Is there a relationship between income inequality and leverage?

Tuomas Malinen
University of Helsinki and HECER

Discussion Paper No. 362
March 2013

ISSN 1795-0562
Is there a relationship between income inequality and leverage?*

Abstract

Recent studies by Atkinson (2011); Rajan (2010); Kumhof and Rancière (2010); Bordo and Meissner (2013) have assessed the relationship between income inequality and financial stability. Bordo and Meissner found that changes in income inequality do not have an effect on the growth of credit. We extend their study by assessing the relationship between levels of income inequality and leverage. We find that the relationship between inequality and credit is long-run, i.e. trending in nature and that removing this relation with first differencing will lead to biased inference. In conclusion we find that income inequality is associated with increased leverage in the economy.

JEL Classification: C23, D31, G21

Keywords: top 1% income share, bank loans, unit root, cointegration

Tuomas Malinen

Department of Political and Economical Studies
University of Helsinki
P.O. Box 17 (Arkadiankatu 7)
FI-00014 University of Helsinki
FINLAND

e-mail: tuomas.malinen@helsinki.fi

* Author wishes to thank Henri Nyberg, Matthijs Lof, Pentti Saikkonen and Jari Hännikäinen for comments. Financial support from OP-Pohjola Research Fund is gratefully acknowledged.
1 Introduction

The economic effects of income inequality have been under intensive study within the last two decades, the relationship between income inequality and economic growth being the most studied subject (e.g. Barro 2000; Banerjee and Duflo 2003; Castelló-Climent 2010; Forbes 2000; Galor and Moav 2004; Malinen 2012; Persson and Tabellini 1994). After the financial crisis of 2007-2009, the relation between inequality and financial stability has also become under scrutiny. Rajan (2010) argues that rising inequality in developed economies caused redistribution in the form of subsidized housing finance, which led to a housing boom and later to a crash with known consequences. Kumhof and Ranciére (2010) argue that inequality raises leverage in middle-income and poor households as a result of consumption smoothing. When the income concentrates on the high income households, middle-income and poor households sustain their level of consumption by borrowing against their future incomes. If there is no recovery in the real incomes of the poor and middle income households, leverage among them will keep on rising, which will eventually lead to loan defaults thus increasing the probability of a financial crisis.

In a recent article, Bordo and Meissner (2013) set to test the hypothesis that inequality increases leverage using data on top income shares and the ratio of bank loans. They estimate the effect of change in income inequality on the change in the ratio of bank loans and find "very little evidence linking credit booms and financial crises to rising inequality". The result of Bordo and Meissner coincides with that of Atkinson (2011) who finds that there seems to be an ambiguous causal relation of income inequality on economic crises. However, as Atkinson points out, both his and Bordo and Meissner’s result applies only to the relation between financial
stability and changes in income inequality. Atkinson (2011, p. 35) concludes that "we have not investigated whether inequality level was relatively higher before identified macroeconomic shocks. Therefore, the level hypothesis cannot be ruled out at this stage."

Atkinson (2011) refers to the hypothesis put forth by Stiglitz (2009) and formalized by Kumhof and Rancière (2010), which states that during stagnating real incomes, poorer households borrow to maintain their rising standard of living. This creates a *trending* relation between income inequality and credit in the economy. As real income keeps on stagnating, credit acquired by lower income households keeps on growing and this trend eventually leads to defaults and to stress among financial institutions. First differencing removes this trend and focuses the analysis on the short term effects of inequality on credit. If the relationship between inequality and credit is long-run, i.e. trending, in nature, using first differenced variables may give biased information on the effect of inequality on leverage.

The analysis of this possible *long-run* relationship is complicated by the fact that bank loans tend to grow over time, whereas the generally used measures of income inequality, like the top 1% income share, are bounded from above. This creates a problem, because it is not possible for something that is not trending to have a long-run or an *equilibrium* relation with something that is upward trending, in the first two moments at least. There are two ways around this problem: the trending series can be detrended or it can be bounded using some suitable transformation. Detrending of the series is problematic, as it would remove the very thing under interest, i.e. the trend. This makes "bounding" of the series a preferable method, and there is a natural candidate by which the series can be transformed. The top 1% income share, used by Bordo and Meissner (2013), measures the share
of national income concentrated on the hands of the highest percentile of income earners. As GDP is, in practice, the national income of a country, the share can be presented as \( \frac{\text{income of the top 1%}}{\text{GDP}} \). Therefore, it would be natural to convert bank loans the same way, i.e. \( \frac{\text{bank loans}}{\text{GDP}} \). This transformation would make the measures comparable, as both would be expressed as a percentage of GDP, without removing the possible long-run relation that may exist between inequality and credit.

In the theoretical model by Kumhof and Rancière (2010), leverage is modeled as workers debt-to-income ratio. Thus, credit-to-GDP ratio is also a more accurate statistical approximation of the measure of leverage used by Kumhof and Rancière than the level or the first difference of credit.

In this article, we test and estimate the relationship of income inequality and credit as ratios to GDP. We use data on the income share of top 1% income earners and bank loans on eight developed economies. Results indicate that both the top 1% income share and the share of credit to real GDP follow an unit root process. The two series are also found to be cointegrated of order one implying that there is a long-run steady-state relation between them. The long-run elasticity of share of bank loans with respect to income inequality is estimated with panel DSUR and it is found to be positive.

The rest of the paper is organized as follows. Section 2 presents the data and gives the results of panel unit root tests. Cointegration test and estimation results are presented in section 3, and section 4 concludes.

## 2 Data and unit root tests

We use the top 1% income share of the population to proxy the income inequality as Bordo and Meissner (2013). Leigh (2007) has demonstrated that the top 1% income share series have a high correlation with other measures of income
inequality, like the Gini index. The data on top income share is obtained from the World Top Income Database (Atkinson *et al.* 2011). The data on bank loans, real GDP per capita, investment as a share of GDP, short-term interest rates, and broad money (M2) as a share of GDP is obtained from the dataset of Schularik and Taylor (2012). The data on real GDP is taken from the Maddison dataset of the Groningen Growth and Development Centre.

Leverage is modeled as a debt to real income ratio in the theoretical model by Kumhof and Rancière (2010). This ratio is also behind the level hypothesis introduced by Stiglitz (2009), where stagnating real incomes cause middle-income and poor households to borrow in nominal terms. Thus, to test the hypotheses by Kumhof and Ranciere and Stiglitz we use bank loans to real GDP (RGDP) as our dependent variable.

Due to limitations of the data on top 1% income share, we are able to construct a balanced panel on eight countries. The baseline dataset spans from 1959 to 2008, whereas the dataset including short-term interest rate spans from 1972 to 2008. Figure 1 presents the time series of the mean of the share of credit to real GDP and the mean of the top 1% income share in our data. Figure shows that during the period of 1959-1980 the share of income of the top 1% decreased, but at the same time the share of bank loans increased, although only marginally. After 1980 the share of income earned by the top 1% and the share of bank loans to real GDP grew at a very similar pace. This latter period gives some evidence in favor of the level hypothesis. The best way to analyze the possible relation between the two variable is to test are the different trend processes driven by the same factors.

The data on bank loans is extremely heterogeneous, as described by Schularik and Taylor (2012). Credit, money and banking institutions differ profoundly across countries and in some cases historical data on credit covers only commer-
Figure 1. Means of the share of bank loans to real GDP and the top 1% income share. Sources: Atkinson et al. (2011); Schularik and Taylor (2012)

Social banks. As Schularik and Taylor, we tackle the issue of heterogeneity by using country-related constants. In addition, we log-linearize the share of bank loans to real GDP to diminish the cross-sectional variation in the series.¹ There are few yearly observations missing from the top 1% income share data, which we replace by averages of the values preceding and following the missing observation.

We start by testing the time series properties of the data. We use two sets of panel unit root tests to test for the possible unit roots. The first two are the so

¹As the ratio of credit to real GDP is a percent variable, the log-linearization is done by transformation:

\[ \ln(x) = \ln \left( \frac{1 + x}{100} \right). \]
called first-generation tests, by Im et al. (2003) (IPS) and the Fisher type ADF test by Maddala and Wu (1999). These tests assume that there is no cross-sectional correlation between the units of the panel. The second generation panel unit root tests by Pesaran (2007) and Phillips and Sul (2003) allow for cross-sectional correlation within the panel. A more detailed explanation on the used test is provided in the Appendix I. Table 1 presents the results of panel unit root tests for the six included variables. According to results presented in table 1, all panel unit root tests find the share of credit to real GDP to be an unit root process, i.e. tests cannot reject the null hypothesis of unit root. Three out of four panel unit root tests find the top 1% income share and the share of broad money to GDP to be unit root processes. Two out of the four tests find the real GDP per capita to be an unit root process and one out of the four tests find the share of investments to GDP to be an unit root process. According to all tests, the short-term interest rate is a

<table>
<thead>
<tr>
<th>variable</th>
<th>IPS</th>
<th>ADF</th>
<th>PS</th>
<th>Pesaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(credit/RGDP)</td>
<td>2.973</td>
<td>12.875</td>
<td>9.101</td>
<td>5.370</td>
</tr>
<tr>
<td></td>
<td>(0.998)</td>
<td>(0.682)</td>
<td>(0.999)</td>
<td>(0.999)</td>
</tr>
<tr>
<td>top 1%</td>
<td>3.075</td>
<td>3.631</td>
<td>8.470</td>
<td>-3.891</td>
</tr>
<tr>
<td></td>
<td>(0.999)</td>
<td>(0.997)</td>
<td>(0.863)</td>
<td>(&lt;.001)</td>
</tr>
<tr>
<td>investments/GDP</td>
<td>-3.077</td>
<td>36.646</td>
<td>14.978</td>
<td>-1.792</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.380)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>M2/GDP</td>
<td>3.543</td>
<td>8.127</td>
<td>25.954</td>
<td>-0.629</td>
</tr>
<tr>
<td></td>
<td>(0.999)</td>
<td>(0.945)</td>
<td>(0.026)</td>
<td>(0.265)</td>
</tr>
<tr>
<td>ln(real GDP per capita)</td>
<td>-1.947</td>
<td>27.268</td>
<td>11.772</td>
<td>-0.833</td>
</tr>
<tr>
<td></td>
<td>(0.0258)</td>
<td>(0.0386)</td>
<td>(0.625)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>short term interest rate*</td>
<td>-2.880</td>
<td>34.090</td>
<td>40.484</td>
<td>-.866</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.005)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

In unit root tests, the tested equation is: $\Delta y_{it} = \rho_i y_{i,t-1} + \delta_t + \eta_i t + \theta_i + \epsilon_{it}$. The $p$-values of the test statistics are presented in parentheses. All other test are done with the eight country panel ranging from 1959 to 2008, except tests for short term interest rates are done with a panel with yearly observations from 1972 to 2008.
3 Cointegration test and estimations

3.1 Panel cointegration testing

According to unit root tests presented in table 1, stochastic trends would drive the time series of the top 1% income share and the share of credit to real GDP. Next we test if the stochastic trends are linear combinations of one and another, i.e. we test are the series cointegrated. To this end, we use two panel cointegration tests, where the first one is the cointegration test by Pedroni (2004) and the second is the cointegration test by Banerjee and Carrion-i-Silvestre (2011) (from now on BC). The biggest difference between these tests is that while Pedroni’s test assumes uncorrelated residual structure, BC’s test allows for cross-sectional correlation through common factors and it also controls for possible structural breaks in the cointegration relation. Appendix III gives more detailed description of the used tests.

The model for testing for cointegration between inequality and credit is:

$$\ln(\text{credit}/\text{RGDP})_{it} = \alpha_i + \gamma_i \text{top1\%}_{it} + \epsilon_{it},$$ (1)

where the level of bank loans are explained by the level of inequality, and \((1, -\gamma_i)\) is the country-specific cointegration vector between bank loans and the top 1% income share. We include individual constants due to heterogeneity of the data on bank loans discussed in the previous section. Results of panel cointegration tests based on the model (1) are presented in table 2.\(^2\) 15 out of the 19 test statistics

\(^2\)According to all second generation panel unit root tests, the first-differences of log of credit to real GDP, top 1% income share, investments to GDP, money to GDP and GDP per capita are trend-stationary. Results are available upon request.

\(^3\)The Pedroni’s test was conducted with Eviews 6 and B&C’s test was done with Gauss. We are grateful to Carrion-i-Silvestre for providing the program code.
Table 2: Panel cointegration test statistics for ln(credit/RGDP) and top 1% income share

<table>
<thead>
<tr>
<th>Pedroni tests</th>
<th>Within-dimension</th>
<th>Constants</th>
<th>Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>panel v-statistic</td>
<td>-2.285</td>
<td>-1.835</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.074)</td>
<td></td>
</tr>
<tr>
<td>panel ρ-statistic</td>
<td>2.274</td>
<td>2.264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.031)</td>
<td></td>
</tr>
<tr>
<td>panel PP-statistic</td>
<td>3.070</td>
<td>2.948</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>panel ADF-statistic</td>
<td>3.205</td>
<td>2.786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.008)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Between-dimension</th>
<th>Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>group ρ-statistic</td>
<td>2.999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>group PP-statistic</td>
<td>3.861</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&lt;.001)</td>
<td></td>
</tr>
<tr>
<td>group ADF-statistic</td>
<td>3.777</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&lt;.001)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BC tests</th>
<th>Constants, level shift</th>
<th>Constants, ci. vector shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{\lambda}^{\hat{\lambda}}$</td>
<td>-0.988</td>
<td>-2.451</td>
</tr>
<tr>
<td></td>
<td>(0.162)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>$Z_{\rho}^{\hat{\lambda}}$</td>
<td>-5.543</td>
<td>-11.55</td>
</tr>
<tr>
<td></td>
<td>(&lt;.001)</td>
<td>(&lt;.001)</td>
</tr>
</tbody>
</table>

The null hypothesis is that the variables are not cointegrated. In the test by Pedroni, lag length were determined with Schwarz information criterion. Constants states that individual constants were used in the test, and trends that individual constants and trends were used in the test. Tests with level and cointegration vector shifts allow for structural breaks to occur in the country-specific cointegration relations.
presented in table 2 find that the series of top 1% income share and credit to real GDP are cointegrated of order one at the 5% level. Moreover, 13 out of the 15 test statistics that do not allow for level of cointegration vector shifts find the top 1% income share and share of credit to real GDP to be cointegrated at the 5% level. Therefore, we conclude that top 1% income share and credit to real GDP seem to be cointegrated, i.e. that the two series have a long-run steady-state relation.

3.2 Estimations

First differencing of cointegrated variables removes stochastic trends and it eliminates the long-run dependency between the variables. What remains is a short-run relation, which may or may not exist. However, following previous literature, we first estimate variables in first differences. More precisely, we estimate a model:

$$
\Delta \ln(\text{credit}/\text{RGDP})_{it} = \alpha_i + \beta_1 \Delta \text{top}_i,t-1 + \beta_2 \Delta \text{investments}/\text{GDP}_{i,t-1} + \\
+ \beta_3 \Delta \text{M2}/\text{GDP}_{i,t-1} + + \beta_4 \Delta \ln(\text{RGDP})_{i,t-1} + \beta_5 \Delta \text{stir}_{i,t-1} + u_{it},
$$

(2)

where $\alpha_i$ are individual constants and $u_{it}$ is the idiosyncratic error term. Explanatory variables are lagged with one period to control for the possible endogeneity of regressors.

Table 3 presents the results. Results of table 3 indicate that income inequality would not have statistically significant short-run effect on nominal credit. In the last estimation, none of the parameter estimates of the explanatory variables is statistically significant at the 5% level.

The picture somewhat changes when the levels of credit to real GDP and top 1% income share are used. We use panel DSUR (dynamic seemingly unrelated regressions) estimator by Mark et al. (2005) to estimate the cointegration coefficient
Table 3: Regression results using first differenced variables

<table>
<thead>
<tr>
<th>Dependent variable: $\Delta \ln(\text{credit}/\text{RGDP})$</th>
<th>FE-OLS</th>
<th>FE-OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \text{top } 1_{t-1}$</td>
<td>-0.0002</td>
<td>-0.0019</td>
</tr>
<tr>
<td></td>
<td>(0.0028)</td>
<td>(0.0029)</td>
</tr>
<tr>
<td>$\Delta \ln(\text{real GDP per capita})_{t-1}$</td>
<td>-0.0022</td>
<td>0.1611</td>
</tr>
<tr>
<td></td>
<td>(0.0693)</td>
<td>(0.1105)</td>
</tr>
<tr>
<td>$\Delta \text{investments/GDP}_{t-1}$</td>
<td>0.4223**</td>
<td>0.3944</td>
</tr>
<tr>
<td></td>
<td>(0.1504)</td>
<td>(0.2479)</td>
</tr>
<tr>
<td>$\Delta \text{M2/GDP }_{t-1}$</td>
<td>0.0652*</td>
<td>0.0255</td>
</tr>
<tr>
<td></td>
<td>(0.0292)</td>
<td>(0.0253)</td>
</tr>
<tr>
<td>$\Delta \text{short term interest rate}_{t-1}$</td>
<td>-0.0799</td>
<td>0.0799</td>
</tr>
<tr>
<td></td>
<td>(0.1332)</td>
<td>(0.1332)</td>
</tr>
<tr>
<td>countries</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>years</td>
<td>1959-2008</td>
<td>1972-2008</td>
</tr>
<tr>
<td>observations</td>
<td>384</td>
<td>280</td>
</tr>
</tbody>
</table>

Estimations are done with country fixed-effects. White heteroskedasticity-consistent standard errors are presented in parentheses.

of top 1% income share using a model:

$$\ln(\text{credit}/\text{RGDP})_{it} = \alpha_i + \gamma'_1 \text{top } 1_{it} + \beta_p X_{it} + \theta_t + u_{it},$$ (3)

where $\alpha_i$ are individual constant, $\theta_t$ is the common time effect, $(1, -\gamma'_1)$ is the cointegrating vector between bank loans and top 1% income share, $X_{it}$ is the matrix of additional explanatory variables, and $u_{it}$ is the idiosyncratic error. As the panel DSUR does not allow for cointegration between explanatory variables, all the other explanatory variables, besides top 1% income and short term interest rates, are differenced.\(^4\) The panel DSUR estimator controls for the possible endogeneity of explanatory variables by including the leads and lags of the first differences of the explanatory variables in the estimated equation. More information about the panel DSUR can be found in the Appendix III.

\(^4\)There is no need to take the first difference of the short term interest rate, as all the panel unit root tests presented in table 1 found the series to be trend-stationary.
Table 4 presents the results panel DSUR estimations on equation (3) using the dataset spanning from 1959 to 2008. First differences of the GDP per capita and shares of M2 and investment to GDP are included as additional explanatory variables. According to the results presented in table 4, the cointegration coefficient of top 1% income share is positive and highly statistically significant. The value of the cointegrating coefficient varies from around 0.05 to around 0.07. In the last estimation none of the parameter estimates of the first differenced explanatory variables are statistically significant at the 5% level.

Table 5 presents the results of panel DSUR estimations on equation 3 using the dataset spanning from 1972 to 2008. In addition to first differences of the GDP per capita, M2 to GDP and investment share to GDP, short-term interest rate in levels is included as an explanatory variable. According to the results of

---

Table 4: DSUR estimates, 1959-2008

<table>
<thead>
<tr>
<th>Dependent variable: ( \ln(\text{credit/RGDP}) )</th>
<th>top 1%</th>
<th>( \Delta \ln(\text{real GDP per capita}) )</th>
<th>( \Delta \text{money/GDP} )</th>
<th>( \Delta \text{investment/GDP} )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.051*** (0.0037)</td>
<td>-0.012* (0.0050)</td>
<td>-0.003 (0.0259)</td>
<td>-0.075 (0.1218)</td>
</tr>
<tr>
<td></td>
<td>0.073*** (0.0050)</td>
<td>0.071 (0.0499)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.017*** (0.0026)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>countries</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>observations</td>
<td>400</td>
<td>400</td>
<td>392</td>
<td></td>
</tr>
</tbody>
</table>

* = \( p < 0.05 \), ** = \( p < 0.01 \), *** = \( p < 0.001 \). Standard errors are presented in parentheses. All DSUR estimations include individual constants and common time effects. First and second leads and lags of the first differences are used as instruments for the explanatory variables.

---

5DSUR estimations were done with Gauss. We are grateful to Donggyu Sul for providing the program code on his homepage.

6DSUR estimations were done with Gauss. We are grateful to Donggyu Sul for providing the
Table 5: DSUR estimates, 1972-2008

<table>
<thead>
<tr>
<th>Dependent variable: ln(credit/RGDP)</th>
<th>top 1%</th>
<th>∆ln(real GDP per capita)</th>
<th>∆money/GDP</th>
<th>∆investment/GDP</th>
<th>short term interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0558*** (0.0039)</td>
<td>-0.649 (0.3511)</td>
<td>-0.123*** (0.0345)</td>
<td>0.0245 (0.0914)</td>
<td>-0.152*** (0.0329)</td>
</tr>
<tr>
<td></td>
<td>0.0563*** (0.0031)</td>
<td>-0.0381 (0.0532)</td>
<td>-0.1023 (0.0663)</td>
<td>-0.112* (0.0396)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0054*** (0.0003)</td>
<td>0.0153 (0.1297)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.019*** (0.00573)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>countries</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>observations</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
</tr>
</tbody>
</table>

* = p<.05, ** = p<.01, *** = p<.001. Standard errors are presented in parentheses. All DSUR estimations include individual constants and common time effects. First and second leads and lags of the first differences are used as instruments for the explanatory variables.

table 5, the cointegrating coefficient of top 1% income share is positive and highly statistically significant. The first differences of money share to GDP and the short-term interest rate have statistically significant negative parameter estimates. The negative effect of short-term interest rate to ratio of bank loans to real GDP is expected, as higher interest rates make borrowing more expensive. The negative parameter estimate of the share of M2 to GDP, on the other hand, is likely to result from reverse causality. That is, as bank loans increase, money held in deposit accounts (etc.) decreases, which will decrease the broad money in circulation.
4 Conclusion

Income inequality is a trending variable. In the absence of wars or other major catastrophes changes in inequality are gradual, manifesting during a course of several years, even decades (Atkinson et al. 2011). Same applies to credit. The share of credit to GDP has been gradually growing within the last fifty years or so. Kumhof and Ranciére (2010) argue that there is a long-run relationship between income inequality and share of credit to income, where income inequality will to lead to increasing leverage in the economy.

In this study, we have tested the existence of such a long-run relationship. According to the results, there is a long-run steady-state relationship between income inequality and leverage in developed economies. The long-run elasticity of leverage with respect to income inequality was found to be positive. This indicates that income inequality increases leverage in the economy in accordance with the theories by Kumhof and Ranciére (2010), Rajan (2010) and Stiglitz (2009).

References


Banerjee A, Carrion-i-Silvestre J. (2011) Cointegration in panel data with breaks
and cross-section dependence. University of Birmingham Deparment of Economics discussion paper no. 11-25.


APPENDIX I: Panel unit root tests

All the used tests allow for individual unit root processes. That is, they allow the coefficient of unit root to differ across countries.

The traditional panel unit root tests, are based on the following regression:

\[ \Delta y_{it} = \rho_i y_{i,t-1} + \eta_i t + \alpha_i + \theta_t + \epsilon_{it}, \]  

(4)

where \( \alpha_i \) are individual constants, \( \eta_i t \) are individual time trends, and \( \theta_t \) are the common time effects. The tests rely on the assumption that \( E[\epsilon_{it}\epsilon_{js}] = 0 \) \( \forall \ t, s \) and \( i \neq j \), which is required for calculating common time effects. Thus, if the different series are correlated, the last assumption is violated.

The second generation test are based on the regression

\[ \Delta y_{it} = \rho y_{i,t-1} + \eta_i t + \alpha_i + \delta_i \theta_t + \epsilon_{it}, \]  

(5)

where \( \alpha_i \) are the individual constants, \( \eta_i t \) are the individual time trends, and \( \theta_t \) is the common time effect, whose coefficients, \( \delta_i \), are assumed to be non-stochastic, measure the impact of the common time effects of series \( i \), and \( \epsilon_{it} \) is assumed to be normally distributed with mean zero and covariance of \( \sigma^2 \) and independent of \( \epsilon_{js} \) and \( \theta_s \) for all \( i \neq j \) and \( s, t \). Cross-sectional dependence is allowed through the common time effect, which generates the correlation between cross-sectional units. The matrix \( \delta_i \) gives the non-random factor loading coefficients that determine the extent of the cross-sectional correlation.

The null hypothesis in all tests is that \( \rho_i = 0 \) \( \forall \ i \), i.e. that the process in \( I(1) \) nonstationary. The alternative hypotheses are:

\[ H_1 : \rho_i < 0, \quad i = 1, 2, \ldots, N_1, \quad \rho_i = 0, \quad i = N_1 + 1, N_1 + 2, \ldots, N. \]  

(6)
For consistency of panel unit root tests it is also required that, under the alternative, the fraction of the individual processes that are stationary is non-zero, formally \( \lim_{N \to \infty} (N_1/N) = \gamma \), \( 0 < \gamma \leq 1 \) (Im et al. 2003).

### Appendix II: Panel cointegration tests

Panel cointegration test developed by Banerjee and Carrion-i-Silvestre (2011) is based on the normalized bias and the pseudo \( t \)-ratio test statistics by Pedroni (2004). The data generating process behind Pedroni’s test statistics is given by:

\[
y_{it} = f_i(t) + x_{it}' + e_{it},
\]

\[
\Delta x_{it} = v_{it},
\]

\[
e_{it} = \rho_i e_{it-1} + e_{it}' \zeta_{it}^\prime = (e_{it}, v_{it})',
\]

where \( f_i(t) \) includes member specific fixed effects and deterministic trends.

The data generating process is described as a partitioned vector \( z_{it}' \equiv (y_{it}, x_{it}) \) where the true process is generated as \( z_{it} = z_{i,t-1} + \zeta_{it}, \zeta_{it}' = (\zeta_{it}^y, \zeta_{it}^X) \) (7). \( \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \zeta_{it} \) is assumed to converge to a vector Brownian motion with asymptotic covariance of \( \Omega_i \) as \( T \to \infty \). The individual process is assumed to be i.i.d. so that \( E[\zeta_{it} \zeta_{js}'] = 0 \) \( \forall s, t, i \neq j \).

Let \( \hat{e}_{it} \) denote the estimated residuals of obtained from (7) and \( \hat{\Omega}_i \) the consistent estimator of \( \Omega_i \). The two test statistics can now be defined as:

\[
\hat{Z}_{pNT-1} \equiv \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \hat{\epsilon}_{i,t-1}^2 \right)^{-1} \sum_{t=1}^{T} (\hat{e}_{i,t-1} \Delta \hat{e}_{it} - \hat{\lambda}_i),
\]

\[
\hat{Z}_{tNT}^* \equiv \sum_{i=1}^{N} \left( \sum_{t=1}^{T} \hat{s}_i^2 \hat{e}_{i,t-1}^2 \right)^{-1/2} \sum_{t=1}^{T} (\hat{e}_{i,t-1} \Delta \hat{e}_{it}^*),
\]

where \( \hat{\lambda}_i = 1/T \sum_{k=1}^{k_i} (1-s/(k_i+1)) \sum_{r=s+1}^{T} \hat{\mu}_{ir} \hat{\mu}_{i,t-s}, \hat{\sigma}_{NT}^2 \equiv 1/N \sum_{i=1}^{N} \hat{L}_{i,1i}^2 \), \( \hat{\sigma}_{NT}^2 = 1/T \sum_{t=1}^{T} (\hat{\sigma}_{it}^2 + 2/T \sum_{i=1}^{k_i} (1-s/(k_i+1)) \sum_{s=s+1}^{T} \hat{\mu}_{ir} \hat{\mu}_{i,t-s}, \hat{\sigma}_{NT}^2 \equiv 1/N \sum_{i=1}^{N} \hat{L}_{i,1i}^2 + 2/T \sum_{i=1}^{k_i} (1-s/(k_i+1)) \sum_{s=s+1}^{T} \hat{\mu}_{ir} \hat{\mu}_{i,t-s}. \)
The residuals $\hat{\mu}_{it}, \hat{\mu}^*_it$ and $\hat{\vartheta}_{it}$ are attained from regressions: $\hat{e}_{it} = \hat{\gamma}_{it} \hat{e}_{i,t-1} + \hat{\mu}_{it}, \hat{e}_{it} = \hat{\gamma}_{it} \hat{e}_{i,t-1} + \sum_{k=1}^{K-i} \hat{\gamma}_{ik} \Delta \hat{e}_{i,t-k} + \hat{\mu}^*_it, \Delta y_{it} = \sum_{m=1}^{M} \hat{b}_{mi} \Delta x_{mi,t} = \hat{\vartheta}_{it}$. (Pedroni 1999, 2004)

The statistics pool the between dimension of the panel and they are constructed by computing the ratio of the corresponding conventional time series statistics and then by computing the standardized sum of the $N$ time series of the panel. Pedroni (1999, 2004) shows that under the null of no cointegration the asymptotic distributions of the two statistics presented above converge to normal distributions with zero mean and variance of one as $N$ and $T$ sequentially converge to infinity.

Banerjee and Carrion-I-Silvestre (2006) extend the model by Pedroni (2004) to include common factors:

$$y_{it} = \alpha_i + \lambda_it + \theta_t + \beta'x_{it} + u_{it},$$

$$\Delta x_{it} = v_{it},$$

$$f_i(t) = \mu_i + \beta_it$$

$$u_{it} = F_i'\pi_i + e_{it}$$

where $e_{it} = \rho_te_{it} + \epsilon_{it}$ and $F_i'$s are the common factors which are used to account for the possible cross-sectional dependence.

**APPENDIX III: Panel DSUR estimator**

The data generation process in Mark et al. (2005) DSUR estimator is of the form

$$y_{it} = \alpha_i + \lambda_it + \theta_t + \beta'x_{it} + u_{it},$$

$$\Delta x_{it} = e_{it}$$

where there are $n$ cointegrating regression each with $T$ observations, $(1 - \beta')$ is the cointegration vector between $y_{it}$ and $x_{it}$, and $x_{it}$ and $e_{it}$ are $k \times 1$ dimensional vectors. Panel DSUR eliminates the possible endogeneity between explanatory variables and the dependent variable by assuming that $u_{it}$ is correlated at most
with $p_i$ leads and lags of $\triangle x_{it}$ (Mark et al. 2005). The possible endogeneity can be controlled by projecting $u_{it}$ onto these $p_i$ leads and lags:

$$u_{it} = \sum_{s=-p_i}^{p_i} \delta_i^s \triangle x_{i,t-s} + u_{it}^* = \delta_i' z_{it} + u_{it}^*.$$  \hspace{1cm} (11)

The projection error $u_{it}^*$ is orthogonal to all leads and lags of $\triangle x_{it}$ and the estimated equation becomes:

$$y_{it} = \alpha_i + \lambda_{it} + \theta_t + \beta' x_{it} + \delta_i z_{it} + u_{it}^*,$$  \hspace{1cm} (12)

where $\delta_i' z_{it}$ is a vector of projection dimensions. Panel DSUR estimates a long-run covariance matrix that is used in estimation of equation (9). This makes panel DSUR more efficient when cross-sections are dependent. The efficiency of panel DSUR actually improves as the correlation between cross-sections increases. Asymptotics properties of the estimator are based on $T \rightarrow \infty$ with $N$ fixed.