Stochastic background of gravitational waves from fermions

Kari Enqvist, Daniel G. Figueroa, and Tuukka Meriniemi

Physics Department, University of Helsinki and Helsinki Institute of Physics, P. O. Box 64, FI-00014, Helsinki, Finland
(Received 22 March 2012; published 5 September 2012)

Preheating and other particle production phenomena in the early Universe can give rise to high-energy out-of-equilibrium fermions with an anisotropic stress. We develop a formalism to calculate the spectrum of gravitational waves due to fermions, and apply it to a variety of scenarios after inflation. We pay particular attention to regularization issues. We show that fermion production sources a stochastic background of gravitational waves with a significant amplitude, but we find that typical frequencies of this new background are not within the presently accessible direct detection range. However, small-coupling scenarios might still produce a signal observable by planned detectors, and thus open a new window into the physics of the very early Universe.

I. INTRODUCTION

The existence of gravitational waves (GWs) is arguably one of the most important predictions of the general theory of relativity that still remains unverified. The measured decay of the orbital period of compact binaries [1] has nevertheless provided a strong, though indirect, evidence for GWs. On theoretical grounds, we expect that the Universe today should be permeated by a variety of GW backgrounds of diverse origin. For instance, GWs are expected from astrophysical sources, such as the collapse of supernovas or the coalescence of compact binaries. They are also expected from high-energy phenomena in the early Universe, see Ref. [2] for a review. Many plans for direct detection experiments exist, such as the VIRGO interferometer, the Laser Interferometer Gravitational Wave Observatory, the European Laser Interferometer Space Antenna, the Big Bang Observer, or the Dechert Interferometer Gravitational Wave Observatory; all these observatories operate at some typical frequencies ranging from 10^{-4} Hz to 10^4 Hz, and it is highly expected in the community that GWs should be detected within this decade.

A number of constraints on GWs have been derived from a variety of considerations related to things such as millisecond pulsars [3] and big bang nucleosynthesis [4]. Indeed, there are hopes that cosmology may in near future offer more insight on the existence and nature of GWs. From the observations of the cosmic microwave background temperature and polarization [5] anisotropies, one can already infer upper bounds on the amplitudes of GWs (see also Ref. [6]).

During inflation metric perturbations, including tensor modes, i.e., GWs, are generated. If the scale of inflation is sufficiently high, the GW background from inflation could be detected directly [7] with satellite missions such as the Planck Surveyor or the proposed CMBpol satellite. Moreover, post-inflationary dynamics can also be a source of stochastic backgrounds of GWs, generated by causal mechanisms very different from the quantum nature of the inflationary GWs. After inflation the energy stored in the scalar inflaton field responsible for the superluminal expansion is converted into (almost) all the matter and radiation of the Universe. This stage is called reheating, by the end of which the inflaton decay products have thermalized among themselves and the standard hot big bang evolution can commence. The process of reheating is not well understood. However, it is often assumed to be initially driven by nonperturbative effects, consisting in violent bursts of particle production known as preheating [8].

In this paper we will focus on the generation of GWs right after inflation during preheating or other stages of nonperturbative particle production. Most previous studies of postinflationary phenomena generating GWs have focused only on bosonic sources [9–11], usually scalar fields. Here we want to complete the picture by considering fermionic fields as the source of GW. The phenomena in which fermions are created after inflation correspond to out-of-equilibrium periods in the evolution of the Universe. Thus the created fermions have typically a nonthermal spectra and, as a consequence, they have a nontrivial anisotropic stress which will source GWs. We will consider the possibility that the inflaton couples to fermions, and discuss the production of GWs during fermionic preheating [12,13]. Our considerations also apply to situations where fermions are produced by a scalar field other than the inflaton. The fermions we observe in nature must have been generated sometime between the end of inflation and big bang nucleosynthesis. Fermionic preheating, or production of fermions in general, is thus no less natural than the usual bosonic production, but it is technically much more difficult to treat.

Since sources of GWs produce spectra with distinctive shapes and amplitudes, it is important to characterize all the potential sources. The question then is, how big is the amplitude, and what is the frequency, of the stochastic GWs produced by fermions in the early Universe? The aim of the present paper is to answer these questions. We
first develop a general formalism for computing the GW
spectrum generated by an ensemble of fermions, and then
apply it to two distinct scenarios: (1) fermions generated
in preheating, and (2) thermal universe into which the
fermions are injected. From now on we will work in units
h = c = 1, with \(M_p = 2.4 \times 10^{18} \) GeV the reduced
Planck mass. Summation will be assumed over repeated
indices.

II. GRAVITATIONAL WAVES FROM FERMIONS:
THE FORMALISM

Let us consider a flat Friedman-Robertson-Walker back-
ground with \(a(t) \) the scale factor and \(t \) conformal time.
GWs are the transverse-traceless (TT) part of metric per-
turbations \(h_{ij} \),

\[
d s^2 = a^2(t)(-dt^2 + (\delta_{ij} + h_{ij})dx^idx^j),
\]

subject to \(\partial_t h_{ij} = h_{ii} = 0 \). The spectrum of energy density
of a stochastic GW background in comoving momentum \(k \)
\begin{equation}
\frac{d\rho_{GW}(k,t)}{d\log k} = \frac{M_p^2 k^3|\hat{h}_k(t)|^2}{8\pi^2a^3(t)},
\end{equation}

where \(|\hat{h}_k(t)|^2 \) is the power spectrum of \(h_{ij} = \frac{\partial h_{ij}}{\partial t} \). For initial conditions \(h_{ij}(t_0) = \hat{h}_{ij}(t_0) = 0 \), the GW spectrum
at subhorizon scales becomes
\begin{equation}
\frac{d\rho_{GW}(k,t)}{d\log k} = \frac{k^3}{4\pi^2M_p^2a^4(t)} \int dt' \int_{t_1}^{t} d\tau' a(t)A(t') \times \cos(k(t' - t'))\Pi^2(k, t', t'),
\end{equation}

where \(\Pi^2 \) is the unequal time correlator of the TT part of
the anisotropic-stress \(\Pi^2 \),
\begin{equation}
\langle \Pi_{ij}^2(k, t)\Pi_{ij}^2(k', t') \rangle = (2\pi)^3\Pi^2(k, t, t')\delta_D(k - k').
\end{equation}

Let us now consider spin-\(\frac{1}{2} \) fermions as the source of
GWs, which can be represented as
\[
\psi(x, t) = \int \frac{d\mathbf{k}}{(2\pi)^3} e^{-i\mathbf{k}\cdot\mathbf{x}} \{a_{\mathbf{k}, r}(t) + b_{\mathbf{k}, r}^\dagger(t), \}
\]
\[
u_{\mathbf{k}, r} = (u_{\mathbf{k}, +}, u_{\mathbf{k}, -})^T, \quad v_{\mathbf{k}, r} = (u_{\mathbf{k}, +}^* - u_{\mathbf{k}, -}^*)^T,
\]

with \(r = 1, 2 \), \(S_1 = -S_2 = (01)^T \), \(S_2 = S_{-1} = (01)^T \),
\begin{equation}
\{a_{r}(\mathbf{k}), a_{s}^\dagger(\mathbf{q})\} = \{b_{r}(\mathbf{k}), b_{s}^\dagger(\mathbf{q})\} = (2\pi)^3\delta_{rs}\delta_D(k - q), \quad \{a_{r}(\mathbf{k}), b_{s}^\dagger(\mathbf{q})\} = 0.
\end{equation}

The fermion energy-momentum tensor is given by \[14\]
\begin{equation}
T_{ij}(x, t) = \frac{i\alpha(t)}{2} (\bar{\psi}_i \gamma_j \psi - \bar{\psi}_j \gamma_i \psi),
\end{equation}

with \(D_i = \partial_i + \frac{1}{2} [\gamma_\alpha, \gamma_\beta] \omega^{\alpha\beta} \) the covariant derivative, \(\gamma_i \)
the standard (flat-space) Dirac matrices, and \(\omega^{\alpha\beta} \) the spin
connection. The TT part of the anisotropic-stress in Fourier
space, can be simply obtained by means of the orthogonal
projector \(P_{ij} \equiv \delta_{ij} - \frac{\partial_i \partial_j}{\partial^2} \), as
\[11\] \[12\] \[13\] \[14\] \[15\] \[16\] \[17\] \[18\] \[19\] \[20\] \[21\] \[22\]

\begin{align*}
\Pi_{ij}^a(k, t) &= \Pi_{ij}^T(k, t) - \frac{1}{2} \Pi_{ij} P_{lm} T_{lm},
\end{align*}

where we have all the ingredients to calculate \(\Pi^2(k, t, t') \) and obtain the GW spectrum. Using the fact that
\(\nu_{p, \pm} = \pm u_{p, \pm} \), we find
\begin{equation}
\rho_{GW}(k, t) = \frac{(k^3/M_p^2)}{8\pi^2a^4(t)} \int dp d\theta p^4 \sin^3 \theta F(k, p, \theta),
\end{equation}

\begin{equation}
F(k, p, \theta) = |I^+(k, p, \theta)|^2 + |I^-(k, p, \theta)|^2,
\end{equation}

where \(I_\pm(k, p, \theta) \) defined analogously by replacing \(\cos(kt) \) by \(\sin(k\theta) \).
Equation (7) is the master set of formulas that
describe the GW spectrum at subhorizon scales, as gener-
ated by some fermionic field \(\psi \) with eigenfunctions
\(u_{k, \pm}(t) \). The equation of motion for \(u_{k, \pm}(t) \) will follow
from the Dirac equation. For any process in the early
Universe where fermions are excited, one just needs to plug
in the solutions \(u_{k, \pm}(t) \) into the master equation (7)
to find the spectrum of GWs.

The structure of the formulas in Eq. (7) resembles that of scalar fields sourcing GWs. However, in the bosonic
case, apart from multiplicative factors, there appears a power \(p^6 \) instead of \(p^4 \) in the integrand, there are no
polarization indices \(+, - \), and of course the fermionic
mode functions \(u_{k, \pm}(t) \) are replaced by the Klein-Gordon scalar modes \(\phi_{k}(t) \).

Both bosonic and fermionic vacuum expectation value
expressions, like \(\Pi^2 \), require regularization. In the case of bosons, this has not been an issue in the literature,
since the bosonic unequal time correlators are either introduced
as a theoretical regularized ansatz, or in the case of lattice
simulations, the ultraviolet (UV) modes causing the diver-
gence are simply not captured. In the fermionic case one
cannot skip regularization. To regularize \(\Pi^2 \), note first that
the VEV of the source itself, \(\Pi_{ij}^T \), needs also to be regu-
larized. Similarly to the flat-space case, regularization of the
source’s VEV amounts to a subtraction of the zero-point
fluctuations or, equivalently, to a time-dependent normal-ordering procedure, i.e., \(\langle \Pi_{ij}^T \rangle_{\text{reg}} = \langle \Pi_{ij}^T \rangle - \langle 0 | \Pi_{ij}^T | 0 \rangle \),
with \(|0\rangle \) the initial vacuum and \(|0\rangle \) the vacuum at time \(t \). This removes the unphysical divergence
in the VEV of \(\Pi_{ij}^T \) at every time \(t \). In practice, time-dependent normal-ordering amounts to the replacement
\(u_{p, \pm}(u_{p, \pm})^* \rightarrow (u_{p, \pm}(u_{p, \pm})^*)_\text{reg} = \beta_{p, \pm} \beta_{p, \pm}^* - (\beta_{p, \pm} \beta_{p, \pm}^*)^* \) with \(|\beta_p| = \sqrt{1 - |\alpha_p|^2} \), where \(\alpha \) and \(\beta \)
are the canonical Bogoliubov coefficients [14] connecting
the initial creation and annihilation operators with those at

ENQVIST, FIGUEROA, AND MERINIEMI PHYSICAL REVIEW D 86, 061301(R) (2012)
time t. To render Π^2 finite we just need to replace in Eq. (7) the functions $I^{(c)}_{\pm}$ by

$$I^{(c)}_{\pm} = \int dt' \cos(kt')(u_{k-\pm}(t')u_{k+\pm}^*(t'))_{\text{reg}}, \quad (8)$$

and similarly for $I^{(c)}_{\pm}$. In this way the convergence of the integration over p is ensured by the suppression of the UV-divergent modes.

III. STOCHASTIC BACKGROUND OF GRAVITATIONAL WAVES FROM FERMIIONS PRODUCED IN THE EARLY UNIVERSE

Several scenarios of the early Universe may create high-energy out-of-equilibrium fermions by nonperturbative effects, for instance a homogeneous scalar field oscillating around the minimum of a potential. In such situation, if fermions are coupled to that field, a nonperturbative population of their modes (respecting Pauli-blocking) takes place [12,13]. This generates a nontrivial anisotropic-stress that sources a stochastic background of GWs. In this paper we consider two different scenarios:

(I) **Preheating after inflation**: Let us assume an inflaton oscillating around the minimum of its potential after the end of inflation. This is the case of chaotic inflation models with polynomial potentials like $V \propto \phi^2$ or $V \propto \phi^4$. In general, the shape of the inflaton potential during inflation is however irrelevant for our purposes. We will just assume that inflation took place at some energy scale E_I, and that afterwards the inflaton oscillates with a certain frequency and decreasing amplitude. The expansion of the Universe will be dictated during (p)reheating by the inflaton energy density. For a polynomial potential $V(\phi)$ it is well known that the scale factor behaves as a power law in time. In the simplest case $V(\phi) = \frac{1}{2} \omega_0^2 \phi^2$, $a(t) \propto t^\epsilon$, so the expansion of the Universe is matter-dominated.

(II) **Oscillating scalar field in a thermal era**: It is possible to consider a scalar field, other than the inflaton, which oscillates coherently around a potential minimum when the Universe has already entered into a thermal era. That is the case, for example, of the curvaton scenario [15], which is an alternative to single-field inflationary models. After the Universe has reheated, the curvaton oscillates with decreasing amplitude and fixed frequency. The expansion of the Universe is radiation-dominated (RD), driven by the thermal relativistic bath of particles with energy density $\rho_{\text{th}} \propto 1/a^4$, and $a(t) \propto t$. We assume oscillations begin at some energy scale E_I way above the electroweak scale.

In both scenarios the oscillatory field ϕ behaves as a damped oscillator, $\phi(t) = \Phi(t)F(t)$, with decreasing amplitude $\Phi(t)$ and periodic behavior $F(t + 2\pi/\omega_0) = F(t) \equiv 1$, as determined by the chosen potential. We will assume that ϕ is coupled to some fermion species ψ via a Yukawa interaction $h\phi \bar{\psi} \psi$, with h the interaction strength. The Dirac equation yields the equation for the mode functions $u_{k\pm}$ as

$$\ddot{u}_{k\pm} + (k^2 + h^2a^2\phi^2 \pm i\hbar(\dot{a}h + a\dot{h}))u_{k\pm} = 0. \quad (9)$$

We have solved numerically the mode equations (9) for the scenarios I and II, scanning for the parameters h, ω_0 and E_I and assuming $V(\phi) = \frac{1}{2} \omega_0^2 \phi^2$ and initial conditions corresponding to a vanishing particle density. In both scenarios, each time ϕ passes through the minimum of the potential, fermions are created out-of-equilibrium by nonperturbative parametric effects [8].

Pauli blocking prevents the fermion occupation numbers to grow arbitrarily. Fermion excitations are forced to fill up a “Fermi sphere” in momentum space of comoving radius $k_F \sim a(t)q^{1/4}\omega_0$, with $q = h^2(\Phi/\omega_0)^2$ the resonant parameter [12]. The occupation numbers with momenta smaller than k_F oscillate continuously between 0 and 1, while the radius k_F grows as $\sim a^{1/4}$. When the energy density of the created fermions has grown to a significant fraction of the energy of the oscillating field ϕ—usually within tens of oscillations—the creation of fermions finally ceases. The excitations of the fermionic modes within the Fermi-sphere source the generation of GWs. The nonexcited modes, i.e., those outside the sphere, are on the contrary responsible for the UV divergence discussed before. The regularization scheme we impose filters the infrared (IR) modes within the sphere $k \leq k_F$ and removes the contribution from the UV ones.

It is useful to define the times t_I, t_* and t_{RD}, as the initial time, the end of GW production, and the first moment when the Universe becomes RD, respectively. In the scenario I, $t_I < t_* < t_{\text{RD}}$, so in this case the effective equation of state $p/\rho = w$ between t_I and t_{RD} is typically different from that of RD, $w_{\text{RD}} = 1/3$ (unless $V(\phi) \propto \phi^4$). It is then convenient to introduce the factor $\epsilon = (a_I/a_{\text{RD}})^{1-3w}/a$ in order to quantify our ignorance about the scale factor between t_* and t_{RD}. In the scenario II, $t_{\text{RD}} \leq t_I < t_*$, so that $\epsilon = 1$. Below the Planck scale, GWs decouple immediately after production, so we can evaluate the GW energy density spectrum today from the spectrum computed at the time of production. We just have to redshift the amplitude and wave numbers,

$$f = \epsilon^{1/4} \left(\frac{a_I}{a_*} \right) \left(\frac{\omega_0}{\rho_{\text{rad}}} \right) \left(\frac{k}{\omega_0} \right) \times 5 \times 10^{10} \text{ Hz}$$

$$h^2 \Omega_{\text{GW}} = \frac{\hbar^2}{\rho_{\text{rad}}} \left(\frac{dp_{\text{GW}}}{d\log k} \right)_0 = h^2 \Omega_{\text{rad}} \left(\frac{g_0}{g_{*s}} \right)^{(1/3)} \frac{\epsilon}{\rho_*} \left(\frac{dp_{\text{GW}}}{d\log k} \right)_0,$$

with $h^2 \Omega_{\text{rad}} = 4 \times 10^{-5}$, $\rho_* = E_I^2 (a_I/a_*)^{3(1+w)}$ the energy density at t_*, and $(g_0/g_{*s})^{1/3} \sim O(0.1)$ the ratio of the number of relativistic dof today to those active at t_*.
In Fig. 1 we show two examples of GW energy density spectra, obtained with the machinery presented in the previous section. The spectra grow in the IR region, reaches a maximum at $k \sim q^{1/4} \omega_0$, and finally fall down in the UV region. The spectra are peaked, as expected on dimensional grounds, around the scale $\sim k_F$, characteristic of the fermions’ dynamics. From the $k \to 0$ limit in Eq. (7), we would expect the spectra to grow as $\propto k^3$ in the very IR region. Instead we observe a behavior $\propto k^2$, probably signaling that we are exploring k’s too close to the maximum, and that one should look for much smaller k’s to probe the k^3 behavior. Unfortunately, due to computer limitations, both the limits $k \ll k_F$ and $k \gg k_F$ are indeed very challenging to probe, so we leave a complete characterization of the IR and UV tails of the GW spectra for a future publication.

With our formalism we can obtain nevertheless the most important aspects characterizing any GW spectrum: the spectral shape around the peak, and the amplitude and position of such peak. For instance in the scenario I with $E_I \sim 10^{16}$ GeV and $\omega_0 \sim 10^{14}$ GeV, for $q = 10^2$ (dashed line, peaked at $k = 8q^{1/4} \omega_0$) and $q = 10^6$ (solid line, peaked at $k = 6q^{1/4} \omega_0$). The spectra in the scenario II for the same parameters look qualitatively the same.

very significant. However the typical frequencies are too large as compared to the range probed by GW observatories ($\sim 10^{-4} - 10^{-4}$ Hz). From Eq. (10) we learn that if $\omega_0/\rho_I^{1/4} \ll 1$, we could decrease significantly the frequency towards the observable window. However Ω_{GW} is suppressed by (ω_0^4/ρ_I), so the amplitude would be far too small, $\Omega_{GW} \ll 10^{-20}$. We hope to return to a systematic exploration of the parameters in a future publication.

There are some indications for scenarios where a GW background at sufficiently low frequencies and high enough amplitudes could be found. For instance, in hybrid inflation, the frequency ω_0 should be replaced by $\sqrt{\lambda} \nu$, and the initial energy scale E_I by $\sim \lambda^{1/4} \nu$, where λ and ν are the self-coupling and VEV of an auxiliary field coupled to the inflaton. The frequencies would then scale as $f \propto \lambda^{1/4}$ [10] so that for sufficiently small λ, one could obtain a peak frequency within the observable range. This possibility can be explored by using the machinery developed in this paper.

Summarizing, we have shown that fermions in the early Universe may be very efficient generators of GWs. These waves remain decoupled from the moment of their production, and thus the amplitude and shape of their spectrum probes the physics responsible for their generation. The characteristic spectrum is different from other backgrounds of GWs, like those arising from binaries coalescing [2], which are decreasing with frequency, or those arising from inflation or self-ordering fields [16], which are flat. A comparison of the exact shape of the spectra predicted here versus those generated by scalar fields in phase transitions and (p)reheating requires further study. Here we just want to emphasize that, contrary to naive expectations based on the Pauli principle, we found that fermions are capable of producing a stochastic background of GWs with a very large amplitude. Although it may be manifest only at very high frequencies much beyond present/planned GW detectors’ sensitivities, there is however some hope that small-coupling models could give rise to a signal in observable frequency ranges.

ACKNOWLEDGMENTS

We thank R. Durrer, J. García-Bellido and A. Riotto for useful comments. T.M. is supported by the Magnus Ehrnrooth Foundation, while K.E. and D.G.F. are supported by the Academy of Finland Grants No. 131454 and No. 218322, respectively.

