt sich nicht sagen. Die metazentrischen Autosomen bei Aranea dumetorum bilden oft Ringbivalente mit einem Chiasma

In der Ovogenese habe ich den Bivalentenbau fast nur in der Metaphase der ersten Reifeteilung studieren können, denn die Stadien zwischen dem späteren Diplotän, d. h. nach der Wachstumsperiode, und der ersten Metaphase sind in meinem Material äußerst selten. In der Metaphase habe ich bei *Lycosa saccata*, *Pisaura mirabilis* und *Philodromus aureolus* ganz ähnlich gebaute Bivalente (V- und Kreuztypus) wie in der Spermatogenese gefunden. Bei *Trochosa ruricola* sind die Metaphasechromosomen stark kondensiert, aber ihre Proximalenden sind spitz ausgezogen. Es ist in einigen Fällen bei *Trochosa* nicht leicht zu beurteilen, ob in solchen Bivalenten nur ein oder eventuell zwei Chiasmata vorhanden sind. Bei *Aranea diademata*, *Clubiona phragmitidis*, *Anyphaena accentuata* und *Xysticus ulmi* sind die Bivalente in der Metaphase stabförmig mit subterminal oder selten terminalen Chiasma. Nach meinen Stichproben zu schliessen sind also die Chiasmata in der Metaphase der ersten Ovozytenteilung bei den Spinnen oft noch interstitiell.

Die Prometaphase der ersten Spermatozytenteilung zeigt bei verschiedenen Spinnen in meinem Material eine auffallende Anaphasenähnlichkeit. Revell hat schon diese Eigentümlichkeit bei *Tegenaria* beobachtet (Darlington 1945). Dabei sind im typischen Fall z. B. bei *Philodromus laevipes* (Fig. 219) mehrere Bivalente in der Nähe der Pole gesammelt und nur wenige liegen in der Mitte der Zelle. Die Anhäufung von Bivalenten an den Polen kann wahrscheinlich mit einer Streckung des Kerns gerade vor der Auflösung der Membran und mit der dadurch hervorgerufenen Strömung im Kernsaft in Verbindung gesetzt werden.

Die erste Reifeteilung muss bei allen bisher untersuchten Spinnen als eine Reduktionsteilung angesehen werden. In den V-förmigen Bivalenten erfolgt zwar die Teilung in einem grösseren Abschnitt, d. h. distal vom Chiasma
Walter Hackman, Chromosomenstudien an Araneen

gerechnet in der äquationellen Ebene. Wo die Chromatiden sehr kurz und dick sind (z. B. bei *Oxyopes ramosus*), wird eine äussere Ähnlichkeit mit den seltenen Fällen der Postreduktion (bei den Odonaten, Oksala 1943) hervorgerufen. Auch in der Ovogenese ist die erste Reifeteilung bei den untersuchten Arten reduktionell.

3. Das Verhalten der Geschlechtschromosomen.

Bei den echten Spinnen ist, wie aus der Tabelle II (S. 50) deutlich hervorgeht und wie schon die Untersuchung Painter's (1914) vermuten liess, ein Geschlechtschromosomenmechanismus von Typus X₁X₂0 vorherrschend. Die seltenen Ausnahmen sind schon auf S. 59 erwähnt worden. Die beiden X-Chromosomen des Männchens können in der Regel nicht in den Gonienmetaphasen oder in somatischen Mitosen identifiziert werden, da bei den meisten Spinnennarten meines Materials mehrere Autosomen sowohl in Grösse als Form den X-Chromosomen gleichen. Bei *Maevia vittata* können die X-Chromosomen nach Painter (1914, p. 516) durch ihr Verhalten schon in der letzten Gonienmetaphase erkannt werden: »...when the spindle is fully formed, a large double chromosome is seen lying just outside of the general circle of autosomes. This double body is the accessory chromosome.« Bei *Aranea dumetorum* finden sich in einigen Gonienplatten zwei stabförmige Chromosomen nahe beieinander und sind wahrscheinlich die X-Chromosomen (vgl. S. 35). Bei *Trochosa ruricola*, *Drapetisca socialis* und *Aranea foliata* ist es mir gelungen, die spermatogonialen Chromosomen genau zu zählen, und die gefundenen geraden Zahlen zeigen, dass die beiden X-Chromosomen als zwei selbständige Individuen in den Gonien vorhanden sind. Diese Selbständigkeit der X-Chromosomen hebt schon Painter (op. c., p. 527) hervor: »...the accessory chromosome is derived from two spermatogonial chromosomes.« Berry (1906) aber leitet die zwei X-Chromosomen bei *Aranea sericata* (*Epeira scolopetaria*) von nur einem spermatogonialen Chromosom ab. Es ist möglich, dass Berry zwei nahe beieinander liegende
Chromosomen als ein einziges gedeutet hat. Eine erneute Untersuchung scheint mir nötig, um den Fall endgültig klarzulegen.

Dass die beiden X-Chromosomen bei Aranea dumetorum während der ganzen Meiose beim Männchen nahe beieinander bleiben, ist jedoch schwer
Es sei erwähnt, dass sich die Geschlechtschromosomen bei anderen Tieren mit dem Mechanismus X_1X_2O (Syromastes marginatus, Gross 1904; Cicindela spp., Goldsmith 1919; Perla spp., Junker 1923, Matthey 1946 b) in den meiotischen Stadien bis zur Diakinese beim Männchen ganz ähnliche wie bei den Spinnen verhalten.

Es ist auffallend, dass bei den allermeisten Spinnen, die den X_1X_2-Typus vertreten, die beiden X-Chromosomen in der Metaphase der ersten Spermatozytenteilung eine ganz bestimmte Lage zu dem einen Pol haben. Sie befinden sich nämlich immer in der Peripherie der Spindel und fast stets näher dem einen Pol, gegen welchen ihre Proximalenden orientiert sind. In der Regel liegen X_1 und X_2 noch mehr oder weniger dicht nebeneinander. Bei Pisaura listeri, Dolomedes jimbrilius, Evarcha falcata und in seltenen Fällen noch bei anderen Spinnen liegen sie deutlich getrennt. In günstigen Fällen (z. B. bei Trochosa ruricola) kann wahrgenommen werden, dass beide X-Chromosomen je mit einer chromosomalen Spindelfaser versehen sind. Wenn die X-Chromosomen langgestreckt sind, so findet man, dass sie ihrer ganzen Länge nach die Richtung der Spindelfasern verfolgen. Matthey (1946 a) beschreibt einen interessanten Fall, wo dasselbe Phänomen noch viel deutlicher als bei den Spinnen hervortritt. Bei einer Isogenus-Art (Plecoptera), wo gleichfalls der X_1X_2-Typus vertreten ist, wandern die beiden X-Chromosomen in der ersten Spermatozytenteilung aus der Nähe des einen Pols durch die Äquatorialebene zu dem entgegengesetzten Pol und befinden sich in jeder Position während der Wanderung ihrer ganzen Länge nach in der Richtung der Spindelfasern. Matthey hat den Fall so gedeutet, dass in X_1 und X_2 die chromosomale Spindelfaser dem ganzen Chromosom entlang an diesem befestigt ist. Mir scheint jedoch eine andere Erklärung wahrscheinlicher. Klingstedt (1939, p. 4–5) schreibt nämlich: »In mitosis the centrosomes are the centres of a field, in which substances tend to become radially arranged. This field is particularly marked in the direction of the other centrosome, a spindle forming between the two. The influence of the field shows itself also in the fact, that long chromosome arms, being flexible, point towards the centrosomes, when situated inside the spindle.« Nach dieser Hypothese sind in der Zelle Kräfte wirksam, durch welche ein Kraftfeld ähnlich einem elektrischen oder magnetischen solchen zustandekommt. Auf die wahre Natur des Feldes geht Klingstedt nicht näher ein, denn er schreibt in einer Fußnote (p. 4): »I am using the field concept in a noncommittal sense». Eine solche »Feldwirkung« tritt auch in den Blastomermitosen von Lycosa riparia deutlich hervor, wo in der Metaphase die langen fadenförmigen Chromosomen grösstenteils in der Richtung der Spindelfasern liegen (vgl. Fig. 21). Sehr wahrscheinlich tritt
dasselbe Phänomen in dem besprochenen Verhalten der X-Chromosomen bei den Spinnen und bei Isogenus sp. vor.

Der X₁X₂-Mechanismus setzt voraus, dass die beiden X-Chromosomen in der ersten oder, wie es bei Syromastes der Fall ist, in der zweiten Reifeteilung in dieselbe Tochterzelle gelangen. In meinem Material habe ich keinen Fall abnormer Verteilung der X-Chromosomen beobachtet, auch nicht wo X₁ und X₂ in der ersten Reifeteilung nicht nahe beisammen sind. Hier liegt also ein sog. »determinate disjunction» (White 1940) vor. White (op. c., p. 340) definiert die Erscheinung mit folgenden Worten: »... one chromosome determines the disjunction of another at first or second meiotic division without there being any direct connection between them.» Ob hier wirklich das eine X die Orientierung des anderen beeinflusst, ist nicht ohne weiteres klar; beide könnten ganz unabhängig voneinander von demselben Pol attrahiert werden. Vielleicht wird die Verteilung der X-Chromosomen von Genen kontrolliert (vgl. Federley 1945, p. 57—58). Der schon besprochene Fall bei Isogenus (Matthey 1946 a) zeigt, dass sich wenigstens hier die beiden X-Chromosomen nicht gegen den näher ge egenen Pol orientieren. »Determinate disjunction» kommt sowohl in komplizierten als in mehr einfachen Geschlechtsbestimmungsmechanismen vor, und hierher kann auch die als »distance conjugation» bezeichnete Erscheinung gerechnet werden (vgl. White 1940).

Walter Hackman, Chromosomenstudien an Araneen

Anaphase aus zwei verschiedenen Phasen zusammengesetzt, die bei günstigen Objekten deutlich zu trennen sind (Tamalio coweni, Rts 1943). In der ersten Phase rücken die homologen Chromosomen auseinander und bewegen sich gegen die Pole. In der zweiten Phase behalten sie nur ihren Abstand zum Pol unverändert bei, während die Spindel sich in der Achsenrichtung verlängert. Im Falle der Spinnen ist hinsichtlich der X-Chromosomen die erste Phase wahrscheinlich schon in der Metaphase beendet. In der zweiten Phase behalten die X-Chromosomen nur ihre Abstände zum Pol unverändert bei und gelangen durch Verlängerung der Zelle und der Spindel passiv aber sicher, auch wenn sie sich in der Metaphase in der Äquatorialebene befunden hätten, in dieselbe Hälfte der Zelle und also schliesslich in dieselbe Tochterzelle.

Wie die Chromosomenbewegungen überhaupt zustandekommen, ist ein Problem, das zahlreiche Zytologen beschäftigt hat. Es würde hier zu weit führen, auf die verschiedenen Hypothesen einzugehen und auf dieser Basis die sog. Heterokinese der X-Chromosomen zu diskutieren. In Schraders »Mitosis« (1946) findet man eine Zusammenfassung der wichtigsten Ergebnisse und eine Kritik der Hypothesen. Es ist bisher keine Theorie aufgestellt worden, die alle bei verschiedenen Organismen beobachteten Chromosomenbewegungen erklären könnte. Ob die Spindelfasern dabei eine active Rolle spielen, ist ein ungelöstes Problem.

In der Interkinese kommt die Heteropyknose der X-Chromosomen beim Spinnenmännchen wieder zum Vorschein. Meistens findet man die beiden Chromosomen dicht nebeneinander, nur selten liegen sie getrennt (vgl. Tarentula pulverulenta Fig. 55, Evarcha falcata Fig. 246). Offenbar ist also in der Interkinese in der Regel die von der Heteropyknose hervorgerufene Attraktion wieder wirksam.

Das Verhalten der drei X-Chromosomen in der Meiose beim Männchen

Der XO-Typus scheint wie schon früher erwähnt, bei den Spinnen selten zu sein. Das X ist auch hier beim Männchen in der Meiose heteropyknotisch. Bei den beiden Xysticus-Arten meines Materials und bei Misumena vatia ist jedoch die Heteropyknose im Zygotän bis Pachytän weniger ausgeprägt. Das X-Chromosom ist in diesen Stadien auffallend lang und dünn. Sein Verhalten zeigt eine gewisse Ähnlichkeit mit demjenigen des X-Chromosoms bei Phyllodromia germanica (Suomalainen 1946, p. 15, Fig. 20). Auch hier ist das X lang und dünn und wird erst in späteren Stadien der meiotischen Prophase stärker kondensiert.

In der ersten Spermatozytenteilung verhält sich das einsame X bei den zwei Xysticus-Arten sowie bei Misumena vatia, Oxyopes ramosus und Myrmarachne formicaria ganz wie eines der X-Chromosomen bei den Spinnen mit zwei solchen.

In der zweiten Spermatozytenteilung habe ich in einigen Fällen sowohl bei Xysticus viaticus als bei Myrmarachne formicaria beobachtet, dass ein Chromosom sich später als die anderen geteilt hat. Die Tochterchromosomen hinken sozusagen den übrigen Chromosomen nach. Vielleicht ist dieses nachhinkende Chromosom das X (vgl. das Verhalten des X-Chromosoms in der ersten Spermatozytenteilung bei Protenor, Ris 1943).

In der Ovogenese ist es wenigstens bei den von mir untersuchten Spinnen nicht möglich gewesen, die Geschlechtschromosomen die Meiose hindurch zu verfolgen, da sie hier nicht heteropyknotisch sind, sondern sich ganz wie die Autosomen verhalten. Bei Trochosa ruricola, Aranea diademata und Anyphaena accentuata habe ich an Hand der Chromosomenzahl in der ersten Reifeteilung schliessen können, dass X₁ und X₃ als je ein Bivalent vorhanden sind. Im homogametischen Geschlecht findet demgemäss eine normale Chiasma-bildung in den beiden X-Paaren statt. Auch bei Arten, bei denen die Chromoso-

4. Die Phylogenese der Geschlechtschromosomen der Spinnen.

Der bei Tegenaria derhami und wahrscheinlich auch bei Micrommata viridissima vorkommende X₁X₂X₃-Typus muss ohne weiteres als sekundär angesehen werden. Ob das dritte X eventuell durch Translokation und Einschaltung von einem Autosom in den Mechanismus entstanden ist (vgl. MATTHEY 1946 a), kann nicht ohne Untersuchung von nahestehenden Arten gesagt werden.

Versucht man das Problem, wie der bei den Spinnen allgemein vorkommen­de X₁X₂-Typus entstanden ist, zu lösen, gelangt man in reine Spekulation. Um wenigstens etwas festeren Grund zu erhalten, muss erstens die Beziehung zwischen X₁ und X₂ untersucht werden. WHITE (1940) hat auf Grund der Ar­beiten von PAINTER (1914) und HARD (1939) den Gedanken ausgesprochen, dass X₁ mit X₂ homolog sei. Er betont, dass die X-Chromosomen bei den untersuchten Arten immer gleich lang und beide heteropyknotisch sind. White
sagt (op. c., p. 331): »It almost looks as we were dealing, not with an X_1X_2: $X_1X_1X_2X_2$ mechanism, but with an $XX:XXXX$ one; or in other words, that X_1 and X_2 are homologues throughout their whole length but are prevented from forming chiasmata in the male by their heteropyknosis.« Es sei erwähnt, dass die zwei homologen X-Chromosomen in tetraploiden Spermatozyten bei *Schistocerca gregaria* (White 1933) und *Chrysochraon dispar* (Klingstedt 1937) wegen Heteropyknose nicht zur Chiasmabildung fähig sind, aber in der meiotischen Prophasen parallel aneinander liegen.

Wie schon Painter (1914) und White (1940) hervorheben, dürfte der X_1X_2-Mechanismus bei den Spinnen sehr alt sein, da er in den allermeisten bisher untersuchten Gruppen vorkommt. Es gibt aber noch mehrere Spinnenfamilien (*Liphistidiidae*, *Atypidae*, *Hypochilidae*, *Eresidae*, *Dysderidae* u.a.), bei denen keine einzige Art zytologisch untersucht worden ist.

Bei anderen Spinnentieren sind Geschlechtschromosomen bisher nur bei den Pseudoskorpionen gefunden worden (Sokolov 1926). Es scheint mir aber nicht klar, ob bei den letztgenannten ein metazentrisches X-Chromosom oder eventuell zwei akrozentrische im heterogametischen Männchen vorhanden
Walter Hackman, Chromosomenstudien an Araneen

sind. Y-Chromosomen fehlen, und der Mechanismus ist also hier entweder vom Typus XO oder X1X2O. Bei Opilioniden (SOKOLOV 1929 a, b und 1930), Skorpionen (SOKOLOV 1913; WILSON 1931; Sato 1) 1936, 1940; Tomohiro 1) 1940; de Toledo Piza 1941; Briege & Graner 1943) und Gamasiden (SOKOLOV 1934) ist es nicht möglich gewesen, Geschlechtschromosomen in der Spermatogenese zu entdecken. Von einer Opilionide, *Mitopus morio*, habe ich die erste Reifeteilung im Ei untersucht. Geschlechtschromosomen konnten nicht nachgewiesen werden (unpubliziert). Über Solifugen und Pedipalpen liegen bisher keine zytologischen Untersuchungen vor. Der Gedanke liegt nahe, das X-Doppelgebilde der Pseudoskorpionen mit X_1 und X_2 der Araneen zu homologisieren. Ob eine solche Homologie wirklich vorhanden ist, bleibt aber noch unsicher.

V. Zusammenfassung der Ergebnisse.

3. Die 5 metazentrischen Autosomen bei *Aranea dumetorum* sind sehr wahrscheinlich durch zentrische Fusion akrozentrischer Chromosomen entstanden.

5. Bei *Tegenaria derhami* sind drei X-Chromosomen beim Männchen vorhanden.

1) Nach WHITE (1945) zitiert.
8. Bei den Arten mit zwei X-Chromosomen beim Männchen sind \(X_1\) und \(X_2\) meistens etwa gleicher Länge und derselben Größenordnung wie die Mehrzahl der Autosomen im Sortiment. Nur bei einigen Philodromiden ist ein auffallender Größenunterschied zwischen \(X_1\) und \(X_2\) beobachtet worden.

10. Die während der meiotischen Prophase besonders im späteren Pachytän und im Diplotän wirkende Attraktion zwischen \(X_1\) und \(X_2\) des Männchens (bei Arten mit zwei X-Chromosomen) steht sehr wahrscheinlich im Zusammenhang mit der Heteropyknose.

11. In der ersten Reifeteilung der Spermatogenese gelangen \(X_1\) und \(X_2\) zum selben Pol. Keine Abnormitäten hinsichtlich der Verteilung der X-Chromosomen sind beobachtet worden. \(X_1\) und \(X_2\) haben offenbar schon in der Metaphase ihre aktiven Bewegungen gegen den Pol beendet.

13. Die in der vorliegenden Arbeit diskutierte Frage der eventuellen Homologie zwischen \(X_1\) und \(X_2\) bleibt offen. Kein sicherer Beweis für eine solche Homologie liegt vor.

14. Der XO-Mechanismus ist wahrscheinlich in den in Punkt 6 erwähnten Fällen sekundär aus dem \(X_1X_2\)-Mechanismus entstanden.

15. In den präleptotänen Prochromosomen lässt sich bei den hier untersuchten Arten die von Hard (1939) bei Schizocosa beobachtete longitudinale Spalte nicht sicher wahrnehmen.

18. In der Ovogenese sind die Diplonemata, wenn sie nach der Wachstumsperiode wieder Feulgen-positiv werden, lang und dünn wie im Leptotän.

Nachtrag.

VI. Summary.

The work deals with the chromosomes of 69 Finnish species of spiders belonging to 18 families. In all these species spermatogenesis has been investigated, but in some of them also certain stages of oögenesis. A more detailed description of spermatogenesis and oögenesis in the lycoside spider Trochosa ruricola is given. In many spiders it has been possible to find all stages from spermatogonia to sperms in the same individual. If the species in question was not of any special interest, only one or two specimens were investigated. Certain species, which appeared to be in some way or other cytologically exceptional, have been studied on more material.

The chief purpose of this work has been to study the sex-chromosomes and their behaviour in meiosis. Also some questions in connection with chromosome number and with meiosis have been considered.

The spermatogonial and other mitotic metaphases being in the majority of cases very unfavourable for chromosome counts, these have been made in the first or second maturation division in the male.

The haploid chromosome number varies from 8 to 19. The most common numbers are 12, 13 and 15. In the family Drassidae 12 chromosomes have been found in 7 genera. The lycosids (16 species examined) show 12 to 15 chromosomes. In all the species of spiders investigated except two the autosomes are all acrocentric. In Aranea dumetorum there are 5 metacentric and one acrocentric pair. All other (7) argiopids in the material have 11 acrocentric pairs. Among these species is Aranea foliata, a species closely related to A.
dumetorum. The number of the »chromosome arms» being in both cases the same, it is very probable that the metacentrics in A. dumetorum have arisen through centric fusion of acrocentric chromosomes. In Dictyna arundinacea all the autosomes are metacentric.

In all spiders examined the male is the heterogametic sex. In 62 species belonging to 15 different families there are two sex-chromosomes in the male, X₁ and X₂, and the type of sex-determination is X₁X₂O. In Tegenaria derhami three X-chromosomes have been found, which confirms earlier investigations (SOKOLSKA 1925). Micrommata viridissima probably belongs to the same type. In Oxyopes ramosus, two Xysticus species, Misumena vatia, and Myrmarachne formicaria only one X-chromosome has been found. In Oxyopes ramosus it consists of two parts and is probably metacentric. In the other cases the X is acrocentric.

In almost all the species investigated X₁ and X₂ are approximately of the same length but in some philodromids one X is remarkably shorter than the other. The sex-chromosomes being in most cases of the same size and shape as autosomes, they can only be distinguished from the latter by their behaviour and differential condensation in certain stages. In the meiosis of the male they are heteropycnotic. The single X in Xysticus and Misumena is much less spiralised in zygotene and pachytene than the X-chromosomes in corresponding stages in other spiders. In the species with two X-chromosomes they lie near the nuclear membrane during the synaptic period and often close together at the proximal pole in pachytene. In diplotene, diakinesis and not infrequently in the first metaphase they are still close together. The attraction between X₁ and X₂ in pachytene and diplotene is very probably due to their heteropycnotic. In later stages their separation is obviously hindered or delayed by cohesion.

In the first maturation division they segregate to the same pole, as shown by earlier investigators. It seems as if the two X-chromosomes have finished their movements towards the pole before the autosomes begin to separate. No abnormalities in the distribution of the two X-chromosomes have been observed. In the second division they divide equationally.

In the female, the sex-chromosomes, at least in the few cases examined, behave just like the autosomes and are not heteropycnotic in meiosis. They cannot be distinguished from the autosomes and their presence can only be established by counting the chromosomes. In cases of the X₁X₂-condition it has been possible to make exact counts in the first maturation division of Trochosa ruricola, Aranea diademata and Anyphaena accentuata. The results show that the four X-chromosomes of the female must have formed two quite normal bivalents, which cannot be distinguished from the autosome bivalents. In no case have X-multivalents been found.
The question of a possible homology between X_1 and X_2 taken up by White (1940) has been discussed. No evidence for a total homology has been found.

It seems useless to speculate as to how the X_1X_2-mechanism of the spiders arose. The XO-mechanism in Oxyopes, Xysticus, Misumena and Myrmarachne has very probably arisen from the X_1X_2-type.

The behaviour of the autosomes in the meiosis of spiders in most of the cases examined is very similar and does not differ essentially from descriptions of earlier investigations. There are, however, the following points worth mentioning.

1. In the preleptotene «chromosome blocks», which have been found in many species in the material and are previously known from the lycosid *Schizocosa* (HARD 1939), it has not been possible, even in the more favourable material (*Trochosa, Evarcha*), to discern any longitudinal split. These chromosome blocks also occur in oogenesis at the corresponding stage (*Trochosa, Lycosa*).

2. As a rule only one chiasma is formed in each bivalent. In the species with only acrocentric chromosomes ring bivalents with two chiasmata occur very rarely and in these cases only in one or two chromosome pairs of the complement. In almost all the spiders investigated, the single chiasma is interstitial in the bivalents in metaphase. The most common type is the V-shaped (polar view in metaphase) bivalent, where the chiasma is situated in the proximal half of the chromosomes. In *Micaria decorata* (Clubionidae) the chiasmata are probably proximally located in all autosomes. The meta-centric autosomes in *Aranea dumetorum* very frequently form ring bivalents, but this is not the case in *Dictyna arundinacea*, where no ring bivalents have been observed.

3. In oogenesis, when the diplotene chromosomes again become visible after the growth period, they are not more coiled than in a leptotene. No typical diakinesis has been found in oogenesis.

4. In all the spiders examined the first maturation division is reductional, the second equational, then the centromeres divide after the first maturation division.
Literatur.

van BAMBKE, Ch., 1897. Recherche de l'Ovocyte de Pholcus phalangoides — Arch. de Biol., 15: 511—598.

CARNOY, J. B., 1885. La cytodécrèse chez les arthropodes. — La Cellule, 1: 189—440.

1940. The origin of isochromosomes. — J. Genetics, 39: 351—361.

HALDANE, J. B. S., 1931. The cytological basis of genetical interference. — Cytologia, 3: 54—65.

1929. The Activity of Unfertilized and of Certain Abnormal Eggs of Palystes natalius (Karsch). — Ibid. 6: 265—293.

TAFELERKLÄRUNGEN.

Die Zeichnungen sind, wenn nichts anderes angegeben wird, mit Hilfe des Objektivs 90, des Okulars 25× und des ABBE-Zeichenapparats (alles ZEISS) auf der Höhe des Arbeitsstiftes ausgeführt worden. Die Vergrößerung beträgt nach dem Klischieren etwa 2400 fach. Die photographischen Aufnahmen (Taf. XIII) wurden mit dem ZEISSchen Phokus-Apparat unter Verwendung des Objektivs 120 und der Negativlinse H (6,2×) gemacht. Die Kopien sind 3fache (in Fig. 263 2fache) Vergrößerungen der Negative.

In einigen Zeichnungen sind tiefer im Präparat liegende Chromosomen (bzw. Chromatiden) schraffiert.

X — X-Chromosom(en), m — Mikrochromosom, p — Planosom.

TAFEL I.

Fig. 1—12. *Lycosidae*, Metaphasen der I. Spermatozytenteilung.
Fig. 1—2. *Trochosa ruricola*, 14 Chr.
Fig. 3. *Arctosa leopardus*, 12 Chr. (nur die Autosomen).
Fig. 4. *Lycosa saccata*, 15 Chr.
Fig. 5. *Lycosa monticola*, 15 Chr.
Fig. 6. *Lycosa fluviatilis*, 15 Chr.
Fig. 7. *Tarentula aculeata*, 15 Chr. Strichpr. (BDB + Flg).
Fig. 8. *Tarentula pulverulenta*, 15 Chr.
Fig. 9. *Pirata uliginosus*, 13 Chr. Strichpr. (Az.).
Fig. 10. *Lycosa tarsalis*, 15 Chr. Strichpr. (BDB + Flg).
Fig. 11. *Xerolycosa miniata*, 12 Chr.
Fig. 12. *Xerolycosa nemoralis*, 14 Chr.
Fig. 13—20. *Lycosidae*, Metaphasen der II. Spermatozytenteilung.
Fig. 13. *Trochosa ruricola*, 14 Chr., 1 Planosom.
Fig. 14. *Trochosa ruricola*, 12 Chr.
Fig. 15. *Tarentula pulverulenta*, 15 Chr.
Fig. 16. *Tarentula pulverulenta*, 13 Chr.
Fig. 17—18. *Lycosa monticola*, 15 Chr.
Fig. 19. *Lycosa saccata*, 13 Chr.
Fig. 20. *Pirata piraticus*, 12 Chr.

TAFEL II.

Fig. 21—22. *Lycosa riparia*, Blastomerenmitose. Fig. 21 Metaphase, Profil, Fig. 22 Anaphase.
Fig. 23—24. *Trochosa ruricola*, somatische Mitosen, Metaphaseplatten. Fig. 23 aus einer Gewebe im Abdomen eines adulten Weibchens. 28 Chr. Fig. 24 aus einem mehrere Tage alten Ei.
Fig. 25. *Lycosa saccata*, primäres Spermatogonium.
Fig. 26. *Tarentula pulverulenta*, sekundäres Spermatogonium.
Fig. 27. *Trochosa ruricola*, späte Prophase einer Spermatozyontenteilung.
Fig. 28. *Lycosa saccata*, spermatozyoniale Metaphase, 28 Chr.
Fig. 29—36. *Trochosa ruricola*, Spermatogenes.
Fig. 29. Gonientelophase, Planosomen!
Fig. 30—31. Präleptotänes Stadium.
Fig. 32. Leptotän.
Fig. 33—34. Zygotän.
Fig. 35—36. Pachytän.

TAFEL III.

Fig. 37—42. *Trochosa ruricola*, Spermatogenese.
Fig. 37. Spätes Pachytän.
Fig. 38—41. Diplotän.
Fig. 42. Diakinese.
Walter Hackman, Chromosomenstudien an Araneen

Fig. 43. *Lycosa saccata*, Spermatogenese, sämtliche Chromosomen (15) eines Korns im Diakinesestadium.

Fig. 44—51. *Trochosa ruricola*, Spermatogenese.

Fig. 44. Diakinese.

Fig. 45—47. Prometaphase der ersten Reife teilung (Fig. 45 BAB + Flg, Fig. 46—47 BAB + Hd + Brd).

Fig. 48—49. Metaphase der I. Reife teilung, Profil.

Fig. 50—51. Telophase der I. Reife teilung, Fig. 50 Polansicht, 14 Chr., Fig. 51 Profil. "Nachhinkende" X-Chromosomen!

TAFEL IV.

Fig. 52—54. *Trochosa ruricola*, Spermatogenese.

Fig. 52. I. Reife teilung, späte Telophase. Interzonale Fasern!

Fig. 53—54. Interkinese, Zelle mit (Fig. 53) und ohne (Fig. 54) X-Chromosomen.

Fig. 55—56. *Tarentula pulverulenta*, Interkinese. Zellen mit X-Chromosomen. Fig. 55 X-Chr. getrennt, Fig. 56 X-Chr. beisammen.

Fig. 57—61. *Trochosa ruricola*, II. Spermatozyten teilung.

Fig. 57. Späte Interkinese, Zellmembran noch vorhanden.

Fig. 58. Prometaphase.

Fig. 59. Metaphase, Profil.

Fig. 60—61. Telophase. Fig. 60 Profil, Fig. 61 Polansicht, 14 Chr.

Fig. 62. *Lycosa fluviatilis*, Ovogonienmetaphase.

Fig. 63—71. *Trochosa ruricola*, Ovogenese.

Fig. 63—64. Präleptotänes Stadium.

Fig. 65. Leptotän.

Fig. 66. Zygotän.

Fig. 67—68. Pachytän. Fig. 67 BAB + Flg, Fig. 68 BAB + Sfr + Lg, Nukleolen!

Fig. 69—70. Diplotän mit "Lampenbürstchenchromosomen".

Fig. 71. Ovozytenkern nach der Wachstumsperiode. Vergr. etwa 350 fach.

TAFEL V.

Fig. 72—78. *Trochosa ruricola*, Ovogenese.

Fig. 72. Diplotän nach der Wachstumsperiode.

Fig. 73—75. Spätere Diplotänstadien.

Fig. 76—78. I. Reife teilung. Fig. 76 Profil, Fig. 77—78 Polansicht, 14 Chr.

Fig. 79—80. *Lycosa fluviatilis*, II. Reife teilung im Ei. 15 Chr. Fig. 79 Prometaphase, 5 Min. nach der Eiablage, Fig. 80 Metaphaseplatte, 15 Min. nach der Ei ablage.

Fig. 81—82. *Trochosa ruricola*, II. Reife teilung im Ei. Fig. 81 Teilungsspindel des I. Polenkörpers, 14 Chr., Fig. 82 Spindel des Eikerns in demselben Schnitt. Telophase.

Fig. 83. *Pisaura listeri*, I. Spermatozyten teilung. Metaphase. 15 Chr.

Fig. 84. *Dolomedes fimbriatus*, I. Spermatozyten teilung. Prometaphase. 13 Chr. Strichpr. (BDB + Flg).
TAFEL VI.

Fig. 85—90. *Pisaura listeri*.

Fig. 85. II. Spermatozytenteilung, Metaphase. 13 Chr.

Fig. 86. I. Reifeteilung im Ei, Metaphase.

Fig. 87—90. Spermatogenese. Fig. 87 Pachytän, Fig. 88 Diplostän, Fig. 89 Tetraden und die X-Chromosomen (Diakinese), Fig. 90 Metaphase der I. Reifeteilung, Profil.

Fig. 91—99. *Oxyopes ramosus*, Spermatogenese.

Fig. 91. Spermatogoniale Metaphase. 21 Chr.

Fig. 92. I. Reifeteilung, Metaphase. 11 Chr.

Fig. 93—94. Metaphaseplatten der II. Reifeteilung. Fig. 93 10 Chr., Fig. 94 11 Chr.

Fig. 95. I. Reifeteilung, Metaphaseprofil.

Fig. 96—99. Meiotische Prophase. Fig. 96 Leptotän, Fig. 97 Zygotän Fig. 98—99 Pachytän.

Fig. 100—103. *Agyroneta aquatica*, Spermatogenese.

Fig. 100. I. Reifeteilung, Metaphase, 13 Chr.

Fig. 101—102. Meiotische Prophase. Fig. 101 Leptotän, Fig. 102 Zygotän.

Fig. 103. I. Reifeteilung, Metaphaseprofil.

Fig. 104—108. *Tegenaria derhami*, Spermatogenese.

Fig. 104—105. Pachytän.

Fig. 106—108. I. Reifeteilung, Metaphase, Fig. 106 Polansicht, 19 Chr., Fig. 107—108 Profilen.

TAFEL VII.

Fig. 109. *Tegenaria derhami*, II. Spermatozytenteilung, Metaphase. 19 Chr.

Fig. 110—113. *Hahnia nava*, Spermatogenese.

Fig. 110. Pachytän.

Fig. 111—113. I. Reifeteilung. Fig. 111 Metaphase, Polansicht, 18 Chr., Fig. 112 Metaphaseprofil, Fig. 113 Telophase.

Fig. 114—119. *Theridium tepidariorum*, Spermatogenese.

Fig. 114—115. I. Reifeteilung, Metaphase. 12 Chr.

Fig. 116—118. Meiotische Prophase. Fig. 116 Leptotän, Fig. 118 Zygotän, Fig. 117 Pachytän, X-Chromosomen getrennt!

Fig. 119. I. Reifeteilung, Telophase.

Fig. 120—125. *Steatoda bipunctata*, Spermatogenese.

Fig. 120—121. I. Reifeteilung, Metaphase. Fig. 120 Platte mit 10 Chr. (Autosomen), Fig. 121 12 Chr.

Fig. 122. Spätes Leptotän.

Fig. 123. I. Reifeteilung, Prometaphase 12 Chr. (Strichpr. BDB + Flg).

Fig. 124—125. II. Reifeteilung, Metaphaseplatten. 12 Chr.

Fig. 126—127. *Drapetisca socialis*, Spermatogenese.

Fig. 126. Gonienmetaphase, 24 Chr.

Fig. 127. I. Reifeteilung. Metaphase, 13 Chr.

Fig. 128. *Linyphia sp.*, I. Spermatozytenteilung, Metaphaseplatte. 11 Chr. (Autosomen).

Fig. 129. *Leptyphanthes minutus*, I. Spermatozytenteilung, Metaphaseplatte. 11 Chr. (Autosomen).
Walter Hackman, Chromosomenstudien an Araneen

Fig. 130. *Linyphia resupina domestica*, I. Spermatozytenteilung, Metaphaseprofil.

Fig. 131—132. *Leptyphanthes minuta*, I. Spermatozyte. Fig. 131 Metaphaseprofil, Fig. 132 Pachytän.

Fig. 133—135. *Gongylidium rufipes*, Strichpr. (BDB + Flg).

Fig. 136. *Tetragnatha*, Spermatogenese.

Fig. 137—138. *T. extensa*, Gonienmetaphase, 22 Chr. Strichpr. (BDB + Flg).

Fig. 139—141. II. Reifeteilung, Metaphaseplatten. Fig. 139 *T. extensa* 10 Chr., Fig. 140 *Tetragnatha* sp., 12 Chr., Fig. 141 *T. extensa*, 12 Chr.

Fig. 142. *T. extensa*, spätes Leptotän.

Fig. 143. *Tetragnatha* sp., Diakinese. Ringbivalente! Strichpr. (BDB + Flg).

TAFEL VIII.

Fig. 144—146. *Aranea dumetorum*, Spermatogonien. Fig. 144—145 Metaphaseplatten, 14 Chr., Fig. 146 späte Prophase.

Fig. 147. *Aranea foliata*, spermatogoniale Metaphase. 24 Chr.

Fig. 148—154. Metaphasen der I. Spermatozytenteilung von Argiopiden.

Fig. 148—149. *Aranea diademata*. Fig. 148 Polansicht, 13 Chr., Fig. 149 Profil.

Fig. 150. *Aranea foliata*. 13 Chr.

Fig. 151—152. *Aranea dumetorum*. 8 Chr. Fig. 151 Polansicht, Fig. 152 Profil.

Fig. 153. *Aranea cucurbitina*. 13 Chr.

Fig. 154. *Zilla stromi*. 13 Chr.

Fig. 155—169. Metaphaseplatten der II. Spermatozytenteilung von Argiopiden.

Fig. 155. *Aranea diademata*. 11 Chr.

Fig. 156—157. *Aranea angulata*. Fig. 156 13 Chr., Fig. 157 11 Chr.

Fig. 158—159. *Aranea dumetorum*. Fig. 158 6 Chr., Fig. 159 8 Chr.

Fig. 160—164. Frühere Spermatogenesestadien von Argiopiden.

Fig. 160—162. *Aranea dumetorum*. Fig. 160 Leptotän, Fig. 161 Pachytän, Fig. 162 Diplotän.

Fig. 163. *Aranea diademata*, Pachytän.

Fig. 164. *Zilla stromi*, Diplotän.

Fig. 165—168. *Aranea diademata*, erste Reifeteilung im Ei. Fig. 165—166 Metaphaseplatten, 13 Chr., Fig. 167 Prometaphase, Fig. 168 Metaphaseprofil.

TAFEL IX.

Fig. 173. *Berlandina cinerea*, spermatogoniale Metaphase. 22 Chr.

Fig. 174. *Berlandina cinerea*, I. Spermatozytenteilung, Prometaphase. 12 Chr.

Fig. 175. *Haplodrassus cognatus*, I. Spermatozytenteilung, Prometaphase. 12 Chr. Strichpr. (Az).
Fig. 176. *Gnaphosa muscorum*, I. Spermatozytenteilung, Metaphase. 12 Chr. Strichpr. (BDB + Flg).

Fig. 177. *Zelotes subterraneus*, I. Spermatozytenteilung, Metaphase. 12 Chr. Strichpr. (BDB + Flg).

Fig. 178. *Beirlandina cinerea*, I. Spermatozytenteilung, Metaphaseprofil.

Fig. 179—182. II. Spermatozytenteilung von Drassiden, Metaphaseplatten.

Fig. 179—180. *Beirlandina cinerea*, Fig. 179 12 Chr, Fig. 180 10 Chr.

Fig. 181. *Poeicillochroa variana*, 10 Chr. Strichpr. (BDB + Flg).

Fig. 182. *Zelotes subterraneus*, 10 Chr.

Fig. 183. *Gnaphosa muscorum*, Spermatogenese, Pachytän, Strichpr. (BDB + Flg).

Fig. 184. *Zelotes subterraneus*, Spermatogenese, Pachytän.

Fig. 185—189. *Micaria decorata*, Spermatogenese.

Fig. 185. I. Reifeteilung, Metaphase. 12 Chr.

Fig. 186—187. Meiotische Prophase. Fig. 186 Pachytän, Fig. 187 Diplotän.

Fig. 188. Sämtliche (12) Chr. aus einem Kern im Diakinesestadium.

Fig. 189. I. Reifeteilung, Metaphaseprofil.

Fig. 190—192. *Clubiona phragmitidis*, Meiose.

Fig. 190. I. Spermatozytenteilung, Metaphaseprofil.

Fig. 191. II. Spermatozytenteilung, Metaphase. 12 Chr.

Fig. 192. I. Reifeteilung im Ei. Metaphaseprofil.

Fig. 193—194. *Anyphaena accentuata*, I. Spermatozytenteilung, Metaphase. Fig. 193 Polansicht, 14 Chr., Fig. 194. Profil.

Fig. 195. *Anyphaena accentuata*, I. Reifeteilung im Ei, Metaphase, 14 Chr.

Fig. 196. *Micrommata viridissima*, spermatogoniale Metaphase.

TAFEL X.

Fig. 197—200. *Micrommata viridissima*, Spermatogenese. Fig. 197 Leptotän, Fig. 198 u. 199 Pachytän, Fig. 200 I. Reifeteilung, Prometaphase.

Fig. 201. *Xysticus viaticus*, spermatogoniale Metaphase, 23 Chr.

Fig. 202. *Xysticus viaticus*, I. Spermatozytenteilung, Metaphase, 12 Chr.

Fig. 203. *Misumma vatia*, I. Spermatozytenteilung, Metaphase, 12 Chr.

Fig. 204. *Xysticus viaticus*, I. Spermatozytenteilung, Metaphaseprofil.

Fig. 205. *Xysticus ulmi*, I. Reifeteilung im Ei, Metaphase, 12 Chr.

Fig. 206—209. *Xysticus viaticus*, Spermatogenese, meiotische Prophase. Fig. 206 Leptotän, Fig. 207 Zygotän, Fig. 208—209 Pachytän.

Fig. 210. *Xysticus viaticus*, I. Spermatozytenteilung, Prometaphase.

Fig. 211. *Xysticus viaticus*, II. Spermatozytenteilung, späte Anaphase.

Fig. 212—216. *Philodromidae*, I. Spermatozytenteilung. Metaphasen.

Fig. 212. *Philodromus aureolus*, 15 Chr.

Fig. 213. *Philodromus emarginatus*, 15 Chr.

Fig. 214. *Philodromus histrio*, 15 Chr.

Fig. 215. *Philodromus laevispes*, 15 Chr.

Fig. 216. *Tibellus oblongus*, 13 Chr.

Fig. 217—218. *Philodromus aureolus*, Spermatogenese. Fig. 217 Zygotän, Fig. 218 Pachytän.

Fig. 219. *Philodromus laevispes*, I. Spermatozytenteilung, Prometaphase.
Fig. 220—222. *Philodromus aureolus*, I. Spermatozytenteilung. Fig. 220 u. 221 Prometaphase (Strichpr. BDB + Flg). Fig. 222 Metaphaseprofil. Fig. 223. *Philodromus laevipes*. I. Spermatozytenteilung, frühe Anaphase.

TAFEL XI.

Fig. 224. *Philodromus aureolus*, I. Spermatozytenteilung, Telophase.
Fig. 225. *Philodromus emarginatus*, I. Spermatozytenteilung, Telophase.
Fig. 226. *Philodromus aureolus*, I. Reifeteilung im Ei, Prometaphase.
Fig. 227—231. *Philodromidae*, II. Spermatozytenteilung, Metaphaseplatten.
Fig. 227—228. *Philodromus aureolus*. Fig. 227 15 Chr., Fig. 228 13 Chr.
Fig. 229. *Philodromus emarginatus*, 15 Chr.
Fig. 230—231. *Thanatus formicinus*. Fig. 230 13 Chr., Fig. 231 15 Chr.
Fig. 232—237. *Salticidae*, I. Spermatozytenteilung, Metaphase.
Fig. 232. *Salticus scenicus*, 15 Chr.
Fig. 233. *Pseudicus encarpatus*, 15 Chr. Strichpr. (BDB + Flg).
Fig. 234. *Evarcha falcata*, 15 Chr.
Fig. 235. *Dendryphanthes rudis*, 15 Chr. Strichpr. (BDB + Flg).
Fig. 236. *Sitticus terebra*, 15 Chr.
Fig. 237. *Myrmarachne formicaria*, Metaphaseplatte, 11 Autosomen.
Fig. 238—241. *Evarcha falcata*, Spermatogenese. Fig. 238 Präleptotännes Stadium, Fig. 239 Leptotän, Fig. 240 Pachytän, Fig. 241a, b X-Chromosomen aus Kernen im Pachytän.

TAFEL XII.

Fig. 242. *Evarcha falcata*, I. Spermatozytenteilung, Metaphaseprofil. Strichpr. (BDB + Flg).
Fig. 243. *Dendryphanthes rudis*, I. Spermatozytenteilung, Metaphaseprofil. Strichpr. (BDB + Flg).
Fig. 244—245. *Myrmarachne formicaria*. Spermatogenese. Fig. 244 Pachytän, Fig. 245 I. Reifeteilung, Metaphaseprofil.
Fig. 246—248. *Evarcha falcata*, Spermatogenese. Fig. 246—247 Interkinese, Fig. 248 II. Reifeteilung, Metaphaseplatte 15 Chr.
Fig. 249. *Myrmarachne formicaria*, II. Spermatozytenteilung, frühe Telophase.
Fig. 250—256. *Dictyna arundinacea*, Spermatogenese.
Fig. 250. Goniomenphase 24 (?) Chr.
Fig. 251—253. Meiotische Prophase. Fig. 251 Zygotän, Fig. 252—253 Pachytän,
Fig. 254. I. Reifeteilung, Metaphaseprofil.
Fig. 255—256. II. Reifeteilung, Metaphaseplatten, Fig. 255 11 Chr., Fig. 256 13 (?) Chr.
Fig. 257—262. Verschiedene Bivalenttypen bei den Spinnen schematisch dargestellt (oben Profil, unten Polansicht). Fig. 257—260 Chromosomen akrozentrisch, Fig. 261—262 metazentrisch. Fig. 257 V-Bivalent, Fig. 258 Kreuzbivalent, Fig. 259 Stabbivalent mit subterminalen Chiasma, Fig. 260 Ringbivalent, Fig. 261 Bivalent mit einem subterminalen Chiasma, Fig. 262 Ringbivalent.
Polyploide Epithelzelle im Testis von *Linyphia* sp. (BAB + Flg + Lg).

Pachytän, Spermatogenese von *Xysticus viaticus*. Das X-Chromosom weniger stark kondensiert. (Be + Hd).

Spermatogonienmetaphase von *Oxyopes ramosus* (Sa + Flg). Vgl. Fig. 91.

I. Spermatozyttenteilung, Metaphaseprofil von *Lycosa monticola*. Zwei X-Chromosomen dicht nebeneinander nahe dem einen Pol. (Ra + Flg + Lg).

II. Spermatozyttenteilung, Metaphase, von *Evarcha falcata*, 13 Chr. (BDB + Flg + Lg).

Vergr. in Fig. 263 1500 fach, in Fig. 264—271 2200fach.
Walter Hackman, Chromosomenstudien an Araneen TAFEL IV
Walter Hackman, Chromosomenstudien an Araneen TAFEL VIII
TAFEL IX

ACTA ZOOLOGICA FENNICA 54

97
Su: nnunt sarja

Acta