SURVIVAL AND REDUCTION OF STRAINS OF CAMPYLOBACTER SPECIES IN BROILER MEAT

PAULIINA ISOHANNI

Academic Dissertation in Biotechnology
To be presented with the permission of the Faculty of Agriculture and Forestry, University of Helsinki, for public examination in Auditorio 2, Kampusranta 9 B, Seinäjoki on 19 June 2013, at 12 noon.

2013
ACKNOWLEDGEMENTS

This study was carried out at Ruralia Institute, University of Helsinki, Seinäjoki, Finland. The laboratory work for this project was performed at the Finnish Food Safety Authority Evira Research Department in Seinäjoki and in the Food and Environment laboratory of Seinäjoki. For the opportunity to carry out this study and for open-minded cooperation, I thank Professor Sami Kurki, the head of Ruralia Institute, Heikki Ahola, the head of Evira Seinäjoki, and Helena Koskentalo, the former head of the Food and Environment laboratory of Seinäjoki. During the years, this study was financially supported by the Oiva Kuusisto Foundation, the Finnish Food and Drink Industries’ Federation, the Agriculture and Forestry Fund, the Pihkahovi Foundation and by grants from the University of Helsinki. I express my special thanks to these organisations for making this work possible for me.

My warmest appreciation goes to my supervisor Ulrike Lyhs, DVM PhD, who has been my mentor, teacher and a friend. Her continuous support and great sense of humour made working in this project so easy. My second supervisor, Professor Tapani Alatossava, I want to thank for helping me with all the practical matters concerning PhD studies.

I would like to thank Professor Anja Siitonen and Hanne Rosenquist PhD for reviewing and commenting on this Thesis, and also Stephen Skate for his revision of the English language.

I am also grateful to my co-authors Marianne Katzav, Marjaana Hakkinen, Marianne Lund, Per Saris, Thomas Alter, Stephan Huehn and Tommi Aho for their valuable contributions and cooperation during the research projects.

I warmly thank the staffs of the laboratories for all their help during this study. Special thanks I extend to Paula Puskala-Koivisto for bringing such optimistic and warm energy to long days working in the laboratory. I also sincerely thank all the people who have been working in the same research group with me during the past years for good times: Päivikki Perko-Mäkelä, Katarina Uutela, Kaija Ala-Kojola, Hanna-Leena Hietaranta-Luoma, Mari Toikka, Mikko Muiu and Annette Brockmann. I offer my gratitude also to my colleagues in Ruralia Institute, especially to Jaana Salomäki, Katja Rinne-Koski, Irmeli Rintala, Jaana Huhtala and Eeva Asu. From the Epanet organization I want to thank Nina Harjunpää. Thank you all for your support and for creating a fun environment to work in.

I would like to offer a very special thank you to my family including my parents Seppo and Pirkko and siblings, Susanna, Hanna and Antti, for their endless love and support. You have each helped and guided me through this in your own way. Susanna deserves special thanks for welcoming me to her home during all the PhD courses I attended in Helsinki. My parents-in-law Hannele and Markku have also helped me and my family so much during the last years, for which I could never thank you enough. I am so lucky to have all you amazing people in my life. I owe a big thank you to all my friends also, especially to Jutta, who has been my dearest friend for over 20 years already. Thank you for being such a beautiful and strong person.

Finally, I want to show my love and thanks to my fiancé Jarkko, who has stood strong by me during the busy years of our life full of work and raising our children. My deepest gratitude goes to my beautiful children Iina and Nuutti. Since you were born, my heart has started living its own life outside me, following you, wherever life takes you. You are my greatest achievements.
ABSTRACT ... 9

1. INTRODUCTION ...11

2. REVIEW OF THE LITERATURE ...13
 2.1 *Campylobacter* spp. ..13
 2.2 *Campylobacter* in human infection ...13
 2.3 Sources of *Campylobacter* in human infection ..14
 2.4 *Campylobacter* in broiler production ...15
 2.4.1 *Campylobacter* in broiler farms ..15
 2.4.2 *Campylobacter* in broiler slaughterhouses ..16
 2.4.3 *Campylobacter* in retail broiler meat products ...17
 2.5 Reduction of *Campylobacter* in the broiler production chain19
 2.5.1 Controlling *Campylobacter* in broiler farms ...19
 2.5.2 Controlling *Campylobacter* in broiler slaughterhouses20
 2.5.3 Controlling *Campylobacter* by potential antimicrobial marinades22
 2.5.4 Controlling *Campylobacter* in domestic kitchens ..22
 2.6 Detection and identification of *Campylobacter* ...23
 2.7 *Arcobacter* spp. and human and animal infections ..24
 2.8 Survival of strains of *Campylobacter* and *Arcobacter* species under specific stress conditions ..25
 2.8.1 Heat stress ...25
 2.8.2 Cold stress ...26
 2.8.3 Acid stress ...27
 2.8.4 Stress adaptation ..27

3. AIMS OF THE STUDY ..28

4. MATERIALS AND METHODS ..29
 4.1 Poultry meat samples (I-III) ...29
 4.2 Bacterial strains (I-IV) ...30
 4.3 Detection of *Campylobacter* in poultry meat samples (I)31
 4.3.1 Sample collection (I) ...31
 4.3.2 Culture method for detection of *Campylobacter* in poultry meat samples (I) ..31
 4.3.3 PCR method for detection of *Campylobacter* in poultry meat samples (I) ..32
 4.3.4 Comparison of the detection limit between the culture and PCR method (I) ...33
 4.4 Determination of the effects of UV irradiation to reduce *C. jejuni* on agar plates and on broiler meat, skin and carcasses (II) ...33
 4.4.1 Agar plates (II) ..33
 4.4.2 Broiler meat and skin (II) ..34
 4.4.3 Broiler carcasses (II) ...34
 4.5 Sensory analyses of broiler meat samples after UV treatment (II)35
 4.6 Determination of the effects of wines and juices as potential antimicrobial marinade ingredients to reduce strains of *Campylobacter* species (III)36
4.6.1 Inoculation of wines and juices and determination of bacterial counts (III) ...36
4.6.2 Inoculation and preparation of broiler meat samples and determination of bacterial counts (III) ..37
4.7 Determination of the effects of sublethal and lethal stresses for the survival of A. butzleri and C. jejuni (IV) ..37
4.8 Statistical analysis (I-IV) ..38

5. RESULTS .. 40
5.1 Campylobacter prevalence in Finnish retail poultry meat products (I) 40
5.2 Comparison of the culture and PCR method (I) .. 40
5.3 Effects of UV irradiation to reduce C. jejuni E1 1347 on agar plates and on broiler meat, skin and carcasses (II) .. 41
5.4 Effects of wines and juices as antimicrobial marinade ingredients to reduce strains of Campylobacter species (III) ... 42
5.5 Survival of C. jejuni NCTC 11168 and A. butzleri ATCC 49616 in stress conditions (IV) .. 44

6. DISCUSSION ..47
6.1 Survival of Campylobacter in retail poultry meat .. 47
6.2 PCR assay for the detection of Campylobacter in marinated poultry meat products .. 49
6.3 The effects of various ingredients and conditions in the reduction of strains of Campylobacter species in broiler meat ... 50
6.4 Cross-protective effect of stress adaptation in A. butzleri 53

7. CONCLUSIONS ..54

8. REFERENCES ..55
LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following publications:

The publications are indicated in the text by their Roman numerals. The original articles have been reprinted with the permission of their copyright holders.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain Heart Infusion</td>
</tr>
<tr>
<td>BIOHAZ</td>
<td>EFSA Panel on Biological Hazards</td>
</tr>
<tr>
<td>BPW</td>
<td>Buffered Peptone Water</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CASO</td>
<td>Casein-Peptone Soymeal-Peptone Agar</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CMJ</td>
<td>Chicken Meat Juice</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>D-value</td>
<td>decimal reduction time</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>ICMSF</td>
<td>International Commission on Microbiological Specifications for Foods</td>
</tr>
<tr>
<td>J/cm²</td>
<td>joules per square centimetre</td>
</tr>
<tr>
<td>mCCDA</td>
<td>Modified Charcoal Cefoperazone Deoxycholate Agar</td>
</tr>
<tr>
<td>MHSB</td>
<td>Mueller-Hinton agar with Sheep Blood</td>
</tr>
<tr>
<td>mWs/cm²</td>
<td>milliwatts per second per square centimetre</td>
</tr>
<tr>
<td>NCFA</td>
<td>Nordic Committee of Food Analyses</td>
</tr>
<tr>
<td>NCTC</td>
<td>National Collection of Type Cultures</td>
</tr>
<tr>
<td>OD_{600}</td>
<td>optical density at 600 nm</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>THL</td>
<td>National Institute for Health and Welfare</td>
</tr>
<tr>
<td>TSA</td>
<td>Trypticase Soy Agar</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VBNC</td>
<td>viable but non-cultivable</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
ABSTRACT

Campylobacter, especially *Campylobacter jejuni* and *C. coli*, are reported as the most frequent cause of foodborne bacterial diarrhoea in humans worldwide. One of the most important sources of human campylobacteriosis is the eating or handling of improperly cooked or raw broiler meat.

Between January and September 2006, 194 marinated and non-marinated poultry (broiler and turkey) meat products were collected from retail shops in Western Finland and tested for *Campylobacter* using conventional enrichment culture and Polymerase Chain Reaction (PCR) methods. For marinated poultry products, the study involved modification of a commercial DNA isolation method. Using either method, a total of 25 (12.9%) of all the samples were *Campylobacter* positive. In August, there was a peak with 28.9% positive samples. In marinated poultry products, *Campylobacter* was detected at a prevalence of 10.3%. Due to the high detection limit of the direct *Campylobacter* PCR method, it was necessary to perform a combination of enrichment and PCR.

The effects of ultraviolet (UV) irradiation in reducing *C. jejuni* E1 1347 on the surfaces of broiler meat, skin and carcasses were studied. The surfaces were inoculated with varying counts of *C. jejuni* E1 1347 and treated with UV irradiation with doses ranging between 9.4 and 32.9 milliwatts per second per square centimetre (mWs/cm²). The log reductions in *C. jejuni* E1 1347 counts were determined by dilution plating. The effects of UV irradiation on the sensory quality of broiler meat were also evaluated. The maximum reduction achieved was 0.7 log on broiler meat, 0.8 log on broiler skin and 0.5 log on carcasses. UV irradiation did not affect the sensory quality of broiler meat.

The survival of high (7 log cfu/ml) and low (3 log cfu/ml) inocula levels of *Campylobacter* strains RefCJ, RetCJ29, RetCC27 and SlaCJ26 was studied in white and red wines, and in grape and tomato juices. For comparison, survival was studied in a commercial poultry meat marinade. The log reductions were determined by dilution plating. High counts of the bacteria were rapidly inactivated to undetectable numbers within 15 min in white wine and within 1 h in red wine, and low counts within 15 min in white wine and within 30 min in red wine. In grape and tomato juices even low counts of the bacteria were occasionally detected after 48 h. In the commercial marinade the high bacterial counts were inactivated in most cases within 48 h and all the low counts within 3 h. When *Campylobacter* strains RefCJ and RetCC27 were inoculated on broiler meat, wines reduced the bacterial counts by approximately 1 log cfu/ml over 48 h.

Arcobacter are close phylogenetic relatives of *Campylobacter* that have occurred in broiler meat and have been linked with human illness (mainly diarrhoea). Sublethal stress adaptation temperatures (48°C and 10°C) and mild and lethal acid conditions (pH 5.0 and pH 4.0) were determined for *A. butzleri* ATCC 49616 and *C. jejuni* NCTC 11168. In addition, it was evaluated whether incubation under the sublethal stress conditions causes specific adaptive responses or cross-protection against subsequent mild or lethal acid stresses in these bacteria. The studies were conducted in broth adjusted to the different conditions and the results were determined by dilution plating. During this study, cross-protection is reported for *A. butzleri* for the first time. Heat stress adapted *A. butzleri* ATCC 49616 (incubated for 2 h at 48°C) were significantly more resistant to subsequent lethal acid stress (pH
4.0) than non-adapted cells at the 1 h time-point (P < 0.01). No specific adaptive responses in the bacteria and no cross-protection in *C. jejuni* NCTC 11168 were found.

In conclusion, there is a seasonal peak in the prevalence of *Campylobacter* in Finnish poultry meat products, but otherwise the prevalence is low. *Campylobacter* detection in marinated poultry products indicates that marinating meat might not affect the survival of *Campylobacter*. The PCR assay together with the optimized DNA isolation method is faster than microbiological analyses and could be used for *Campylobacter*-detection in marinated meat samples. Due to the low infective dose of *C. jejuni* in humans and the modest reductions achieved for the strains of *Campylobacter* species studied, the use of UV irradiation or wines and juices as antimicrobial marinade ingredients cannot be recommended as the primary decontamination methods to control *Campylobacter* in broiler meat, but might be used as part of a sequential risk reduction strategy to reduce the counts of *Campylobacter*. The cross-protection phenomenon found for *A. butzleri* ATCC 49616 should be taken into account when designing food preservation strategies containing these conditions. To further evaluate the significance of poultry meat as a source of *Campylobacter* in Finland, their occurrence in the meat products should be quantified. Despite the attempts of this study no sufficiently effective way to reduce the counts of *Campylobacter* in broiler meat was found and further decontamination methods should be studied in the future. Moreover, the cross-protective effect should be investigated further at the gene expression level in order to elucidate the molecular mechanisms behind this phenomenon reported.
1. INTRODUCTION

Campylobacter are recognized as the most frequent cause of foodborne bacterial diarrhoea in humans worldwide (Park 2002, Silva et al. 2011). *Campylobacter* infection (campylobacteriosis) cases are mostly caused by *Campylobacter jejuni*, a bacterium that exists as a commensal organism in the intestinal tract of many birds and mammals (Humphrey, O’Brien & Madsen 2007). The incidence of campylobacteriosis in humans has been steadily increasing since the 1990s and continues to rise in many countries (Baker, Sneyd & Wilson 2007, World Health Organization (WHO) 2011). According to the European Food Safety Authority (EFSA), the incidence ranged from <0.31 to 177.95/100 000 within the populations in different countries in Europe in 2011 (EFSA 2013). In Finland, the number of registered campylobacteriosis cases was 79.29/100 000 in 2011 (4,262 cases; National Institute for Health and Welfare (THL) 2012, EFSA 2013). Thus, *Campylobacter* constitute a major public health problem in humans.

Many studies have shown that the eating and handling of improperly cooked or raw broiler meat is one of the most important sources of human campylobacteriosis (Kapperud et al. 2003, Wingstrand et al. 2006, Lindmark et al. 2009, EFSA Panel on Biological Hazards (BIOHAZ) 2010). Broiler flocks become colonized with *Campylobacter* during rearing via the outside environment or other sources, such as rodents and insects, and the intestines of birds remain highly colonized until slaughter (Berndtson, Danielsson-Tham & Engvall 1996, Rushton et al. 2009, van Gerwe et al. 2009). Contamination of the carcasses and slaughterhouse equipment occurs during slaughtering by leakage of the contaminated faeces from the cloaca and visceral rupture of the ceca still carrying a high *Campylobacter* load (Berndtson et al. 1996, Rosenquist et al. 2006, Perko-Mäkelä et al. 2009). Consequently, broiler meat sold at the retail level is contaminated with different levels of *Campylobacter* (Suzuki, Yamamoto 2009).

In Finland, the consumption of broiler meat has more than doubled over the past decades. Likewise, the popularity of turkey meat products has also been increasing during recent years (http://www.siipi.net). A significant amount (approximately 80%) of Finnish retail poultry meat sold is nowadays marinated with a wide range of flavours, the popularity and variety of which is increasing rapidly each year (Björkroth 2005). Although flavour development, tenderization, and consumer convenience are probably the main reasons for this, marinating could also be used as an antimicrobial treatment on poultry meat (Birk, Knochel 2009).

Reliable methods for the detection of *Campylobacter* in poultry meat products are of interest to laboratories in routine work and research. Traditional conventional culture methods include enrichment and plating steps followed by isolation of the bacterium and biochemical identification of the isolate. PCR methods have been found to be faster, more specific and sensitive for the detection of *Campylobacter* in meat samples (Denis et al. 2001, Mateo et al. 2005). However, several substances in foods and in marinated broiler meat can be inhibitory for the PCR (Lilja, Hänninen 2001).

Campylobacter is a major public health problem worldwide and many efforts have been directed against finding appropriate intervention methods. Commercially processed broilers go through a variety of steps during processing to reduce microbial contaminants, but *Campylo-
Campylobacter are still able to survive in the broiler production chain (Suzuki, Yamamoto 2009). Rather than reducing Campylobacter prevalence in positive broiler flocks, it is thought the most effective way to control Campylobacter in broiler is to reduce their levels on carcasses after evisceration (Hermans et al. 2011). In fact, it has been predicted that a 2 log reduction in the concentration of C. jejuni on broiler meat could result in a 30-fold decrease in the number of human campylobacteriosis cases related to the consumption of broiler meat (Rosenquist et al. 2003). However, commercial broiler processing facilities do not currently apply control measures that would completely guarantee the elimination of Campylobacter (Oyarzabal 2005).

In addition to Campylobacter, the family Campylobacteraceae includes a closely related genus Arcobacter, which has been linked with bacteraemia and diarrhoea cases in humans (Vandamme et al. 1991, Collado, Figueras 2011). In general, there is no notification of or surveillance for Arcobacter as causes of human disease. Thus the estimation of the significance and incidence of human gastroenteritis caused by Arcobacter is complicated and probably underestimated (Vandenberg et al. 2004, Lehner, Tasara & Stephan 2005, Kjeldgaard, Jørgensen & Ingmer 2009). In Finland, an Arcobacter prevalence of 25.5% in retail broiler meat was found in 2007 (personal communication 2007). However, the ability of Campylobacter and Arcobacter to persist and survive in the broiler production chain when exposed to multiple stress conditions is not fully understood (Humphrey et al. 2007, Collado, Figueras 2011).
2. REVIEW OF THE LITERATURE

2.1 CAMPYLOBACTER SPP.

It is believed that *Campylobacter* species were first described in 1886 by Theodor Escherich who observed spiral shaped non-cultivable bacteria. In 1913, McFadyean and Stockman succeeded in cultivating these bacteria from aborted bovine foetuses (Butzler 2004, Skirrow 2006). Finally, the genus *Campylobacter* was established in 1963 by Sebald and Veron (Moore et al. 2005). Members of the genus are spiral curved, Gram-negative rods. The size of the cells is 0.2 to 0.8 μm wide and 0.5 to 5 μm long. Most *Campylobacter* species are motile by means of a single polar unsheathed flagellum at one or both ends of the cells. *Campylobacter* strains mainly grow under microaerobic (5% O₂, 10% CO₂ and 85% N₂) conditions. All of them grow at 37°C, but 42°C is the optimum growth temperature for the thermophilic species - *C. jejuni*, *C. coli*, *C. lari* and *C. upsaliensis* - mainly responsible for infecting humans. *C. jejuni* is able to grow between 30°C and 47°C, but at 30°C, its growth rate declines rapidly (Vandamme et al. 1991, Butzler 2004, Moore et al. 2005, Jackson et al. 2009). In addition to these fastidious growth requirements, *Campylobacter* are considered to be very fragile and susceptible to many environmental conditions, such as temperature and pH changes, low humidity, the presence of oxygen and UV irradiation. However, they may survive in a viable, but non-cultivable form (VBNC) in the environment (Alter, Scherer 2006). The taxonomy of the genus has been revised many times and to date, the genus has 17 validated species. Most of them are human, animal or zoonotic pathogens (Debruyne, Gevers & Vandamme 2008).

2.2 CAMPYLOBACTER IN HUMAN INFECTION

The importance of *Campylobacter* as human pathogens remained undiscovered until the 1970s, mainly because cultivating and isolating these fastidious organisms from faecal samples was so difficult (Butzler et al. 1973, Skirrow 1977). Subsequent intensive research has revealed that *C. jejuni* and *C. coli* are the most common causes of foodborne bacterial gastroenteritis in humans worldwide. The incidence of campylobacteriosis has been steadily rising since 1990s and the incidence continues to increase in many countries (Baker et al. 2007, EFSA 2010b, WHO 2011). The number of confirmed cases of campylobacteriosis in the European Union (EU) has followed a significant increasing trend in the last four years, along with a clear seasonal trend (EFSA 2013). During the last five years in Finland, however, the reported number of infections has been moderately stable (Zoonosis Centre 2012). In 2011, human campylobacteriosis continued to be the most commonly reported zoonosis, with 220,209 confirmed cases in the EU. Within the populations in different European countries, the incidences ranged from <0.31 to 177.95/100 000 in 2011 (EFSA 2013). In Finland, the number of registered campylobacteriosis cases was 79.29/100 000 in 2011 (4,262 cases), with a peak observed in July and August (THL 2012, Zoonosis Centre 2012, EFSA 2013). The wide variation in incidences between countries probably
reflects differences in the healthcare and reporting systems, and in microbiological methods for the detection of *Campylobacter* (Olson et al. 2008, Vally et al. 2009, EFSA 2013). Patients with mild symptoms may also recover without the need for medical care and therefore remain unidentified as campylobacteriosis cases.

Campylobacteriosis is usually a self-limiting disease with an incubation time of one to seven days. The main symptoms are cramps in the abdomen followed by watery, sometimes bloody diarrhoea. General symptoms such as fever, headache and dizziness may also occur (Blaser, Enderberg 2008). Common complications in connection with *C. jejuni* infection are musculoskeletal symptoms and reactive arthritis occurs in about 4% to 5% of cases (Hannu et al. 2002, Doorduyn et al. 2008, Schönberg-Norio et al. 2010). Infection due to *Campylobacter* may also increase the risk of postinfectious irritable bowel syndrome (DuPont 2008). Guillain-Barré syndrome, a polio-like form of paralysis that can result in respiratory and severe neurological dysfunction and even death, is the most serious, but infrequent later onset complication (Jacobs, van Belkum & Endtz 2008). The infective dose of campylobacteriosis can be as low as 500 cells (Robinson 1981, Black et al. 1988).

2.3 SOURCES OF *CAMPYLOBACTER* IN HUMAN INFECTION

Most campylobacteriosis cases are sporadic or small-scale family outbreaks (Olson et al. 2008). Because the incubation period before the onset of symptoms can be long, it might be difficult to determine the source of infection. However, major sources have been defined. The eating and handling of improperly cooked or raw broiler meat has been shown to be one of the most important sources of human campylobacteriosis (Kapperud et al. 2003, Wingstrand et al. 2006, Lindmark et al. 2009). EFSA also stated that broilers are a major, if not the largest, single source of human infections. The handling, preparation and consumption of broiler meat may account for 20% to 30% of campylobacteriosis cases, while 50% to 80% may be attributed to the broiler reservoir as a whole (EFSA BIOHAZ 2010). Other foods (such as pork, beef and unpasteurized milk), contaminated environmental waters, or direct contact with animals may also be pathways to acquire *Campylobacter* infection (Jacobs-Reitsma, Lyhs & Wagenaar 2008; Fig. 1).

Since 1998, *Campylobacter* have been the most common cause of intestinal infections in humans in Finland. For the majority of the cases, the origin of infection is probably abroad. Even though a high percentage of infections originate from travel abroad and the largest outbreaks have been waterborne, the proportion of infections acquired in Finland in the summer period is considerable (Laine et al. 2011, Zoonosis Centre 2012). It has been estimated that almost one in three *Campylobacter* infections acquired in Finland in summertime are associated with broiler and one in five directly or indirectly with cattle. About half of the *Campylobacter* infections contracted in Finland probably come from other unknown sources. Despite recent suggestions that the importance of broilers in human campylobacteriosis in Finland has been overestimated, broiler meat is still considered to be one of the sources in human campylobacteriosis in Finland (Hakkinen, Nakari & Siitonen 2009, de Haan et al. 2010, Lyhs et al. 2010, Zoonosis Centre 2012). Because the exact sources of human *Campylobacter* infections in Finland are not clear at the moment, further studies are needed in the future.
This chapter describes the occurrence of *Campylobacter* in different steps of the broiler production chain and indicates the reasons why elevated levels of *Campylobacter* can be recovered from the broiler carcasses and transmitted in the food chain during further processing.

2.4.1 *Campylobacter* in Broiler Farms

Broiler intestines are a particularly favourable environment for the proliferation of *C. jejuni* and birds carrying *Campylobacter* are asymptomatic colonizers without any clinical signs (Lee, Newell 2006). At the beginning of the rearing period, broiler flocks are free from *Campylobacter*, but after the first colonization (usually at two to three weeks of age), *Campylobacter* spread quickly within the flock. Birds remain highly colonized until slaughter (Berndtson et al. 1996, van Gerwe et al. 2009). The outside environment has been suggested as the ultimate source of colonization for broiler flocks. In addition, many factors - such as adjacent broiler units or other animals, farm workers, drinking water, rodents, wild birds, flies and other insects - may have a role in transmitting *Campylobacter* to broiler flocks (Hald et al. 2004, Bull et al. 2006, Rushton et al. 2009).

The prevalence of *Campylobacter* in broiler flocks varies between different countries. In 2008, approximately 71.2% of broiler batches studied in the EU were estimated to be colonized by *Campylobacter* at the slaughterhouse. The prevalence of *Campylobacter*-colonized broiler
batches among the EU member states varied widely, ranging from as low as 2% up to 100% (EFSA 2010a). In Finland, the prevalence of *Campylobacter* in all slaughtered broiler flocks has been studied since 2004 because of a mandatory *Campylobacter* monitoring programme. Since then, the average prevalence has been 6.5% between June-October. Between July-August higher isolation rates (average 10.5%) and a seasonal peak have been detected. Between November-December and January-May, *Campylobacter* have rarely been detected (Zoonosis Centre 2012). The sharp seasonal variation is observed in other Northern European countries too (Patrick et al. 2004, van Asselt et al. 2008, Jore et al. 2010). The reason for the seasonal variation is unknown, but several factors are probably important. A warmer mean temperature and the moister climate during summertime provide conditions favouring environmental *Campylobacter* survival. Thus, the *Campylobacter* infection pressure from outside the broiler house is higher. The amount of insects, wild birds and rodents around the broiler production environment is also higher during summer (Hald et al. 2004, Rushton et al. 2009, Jore et al. 2010). In the Nordic countries, the cold winters probably decrease the environmental load of *Campylobacter*. In addition, the broiler houses need to be insulated, which also prevents the access of devastators to the houses (Perko-Mäkelä 2011).

2.4.2 *CAMPYLOBACTER* IN BROILER SLAUGHTERHOUSES

The intestinal colonization of broilers with *Campylobacter* during rearing is responsible for the contamination of the carcasses and equipment with *Campylobacter* during slaughtering (Rosenquist et al. 2006, Reich et al. 2008). Carcass contamination occurs especially during scalding, defeathering and evisceration, by leakage of the contaminated faeces from the cloaca and visceral rupture of the ceca carrying a high *Campylobacter* load (Berrang et al. 2001, Boysen, Rosenquist 2009). In addition, carcasses can become contaminated by cross-contamination of *Campylobacter* strains between slaughtered flocks via contacts with surfaces of the slaughter facilities, processing water and air (Peyrat et al. 2008, Perko-Mäkelä et al. 2009). Overall, the whole slaughtering process may reduce the *Campylobacter* contamination level by about 100 to 1,000 times (Rosenquist et al. 2006). Nevertheless, the average prevalence of *Campylobacter* contamination on broiler carcasses worldwide is reported to be in the range of 60-80% (Suzuki, Yamamoto 2009). In 2008, the prevalence in the EU of *Campylobacter*-contaminated broiler carcasses was reported to be 75.8% and varied from 4.9% to 100.0%. In Finland it was 5.5% (EFSA 2010a). The counts of *Campylobacter* bacteria on broiler carcasses varied widely also between countries, which might be due to differences in slaughterhouse hygiene and processing practices (Habib et al. 2008, Sampers et al. 2008, EFSA 2010a). In general there was a tendency for high counts in countries with high *Campylobacter* prevalence. Almost half (47.0%) of the carcasses contained less than 10 colony forming units (cfu) of *Campylobacter* per g (cfu/g) and 12.2% contained between 10-99 cfu/g. Higher counts were detected as follows: between 100-999 cfu/g on 19.3%, between 1,000-10,000 cfu/g on 15.8% and more than 10,000 cfu/g on 5.8% of carcasses. The results indicate that elevated levels of *Campylobacter* can be recovered from the broiler carcasses and transmitted in the food chain during further processing (EFSA 2010a).
2.4.3 Campylobacter in Retail Broiler Meat Products

A large share of retail broiler meat remains contaminated with Campylobacter. Table 1 summarizes examples of the prevalence of Campylobacter in fresh broiler and turkey meat products sold at the retail level in different countries, as reported in various studies in recent years. It should be noticed that the method used has a large impact on the results shown in Table 1 (the detection limit can vary from 0.1 to 100 cfu/g) and thus the results can not be compared directly. The reported levels of Campylobacter in fresh broiler meat products at retail vary between log 1 to log 4 cfu/100 g (or a fillet) of meat, depending on the different studies and methodologies used (Jacobs-Reitsma et al. 2008). C. jejuni is usually the dominant Campylobacter species isolated from retail broiler meat products worldwide, but the ratio of C. coli to C. jejuni varies between countries (Suzuki, Yamamoto 2009).

Limited studies have been published on the prevalence of Campylobacter in broiler meat at the Finnish retail level. Hänninen et al. (2000) studied the prevalence of Campylobacter in broiler meat products in the Helsinki area between June–September from 1996 to 1998 and found from 12% to 21% Campylobacter positive samples in each year studied. In summer 2004, the percentages of Campylobacter positive fresh broiler and turkey meat at the Finnish retail level were 20.2% and 19.2% respectively (EFSA 2006).
Table 1. Prevalence of thermotolerant *Campylobacter* in fresh chilled broiler or turkey meat products at retail.

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Product type</th>
<th>n</th>
<th>% Positive</th>
<th>Enumeration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>2002–2007</td>
<td>Broiler breasts with skin on</td>
<td>6138</td>
<td>49.9</td>
<td>nd</td>
<td>Zhao et al. (2010)</td>
</tr>
<tr>
<td>Canada</td>
<td>2001–2004</td>
<td>Broiler legs, thighs, drumsticks, quarters, breasts, halves, wings and backs</td>
<td>1256</td>
<td>59.6</td>
<td>nd</td>
<td>Deckert et al. (2010)</td>
</tr>
<tr>
<td>Ireland</td>
<td>2009–2010</td>
<td>Whole broilers and portions</td>
<td>510</td>
<td>84.3</td>
<td>nd</td>
<td>Madden et al. (2011)</td>
</tr>
<tr>
<td>France</td>
<td>2000</td>
<td>Broiler legs, drumsticks and breasts with skin and gizzards and escalopes</td>
<td>70</td>
<td>75.7</td>
<td>nd</td>
<td>Denis et al. (2001)</td>
</tr>
<tr>
<td>Spain</td>
<td>2002</td>
<td>Broiler necks, drumsticks and wings with skin, carcasses, breasts without skin, livers, gizzards, skin, minced meat</td>
<td>68</td>
<td>79.4</td>
<td>≤15 to > 300 cfu</td>
<td>Mateo et al. (2005)</td>
</tr>
<tr>
<td>Italy</td>
<td>Not specified</td>
<td>Broiler breasts, wings and legs with skin and bones</td>
<td>104</td>
<td>51.9</td>
<td>nd</td>
<td>Sammarco et al. (2010)</td>
</tr>
<tr>
<td>Finland</td>
<td>1996–1998</td>
<td>Broiler legs and breasts</td>
<td>529</td>
<td>17.0</td>
<td>nd</td>
<td>Hänninen et al. (2000)</td>
</tr>
<tr>
<td>Sweden</td>
<td>2003</td>
<td>Whole broiler carcasses, breast fillets, drumsticks and spiced/marinated products</td>
<td>397</td>
<td>25.0</td>
<td>≤10 cfu/g to 1000 cfu/g</td>
<td>Lindmark et al. (2009)</td>
</tr>
<tr>
<td>Denmark</td>
<td>2009–2010</td>
<td>Broiler meat</td>
<td>1469</td>
<td>35.6</td>
<td>nd</td>
<td>Anonymous (2011)</td>
</tr>
<tr>
<td>Germany</td>
<td>2003–2004</td>
<td>Skin from broiler legs</td>
<td>140</td>
<td>66.0</td>
<td>Median 2.4 log cfu/g</td>
<td>Scherer et al. (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muscle from broiler legs</td>
<td>115</td>
<td>27.0</td>
<td>Median 0.9 MPN/g</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>2004</td>
<td>Surface of skinless and deboned broiler breast fillets</td>
<td>100</td>
<td>87.0</td>
<td>Mean 1903 cfu, median 537 cfu, maximum 38 905 cfu</td>
<td>Luber, Bartelt (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deep tissue of skinless and deboned broiler breast fillets</td>
<td>55</td>
<td>20.0</td>
<td>Mean 0.24 cfu, median 0.15 cfu, maximum 0.74 cfu</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Not specified</td>
<td>Turkey breasts, cutlets, thighs and drumsticks</td>
<td>48</td>
<td>28.0</td>
<td>Mean log 2.1 cfu/g</td>
<td>Atanassova et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turkey steaks in various types of marinade</td>
<td>16</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>2000–2003</td>
<td>Broiler fillets</td>
<td>975</td>
<td>18.7</td>
<td>nd</td>
<td>Ghafrir et al. (2007)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2009–2010</td>
<td>Broiler meat with or without skin</td>
<td>460</td>
<td>55.4</td>
<td>≥10 to <10⁶ cfu/g (maximum 8 x 10³ cfu/g)</td>
<td>Baumgartner, Felleisen (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broiler meat preparations (with additives, spices or marinades or processed so that typical texture of meat is maintained)</td>
<td>156</td>
<td>49.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Not specified</td>
<td>Broiler breasts, thighs, wings, livers, gizzards and hearts</td>
<td>170</td>
<td>64.7</td>
<td>nd</td>
<td>Sallam (2007)</td>
</tr>
<tr>
<td>Australia</td>
<td>2005–2006</td>
<td>Whole broilers, wings, thighs, drumsticks and breasts with or without skin</td>
<td>549</td>
<td>87.8</td>
<td>Mean 0.87 log cfu/cm²</td>
<td>Pointon et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>93.2</td>
<td>Mean 0.78 log cfu/cm²</td>
<td></td>
</tr>
</tbody>
</table>

* Total number of samples examined.

* Not determined.

* Detection is based on enrichment culture.
2.5 REDUCTION OF CAMPYLOBACTER IN THE BROILER PRODUCTION CHAIN

The eating and handling of improperly cooked or raw broiler meat has been shown to be one of the most important sources of human campylobacteriosis (Wingstrand et al. 2006, Lindmark et al. 2009, EFSA BIOHAZ 2010). Although commercially processed broilers go through a variety of steps during processing to reduce microbial contaminants, several studies have revealed that retail broiler meat is frequently contaminated with Campylobacter (Suzuki, Yamamoto 2009). The most effective intervention measure to control Campylobacter in broiler meat is to reduce Campylobacter levels on carcasses after evisceration, rather than reducing the prevalence of positive broiler flocks (Nauta et al. 2009, Hermans et al. 2011). In fact, it has been predicted that a 2 log reduction in the concentration of C. jejuni on broiler meat could result in a 30-fold decrease in the number of human campylobacteriosis cases related to the consumption of broiler meat (Rosenquist et al. 2003). Furthermore, a 1-, 2- or 3-log reduction in Campylobacter counts on carcasses could reduce the incidence by 48%, 85% and 96%, respectively (Hermans et al. 2011). In general, bacteria are inactivated from foods by heat treatment. Chilling and freezing prevent the growth of bacteria to harmful levels. However, since Campylobacter remain a concern even at low levels, their presence in foods at the point of consumption should be prevented (Humphrey et al. 2007). To gain effective results, Campylobacter control in broiler should occur throughout the whole production chain from farm to fork. This chapter describes some of the different control methods studied so far.

2.5.1 CONTROLLING CAMPYLOBACTER IN BROILER FARMS

Campylobacter control in broiler farms during primary production is expected to significantly reduce the incidence of human campylobacteriosis because the intestine of the living birds is the only growth site for Campylobacter in the whole broiler production chain and control would thus indirectly reduce the surface contamination of carcasses (Hermans et al. 2011). Good hygiene and biosecure farming practices aim at preventing the introduction of Campylobacter into broiler flocks. During the rearing period, application of specific hygienic measures - such as washing hands and using footbath disinfection before entering the broiler house, changing footwear when entering anterooms and again before entering each separate broiler hall, the use of separate shoes for each broiler house, control of rodents and insects by e.g. fly-screens or by insulated broiler houses, restricted admission, standard hygiene protocol for staff, proper disinfection of the broiler house prior to stocking, and a high standard of cleaning and disinfection of the drinking water equipment - may significantly reduce the risk of Campylobacter infections in broiler flocks (Hald, Sommer & Skovgard 2007, Perko-Mäkelä et al. 2009, Hermans et al. 2011). According to EFSA BIOHAZ (2011), however, some control options in primary production - such as the restriction of slaughter age and discontinuing thinning - are directly available from a technical point of view, but interfere strongly with current industrial practices. Perko-Mäkelä (2011) speculated that the reduction of Campylobacter contamination at the farm level by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of contaminated broiler meat in Finland. Also, other countries that have actively implemented a target strategy to control Campylobacter in broilers (for example Denmark, Sweden and Norway) have seen a reduction in the prevalence of Campylobacter in broiler flocks and broiler meat (Rosenquist et al. 2009).
There are also different intervention measures aimed at preventing *Campylobacter* transmission in broiler flocks or at reducing the *Campylobacter* load in already colonized birds. Using organic acids, chlorinating, bacteriophages or bacteriocins as feed or water additives and using vaccines or antibodies have been suggested as such measures (Hermans et al. 2011). However, despite all efforts, there is still no effective, reliable and practical intervention measure available to prevent or reduce *Campylobacter* colonization in broiler farms (Hermans et al. 2011). To obtain a further reduction, various decontamination techniques should be used in broiler slaughterhouses.

2.5.2 CONTROLLING *CAMPYLOBACTER* IN BROILER SLAUGHTERHOUSES

In order to reduce the risk represented by *Campylobacter* to consumer health, it is essential to reduce the contamination of broiler carcasses during the slaughtering process. It has been stated that the most effective intervention measure to reduce *Campylobacter* counts on broiler carcasses would be after evisceration (Nauta et al. 2009, Hermans et al. 2011). Scalding can also reduce the *Campylobacter* contamination of carcasses, but cross-contamination can still occur, particularly during the defeathering and evisceration processes and in the chilling water (Rosenquist et al. 2006, Perko-Mäkelä et al. 2009). Overall, the maintenance of slaughter hygiene is of key importance in broiler meat production. Implementation of slaughtering schedules according to the *Campylobacter* contamination status of flocks has also been suggested as an effective risk management solution to control *Campylobacter* at broiler slaughterhouses, especially in low prevalence countries like Finland (Hue et al. 2010, Perko-Mäkelä 2011). *Campylobacter* counts could also be reduced by optimizing the hygienic design of evisceration equipment or by reducing the external surface decontamination of the carcasses throughout the whole slaughtering process.

In an attempt to reduce contamination and improve the shelf life of broiler carcasses, the industry has developed rapid chilling methods. Ideally, after slaughter, broiler carcasses are reduced from body temperature to 4°C or less within 4 to 8 h, depending on carcass weight (Oyarzabal et al. 2010). Immersion chilling, air chilling and evaporative air chilling are common methods used for this in the world. Cryogenic chilling, which uses gaseous refrigerants that evaporate at atmospheric pressure to cause instant cooling or freezing, is a relatively new rapid method for chilling carcasses (El-Shibiny, Connerton & Connerton et al. 2009). Many studies have, however, shown that *C. jejuni* does survive normal refrigerated storage on broiler meat (Solow, Cloak & Fratamico 2003, Pintar et al. 2007, Oyarzabal et al. 2010). El-Shibiny et al. (2009) reported that most of the *C. jejuni* and *C. coli* strains featured an initial fall in their viable counts over 24 h on broiler skin at 4°C. The greatest decline observed in viability over 9 days was 4.3 (± 0.48) log cfu/cm² (El-Shibiny et al. 2009). In addition, it has been reported in various studies that the counts of *Campylobacter* in broiler meat decrease rapidly after freezing, but that the bacteria can still be detected after extended storage at -20°C (up to 220 days; Bhaduri, Cottrell 2004, Georgsson et al. 2006, El-Shibiny et al. 2009, Oyarzabal et al. 2010, Sampers et al. 2010). Thus, chilling and freezing maintain a small number of live *Campylobacter*, which means that separately or in combination, refrigeration and freezing are not a substitute for the safe handling and proper storage of broiler (Bhaduri, Cottrell 2004). Nevertheless, channelling *Campylobacter*-positive flocks to frozen products has been suggested as a promising intervention strategy (Rosenquist et al. 2009). According to EFSA BIOHAZ (2011), a 100% risk reduction after slaughter can be reached by irradiation or cooking on an industrial scale if re-contamination is prevented. How-
ever, more than 90% risk reduction can be obtained by freezing broiler carcasses for 2-3 weeks (EFSA BIOHAZ 2011).

Additionally, many other physical decontamination methods for the reduction of Campylobacter on fresh broiler carcasses have been studied. For example, treating broiler carcasses with water at 80ºC for 20 s followed by crust freezing reduced the numbers of C. jejuni by ca. 2.9 log/cm² without extensive degradation of carcass appearance (James et al. 2007). Boysen and Rosenquist (2009) compared the Campylobacter-reducing ability of forced air chilling, crust freezing and steam-ultrasound in a plant with naturally contaminated broiler chickens and the mean reductions obtained were 0.44 log cfu per carcass, 0.42 log cfu per samples, and ≥ 2.51 log cfu per carcass, respectively. However, none of these techniques were as effective as freezing based on reductions in Campylobacter counts and on adverse effects (Boysen, Rosenquist 2009).

Another possibility to reduce Campylobacter-contamination in broiler carcasses at the slaughterhouse could be the application of chemical decontamination on carcasses. Acidified sodium chloride, chlorine, chlorine dioxide, trisodium phosphate, cetlypyridinium chloride, ozone and peroxyacetic acid are the most commonly used antimicrobial substances already used in some US broiler slaughtering plants (Oyarzabal 2005, Boysen, Rosenquist 2009). However, chemical decontamination is subject to approval in the EU and no chemicals are currently approved for use (EFSA BIOHAZ 2011). Thus, they are not further discussed in this summary.

Another possibility to reduce Campylobacter-contamination in broiler carcasses at the slaughterhouse could be UV irradiation, which is quite commonly used for the decontamination of packing surfaces or in food processing environments (Corry et al. 1995, Bolder 1997, Dincer, Baysal 2004). The range of UV radiation that is considered to be germicidal against bacteria is between 220 nm and 300 nm (UVC), and generally a wavelength of 254 nm is used for decontamination. This range of UV contains high energy photons that generate pyrimidine dimers and denature bacterial DNA, leading to the destruction of bacteria by degradation of the cell walls (Guerrero-Beltrán, Barbosa-Cánovas 2004). The benefits of UV irradiation are that it is a non-thermal, chemical-free process that leaves no residues and the equipment can be easily installed at relatively low cost (Wallner-Pendleton et al. 1994, Wong, Linton & Gerrard 1998, Lyon, Fletcher & Berrang 2007). In the EU, there is currently no legislation prohibiting the use of UV to treat foods, so its use depends on relevant national regulations within individual member states (Haughton et al. 2011). Several studies have been undertaken to investigate the effect of UV irradiation on food items. It reduced Salmonella spp. and Escherichia coli O157:H7 on fruits and vegetables (Yaun et al. 2004), and other micro-organisms in some liquid foods (Wright et al. 2000, Guerrero-Beltrán, Barbosa-Cánovas 2004). Stermer, Lasater-Smith and Brasington (1987) found that UV lowered the counts of bacteria commonly found on beef, mostly Pseudomonas, Micrococcus and Staphylococcus spp., whereas on broiler skin and carcasses, Salmonella Typhimurium was diminished (Wallner-Pendleton et al. 1994, Sumner et al. 1996). In a study by Wong et al. (1998), UV reduced S. Senftenberg and E. coli on pork muscle and skin. Kim, Silva and Chen (2002) discovered reductions of Listeria monocytogenes, E. coli O157:H7 and S. Typhimurium on broiler meat after UV irradiation, as did Lyon et al. (2007) on broiler breast fillets for L. monocytogenes. Butler, Lund and Carlson (1987) reported inactivation of C. jejuni in liquid samples after UV irradiation.

Activated oxygen is another possible potential agent to decontaminate broiler meat and it could be used in combination with UV irradiation. Activated oxygen can be created from ordinary oxygen through the addition of energy (natural or generated) which changes the momen-
2.5.3 CONTROLLING CAMPYLOBACTER BY POTENTIAL ANTIMICROBIAL MARINADES

Marinades are complex spiced, acidic water-oil emulsions typically containing salt, sugar, sorbate or benzoate or both. High NaCl concentration, low pH and the addition of different spices to the marinades prevent the growth of spoilage bacteria, thus increasing the shelf-life of meat products (Björkroth 2005). Nevertheless, marinating broiler meat does not decrease pathogenic bacteria such as Campylobacter (Perko-Mäkelä et al. 2000). Marinades could, however, potentially be used as antimicrobial treatments on broiler meat by adding substances with antimicrobial properties to them. The antimicrobial property of wine against C. jejuni was previously reported by Birk et al. (2007) and Carneiro et al. (2008). Carneiro et al. (2008) suggested that the immersion of food, for example, broiler, in wine as a marinade, leads to a reduction in the number of viable C. jejuni cells eventually present, thus lowering the risk of cross-contamination of cooked foods. Several studies have described wines as having antimicrobial properties on also other food pathogens such as Bacillus spp., E. coli O157:H7, Listeria spp., Salmonella spp., Staphylococcus aureus and Vibrio parahaemolyticus (Sugita-Konishi et al. 2001, Just, Daeschel 2003, Møretro, Daeschel 2004, Liu, Chen & Su 2006, Fernandes et al. 2007, Waite, Daeschel 2007, Hakovirta 2008). McKee et al. (2005) reported that the use of red wine as a rinsing agent of skinless broiler breast meat reduced the total aerobic and coliform counts by 1.5 and 2.2 log cfu/cm² respectively. The exact mechanisms responsible for the bactericidal activity of wine are not fully understood, but its low pH, polyphenol compounds, high ethanol content, high organic acid content (such as tartaric, acetic, lactic, malic and citric acids) and sulphur dioxide, either individually or in combination, have been reported responsible for reducing bacterial counts of various food-borne pathogens (Møretro, Daeschel, 2004, Waite, Daeschel 2007, Carneiro et al. 2008, Ganan, Martínez-Rodríguez & Carrascosa 2009, Birk et al. 2010).

In addition to wines, grape juice has been shown to have bactericidal effects against Bacillus spp. and Listeria spp., with polymeric phenolic fractions being responsible for antilisterial effects (Rhodes et al. 2006, Hakovirta 2008). Studying antimicrobial properties of wines and juices could help to optimize consumer-friendly Campylobacter reduction strategies, which could be used just prior to consumer handling (Birk, Knøchel 2009).

2.5.4 CONTROLLING CAMPYLOBACTER IN DOMESTIC KITCHENS

According to epidemiological data, a failure by the consumer to properly prepare or handle contaminated food accounts for a significant proportion of reported foodborne diseases, such as campylobacteriosis (Redmond, Griffith 2003). Commercial broiler processing facilities do not currently apply control measures that completely guarantee the elimination of Campylobacter (Oyarzabal 2005). Therefore, the consumer is responsible for using proper food handling techniques. For example, recommendations are given for storing meat at lower temperatures, because it has been reported that approximately 25% of domestic refrigerators may have temperatures exceeding 10°C (Laguerre, Derens & Palagos 2002). In addition, it is important that consumers apply heat treatments that are effective at destroying Campylobacter. In general, Campylobacter are rather easily inactivated in broiler meat by heat treatments. Gunsen (2008),...
for example, reported that baking broiler drumsticks for 3 or 5 min to a core temperature of 80°C and 70°C respectively eliminated all Campylobacter cells. Sampers et al. (2010) studied the survival of Campylobacter subjected to a heat treatment conforming to consumer-based pan-frying of broiler burgers. After 2 min of pan-frying (internal temperature reached 38°C), Campylobacter numbers were found to have declined and after 4 min (internal temperature 57.5°C), they dropped to below detectable levels. However, food may be undercooked or cells in some protected areas of food may survive the normal heating process, leading to ingestion of an infectious dose (Al Sakkaf, Jones 2012). Luber and Bartelt (2007) reported high numbers of Campylobacter on broiler meat surface in comparison with the low levels of internal contamination. Therefore, probable cross-contamination from raw contaminated broiler meat during meal preparation seems to be more important than eating improperly heated broiler meat. Cross-contamination of kitchen surfaces or utensils or direct hand to mouth contact after handling raw contaminated broiler meat can occur readily in domestic settings (Jacobs-Reitsma et al. 2008). Therefore, maintaining good hygiene practices when cooking at home, by, for example, using separate knives and cutting boards for preparing broiler meat than for preparing salads, is of prime importance in controlling Campylobacter at home.

2.6 DETECTION AND IDENTIFICATION OF CAMPYLOBACTER

One of the aims of this study was to compare a PCR assay with the conventional culture method for the detection of Campylobacter in poultry meat products. Thus, the two methods are shortly described here.

Faecal samples often contain large numbers of viable Campylobacter, thus their detection is easily possible by direct plating on selective media using microaerobic conditions (Fitzgerald, Whichard & Nachamkin 2008). Food products and environmental samples, however, may have only low numbers of stressed Campylobacter cells (Jacobs-Reitsma et al. 2008). Several enrichment broths (e.g. Bolton and Preston broth) are available to be used before plating to promote the recovery of damaged cells. During the first stages of enrichment, lower incubation temperatures are often used (4 h at 37°C; Jacobs-Reitsma et al. 2008). A variety of selective agents, such as cefoperazone, amphotericin B, trimethoprim and vancomycin, are included in the broths. Isolation of Campylobacter from the enrichment broth is on solid selective agar (e.g. mCCDA; Modified Charcoal Cefoperazone Deoxycholate Agar). Agars contain selective agents and sterile sheep or horse blood or charcoal to neutralise the toxic effects of oxygen and light. Incubation on a solid medium is generally at 41.5°C for 48 h. All incubations are performed under microaerobic conditions for which many atmosphere systems are available (Fitzgerald et al. 2008, Jacobs-Reitsma et al. 2008). In case of a presumptive positive result, further identification is performed microscopically (Gram-negative, motile, typical morphology) and the absence of aerobic growth. A number of biochemical tests, including catalase, oxidase and hippurate tests may be done, but the results are often confusing (Debruyne et al. 2008). To study the presence of less common Campylobacter species (non-jejuni, non-coli), appropriate cultivation conditions need to be applied, such as membrane filtration, special atmospheric and temperature conditions, prolonged incubation, or subsequent plating on non-selective media (Debruyne et al. 2008).

In recent years, a wide range of nucleic acid-based methods, particularly PCR methods, has become available to detect and identify Campylobacter. The 16S and 23S rRNA ribosomal genes are two widely used targets for the design of species-specific tests (Fitzgerald et al. 2008).
Most of the published PCR-based detection methods require an initial enrichment step (Jacobs-Reitsma et al. 2008). The advantages of PCR are that it can quickly detect and identify *Campylobacter* to the species level (even simultaneously by a single assay) and the method is relatively uncomplicated to use. In meat samples also, PCR methods have been found to be faster, more specific and sensitive for the detection of *Campylobacter* (Denis et al. 2001, Mateo et al. 2005). The disadvantages of PCR are the limited availability of the technology and the fact that it is expensive, labour intensive and does not provide an isolate for further identification or typing (Kulkarni et al. 2002). Sample preparation is crucial in PCR, because the presence of inhibitory compounds coming from the sample may affect the PCR reaction and give false-negative results. The use of an internal standard controls the PCR reaction and increases its reliability (Denis et al. 2001). Another important aspect is that the PCR method may detect dead as well as viable bacteria (Waage et al. 1999).

2.7 *Arcobacter* spp. and Human and Animal Infections

In the late 1970s, aerotolerant *Campylobacter*-like microorganisms were isolated from aborted bovine and porcine foetuses (Ellis et al. 1977, Neill, Ellis & O’Brien 1979). These organisms were later classified in the genus *Arcobacter* belonging to the family *Campylobacteraceae* (Van-damme et al. 1991). The morphological characteristics of *Arcobacter* are similar to those of *Campylobacter*; i.e. Gram-negative, spirally curved rods, generally 0.2–0.9 μm wide and 0.5–3 μm long, non-spore forming and motile by means of an unsheathed single polar flagellum at one or both ends of the cells. Distinctive features that differentiate *Arcobacter* from their close phylogenetic relative *Campylobacter* are their ability to grow aerobically over a wider temperature range (10–42°C; optimally at 30°C). Like *Campylobacter*, *Arcobacter* grow optimally under microaerobic conditions (Ho, Lipman & Gaastra 2006, Snelling et al. 2006, Kjeldgaard et al. 2009). *Arcobacter butzleri* is the most important and prevalent species of the genus being classified as a serious hazard to human health by the International Commission on Microbiological Specifications for Foods (ICMSF 2002) and as a significant zoonotic pathogen (Cardoen et al. 2009).

So far, only the species *A. butzleri*, *A. cryaerophilus* and *A. skirrowii* have been isolated from human and animal infections (Collado, Figueras 2011). In humans, *A. butzleri*, and more rarely *A. cryaerophilus* and *A. skirrowii*, have been associated with diarrhoea (Vandenberg et al. 2004, Prouzet-Mauleon et al. 2006, Samie et al. 2007) and *A. butzleri* and *A. cryaerophilus* with bacteraemia (Yan et al. 2000, Woo et al. 2001, Lau et al. 2002). Very recently, *A. butzleri* was found to be the etiological agent of traveller’s diarrhoea (Jiang et al. 2010). In general, there is no notification of or surveillance for *Arcobacter* as causes of human disease. Thus the estimation of the significance and incidence of human gastroenteritis caused by *Arcobacter* is complicated and probably underestimated (Vandenberg et al. 2004, Lehner et al. 2005, Kjeldgaard et al. 2009). Various media and procedures have been used to isolate *Arcobacter* from different samples, but a standardized reference method has so far not been proposed (Collado, Figueras 2011). *Arcobacter* infection of humans probably occurs by the oral route via contaminated food or water (Ho et al. 2006, Collado, Figueras 2011). Like for *Campylobacter*, a high prevalence of *Arcobacter* is observed on broiler meat at the retail level (highest prevalence) and in many other food products of animal origin (pork, beef, lamb, shellfish; Rivas, Fegan & Vanderlinde 2004, Collado et al. 2009). It has been indicated that the contamination of meat products by *Arcobacter* prob-
ably occurs when the faeces of contaminated animals come into contact with carcasses during the slaughtering process (Aydin et al. 2007). In fact, it has been suggested that poultry could be a natural reservoir of Arcobacter (Atabay et al. 2008, Ho, Lipman & Gaastra 2008, Lipman, Ho & Gaastra 2008). Apart from in broiler and other meat, Arcobacter have been detected in various types of water, including surface water, ground water, raw sewage, drinking water reservoirs and water treatment plants (Lehner et al. 2005, Collado, Figueras 2011). The use of these contaminated water sources could result in Arcobacter animal colonization and human illness (Snelling et al. 2006).

In different farm animals, such as cattle, pigs and poultry, Arcobacter have frequently been isolated from the intestinal tracts and faecal samples, but it apparently has the capacity to cause disease in some animals (Ho et al. 2006). The most serious effects of Arcobacter in these farm animals include abortions, mastitis and diarrhoea (On et al. 2002, Van Driessche et al. 2003).

2.8 SURVIVAL OF STRAINS OF CAMPYLOBACTER AND ARCObACTER SPECIES UNDER SPECIFIC STRESS CONDITIONS

Not enough is known about how Campylobacter and Arcobacter are able to persist and survive when exposed to multiple stress conditions in the broiler meat production chain (Humphrey et al. 2007, Collado, Figueras 2011). This study concentrated on studying the effects of heat, cold and acid stresses on the survival of these bacteria in broth, thus other stresses are not discussed in this summary. Another aim was to evaluate whether adaptations to sublethal heat, cold or acid stresses improve the survival of *C. jejuni* and *A. butzleri* under subsequent acid stress. That is why the last chapter of this review focuses on the stress adaptation phenomenon. Previously, some research on the effectiveness of different temperature and acid treatments on the survival of Campylobacter and Arcobacter has been conducted. It is important to note that the survival of bacteria under different stresses depends on the sources, growth conditions and growth phases of the bacteria studied. The medium in which the experiments were carried out also influences the results (Murphy, Carroll & Jordan 2003, Murphy, Carroll & Jordan 2005).

2.8.1 HEAT STRESS

The strains of Campylobacter and Arcobacter species are rather easily inactivated by heat treatments. Decimal reduction times (*D*-values) for *C. jejuni* were determined as 15.2, 4.90, 1.71, 0.64 and 0.25 min in broth at 49°C, 51°C, 53°C, 55°C and 57°C, respectively (Blankenship, Craven 1982). In another study, the *D*-values for *C. jejuni* were reported to range from 0.88 to 1.63 min at 50°C in broth (ICMSF 1996). Correspondingly, *C. jejuni* *D*-values ranged from 228 to 1.5 s at temperatures from 51.5°C to 60°C in broth (Al Sakkaf, Jones 2012). Recently, initial concentrations of *C. jejuni* ranging from 7.63 to 8.16 log cfu/ml were reduced to counts of between 3.0 and 5.54 log cfu/ml after a 5-min challenge at 55°C in broth (Habib, Uyttendaele & De Zutter 2010). Yang, Li and Johnson (2001) found that reductions in *C. jejuni* counts were 1.5 and 6.2 log cfu/ml after a 5-min treatment in 50°C and 60°C scalding water, respectively. At 55°C, almost all the cells died and the reduction was 5 logs more than at 50°C. At 60°C, the whole population was killed in 1 min (Yang et al. 2001). Hilton et al. (2001) found *D*-values for stationary phase *A. butzleri* cells in broth to be 0.4 min at 55°C and 1.7 min at 50°C. In another study, the *D*-values for *A. butzleri* in broth ranged from 5.81 min at 50°C to 0.4 minutes at 55°C (D'Sa, Harrison 2005).
Phillips and Duggan (2002) investigated the sensitivity of *A. butzleri* to 10-min treatments at 60°C and 50°C in broth. After treatment at 60°C, they detected no cfus' over the subsequent 24 h incubation at 30°C, but after 50°C, however, cells were detected after 24 h incubation at 30°C (12.2% survival rate; Phillips, Duggan 2002). Van Driessche and Houf (2008), incubated *Arcobacter* in water at 52°C, 56°C and 60°C (to represent scalding temperatures), where the bacteria surprisingly survived several minutes of incubation (30, 18 and 4 min, respectively). Ho et al. (2008) also indicated that some *Arcobacter* were able to survive in tap water at 52°C for 3 min. Based on the experiments in water, *Arcobacter* seem more heat resistant than *C. jejuni*, but the conclusion should be drawn with caution, because it is based on only two studies involving a limited number of *Arcobacter* strains (Cervenka 2007).

2.8.2 COLD STRESS

The effects of cold storage on *Campylobacter* and *Arcobacter* strains have been reported as quite similar. Hilton et al. (2001) found that *A. butzleri* was able to survive for at least 3 weeks at 4°C in broth, but the counts gradually decreased (log 4) during storage. Correspondingly, Habib et al. (2010) reported that after 7 days at 4°C in broth, viable counts of *C. jejuni* declined by less than 10% to ~20% of its initial concentrations. In the study by Hilton et al. (2001), freezing in -20°C broth caused a 2 log decrease in *A. butzleri* viability after only 24 h storage, after which viability remained constant. The decrease during the first 24 h of freezing appears to be consistent with results for *C. jejuni* in liquid media (Chan et al. 2001, Habib et al. 2010). In the study by Hilton et al. (2001), *A. butzleri* was able to survive at -20°C in broth for at least 3 weeks. D’Sa and Harrison (2005) on the other hand, observed that *A. butzleri* was able to survive prolonged incubation at -20°C (6 months) in a medium with a 0 to 1.5 log decrease in cell numbers. In water at 4°C and 7°C, *A. butzleri* can remain viable for an extended period of time (98 days; Van Driessche, Houf 2008). In addition, Kjeldgaard et al. (2009) observed less than a one log reduction in *A. butzleri* counts in chicken meat juice (CMJ) medium after 77 days incubation at 5°C, which was a longer period of time than that observed for *C. jejuni* in the same study. In the study by Cools et al. (2003), *C. jejuni* survived in pure drinking water at 4°C for 33 days. In addition, Yang et al. (2001) found that the counts of *C. jejuni* did not change significantly in chilled water or on broiler skins during chilling after 50 min treatment at 2°C. Overall, it has been reported that *C. jejuni* survive better at 4°C in various biological milieux than at 25°C (Murphy, Carroll & Jordan 2006). Recently, Lu et al. (2011), however, showed a 2 log decrease in *C. jejuni* numbers after 12 days in 4°C bottled drinking water and it survived poorly after 20 days incubation at -18°C (~ 6 log reduction).

2.8.3 ACID STRESS

Acid stress in this context means stress caused by different pH levels. Studies have shown that the responses of *Arcobacter* and *Campylobacter* strains to different pH levels are quite comparable. *Campylobacter* strains are generally recognized as being sensitive to low pH values. They grow optimally at pH 6.5-7.5 with a minimum pH value at 4.9 and a maximum at 9.0, but do not grow at pH 4.0 (Park 2002, Chaveerach et al. 2003, Jackson et al. 2009, Silva et al. 2011). Similarly, *A. butzleri* have been shown to be able to grow between pH 5.0 and 8.5 (optimally between pH 6.0-8.0), with little if any growth below pH 5.0 and not surviving at pH 4.0 (Hilton et al. 2001, D’Sa, Harrison 2005, Cervenka 2007). However, the survival of bacteria does not
depend only on the pH value, but also on the acid used, as some acids are more effective against these bacteria even though their pH is the same. For example, pH adjusted by the addition of tartaric acid was more inhibitory for Arcobacter than the same pH adjusted by lactic acid (Cervenka 2007). The composition of the test medium also influences inactivation during acid stress. Shaheen, Miller and Oyarzabal (2007), for example, found Brucella broth to be more protective than Tryptic soy broth for C. jejuni cells at pH 4.0.

2.8.4 STRESS ADAPTATION

Many bacteria have the ability to adapt to stressful conditions. This ability may later protect them against the same type of stress or different types of stresses, phenomena known as specific adaptive response or multiple adaptive response, also termed cross-protection (Xu, Lee & Ahn 2008). Previously, specific adaptive responses and cross-protection against different stress conditions have been reported for C. jejuni. Murphy et al. (2003) described the abilities of C. jejuni to survive better under lethal pH conditions after initial adaptation to mild acid stress or aerobic stress, or both. Ma, Hanning and Slavik (2009) demonstrated that C. jejuni cells adapted to acid, acid and aerobic, or starvation conditions were able to better withstand further acid challenges than non-stressed cells. An adaptation to heat after prior heat stress has also been described in this organism (Mihaljevic et al. 2007). In addition, it has been shown that starved C. jejuni cells were able to withstand heat stress (Klančnik et al. 2009). Cross-protection at the gene expression levels was reported by Reid et al. (2008), where genes involved in heat stress response in C. jejuni were upregulated in response to acid stress, too. These kinds of stress adaptation phenomena might affect the ability of Arcobacter and Campylobacter to survive in the food chain. To the best of the author’s knowledge, however, no comparative Arcobacter studies have been published to date.
3. AIMS OF THE STUDY

The specific aims of this study dealing with survival and reduction of strains of Campylobacter species in broiler meat were:

I. To determine the prevalence of Campylobacter in marinated and non-marinated poultry meat products at the Finnish retail level.

II. To compare a PCR assay with the conventional culture method for the detection of Campylobacter in poultry meat products and to modify a commercial DNA isolation method for marinated products.

III. To study the effects of UV irradiation to reduce C. jejuni in broiler meat.

IV. To study the potential of wines and juices to be used as antimicrobial marinade ingredients to control Campylobacter in broiler meat.

V. To evaluate the survival of A. butzleri and C. jejuni in heat, cold and acid stress conditions and to determine specific adaptive responses and cross-protective effects of temperature and acid stresses on A. butzleri and C. jejuni.
4. MATERIALS AND METHODS

4.1 POULTRY MEAT SAMPLES (I-III)

The poultry meat samples used in studies I-III were bought from a local retail shop, except in study II, where the broiler carcasses and broiler fillets with or without skin were obtained from a local broiler slaughterhouse. The poultry (broiler and turkey) meat samples described for study I in Table 2 were used for the detection of *Campylobacter* in poultry meat products at the Finnish retail level. The samples described for study II were used for inoculation with a *C. jejuni* strain and for studying the effects of UV irradiation to reduce the counts of the *C. jejuni* strain in broiler meat or for the sensory analyses of broiler meat after UV treatment. Broiler meat samples described for study III were used for inoculation with different strains of *Campylobacter* species and for investigating the effects of wines on the survival of these *Campylobacter* strains in broiler meat (Table 2).

Table 2. Description of poultry (broiler and turkey) meat samples used in studies I-III.

<table>
<thead>
<tr>
<th>Sample description</th>
<th>n³</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total broiler meat products</td>
<td>136</td>
<td>I</td>
</tr>
<tr>
<td>Marinated</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Non-marinated²</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Total turkey meat products</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Marinated</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Non-marinated²</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Total marinated mixed broiler-turkey meat products</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total poultry meat products³, 4</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Skin pieces (2 x 2 cm) cut from broiler leg meat</td>
<td>150</td>
<td>II</td>
</tr>
<tr>
<td>Meat pieces (2 x 2 cm) cut from boneless, skinless broiler breast fillets</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Fresh broiler carcasses</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Broiler fillets with skin</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Broiler fillets without skin</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Portions of 10 g cut from broiler breast fillets</td>
<td>48</td>
<td>III</td>
</tr>
</tbody>
</table>

¹ Number of samples used in the corresponding study.
² Natural, lightly salted or spiced products.
³ Slices, barbecue sticks, breast fillets, fillet steaks, breasts, legs, drumsticks or wings including bones and skin.
⁴ All were packed in Finland, but in 11, nine and two samples, the meat originated from Denmark, Brazil and France respectively.
4.2 BACTERIAL STRAINS (I-IV)

Table 3 shows the bacterial strains used to validate the specificity of the C412F-16S rRNA-campR2 primer set used in study I. The other bacterial strains used in studies I-IV are described in Table 4. The strains were maintained at -80°C in Brain Heart Infusion (BHI) broth (Difco, Detroit, MI, USA) containing 20% glycerol (study I), or at -75°C in Brucella broth (Scharlau Chemie, Barcelona, Spain) containing 15% glycerol (studies II and III) or in freezing broth containing distilled water supplemented with 0.5% (w/v) sodium chloride (Merck, Darmstadt, Germany), 0.5% (w/v) meat extract (Merck), 1% (w/v) peptone from casein (Merck), 2% (w/v) D(+)-Glucose (Merck), 25% glycerol and 20% horse serum (study IV).

Table 3. List of strains used for validation of specificity of the C412F-16S rRNA-campR2 primer set in study I.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Species</th>
<th>Strain</th>
<th>Species</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni</td>
<td>CCUG 11284</td>
<td>C. coli</td>
<td>DCC 51</td>
<td>C. helveticus</td>
<td>CCUG 34016</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>CCUG 24567</td>
<td>C. coli</td>
<td>DCC 28</td>
<td>C. hyointestinalis</td>
<td>CCUG 14169</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>CCUG 10940</td>
<td>C. coli</td>
<td>DCC 18</td>
<td>C. hyointestinalis</td>
<td>CCUG 34538</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>CCUG 12778</td>
<td>C. upsaliensis</td>
<td>CCUG 23626</td>
<td>C. sputorum</td>
<td>CCUG 37579</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC*42</td>
<td>C. upsaliensis</td>
<td>CCUG 14913</td>
<td>C. concisus</td>
<td>CCUG 13144</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 43</td>
<td>C. upsaliensis</td>
<td>CCUG 24571</td>
<td>C. curvus</td>
<td>CCUG 13146</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 44</td>
<td>C. upsaliensis</td>
<td>CCUG 24803</td>
<td>C. mucosalis</td>
<td>CCUG 6822</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 45</td>
<td>C. upsaliensis</td>
<td>CCUG 23017</td>
<td>C. fetus</td>
<td>CCUG 6825A</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 47</td>
<td>C. upsaliensis</td>
<td>CCUG 20818</td>
<td>A. cryaerophilis</td>
<td>CCUG 17801</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 48</td>
<td>C. lari</td>
<td>CCUG 23947</td>
<td>A. skirrowii</td>
<td>CCUG 10374</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 49</td>
<td>C. lari</td>
<td>CCUG 20575</td>
<td>A. butzleri</td>
<td>CCUG 30485</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 52</td>
<td>C. lari</td>
<td>CCUG 18267</td>
<td>Helicobacter pylori</td>
<td>DCC 35</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 22</td>
<td>C. lari</td>
<td>CCUG 15035</td>
<td>Helicobacter pullorum</td>
<td>DCC 53</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 27</td>
<td>C. lari</td>
<td>CCUG 12774</td>
<td>Enterococcus faecalis</td>
<td>CCUG 19916</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 34</td>
<td>C. lari</td>
<td>CCUG 18294</td>
<td>Escherichia coli</td>
<td>CCUG 17620</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 40</td>
<td>C. lari</td>
<td>DCC 50</td>
<td>Streptococcus aureus</td>
<td>CCUG 17621</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>DCC 41</td>
<td>C. lari</td>
<td>DCC 29</td>
<td>Staphylococcus bovis</td>
<td>CCUG 17828</td>
</tr>
<tr>
<td>C. coli</td>
<td>CCUG 11283</td>
<td>C. lari</td>
<td>DCC 33</td>
<td>Salmonella Typhimurium</td>
<td>DVI-Å19</td>
</tr>
<tr>
<td>C. coli</td>
<td>CCUG 33450</td>
<td>C. helveticus</td>
<td>CCUG 30682</td>
<td>Salmonella Enteritidis</td>
<td>DVI-Å20</td>
</tr>
<tr>
<td>C. coli</td>
<td>DCC 36</td>
<td>C. helveticus</td>
<td>CCUG 30683</td>
<td>Proteus mirabilis</td>
<td>CCUG 34293</td>
</tr>
<tr>
<td>C. coli</td>
<td>DCC 37</td>
<td>C. helveticus</td>
<td>CCUG 30563</td>
<td>Bordetella bronchiseptica</td>
<td>DVI-Å50</td>
</tr>
<tr>
<td>C. coli</td>
<td>DCC 38</td>
<td>C. helveticus</td>
<td>CCUG 30564</td>
<td>Citrobacter freundii</td>
<td>DVI-Å22</td>
</tr>
<tr>
<td>C. coli</td>
<td>DCC 39</td>
<td>C. helveticus</td>
<td>CCUG 30565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. coli</td>
<td>DCC 46</td>
<td>C. helveticus</td>
<td>CCUG 30566</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*DVI culture collection.

DVI-Å in house reference strain.
Table 4. List of bacterial strains used in studies I-IV.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Origin</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni</td>
<td>EELA 49(^1)</td>
<td>Finnish broiler carcass at slaughterhouse</td>
<td>I</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>E1 1347(^1)</td>
<td>Broiler caecum content at slaughterhouse</td>
<td>II</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>RefCJ (NCTC 11168)(^2)</td>
<td>Clinical human isolate</td>
<td>III,IV</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>RetCJ291(^1)</td>
<td>Finnish honey-marinated retail turkey meat</td>
<td>III</td>
</tr>
<tr>
<td>C. coli</td>
<td>RetCC271(^1)</td>
<td>Brazilian honey-marinated retail broiler meat</td>
<td>III</td>
</tr>
<tr>
<td>C. jejuni</td>
<td>SlaCJ26(^1)</td>
<td>Turkey caecum content at slaughterhouse</td>
<td>III</td>
</tr>
<tr>
<td>A. butzleri</td>
<td>ATCC 49616(^3)</td>
<td>Clinical human isolate</td>
<td>IV</td>
</tr>
</tbody>
</table>

\(^1\) Identified according to a modified method of NCFA (2007).
\(^2\) Obtained from National Collection of Type Cultures, Health Protection Agency, Centre for Infections (London, UK).
\(^3\) Obtained from LGC Standards (Teddington, UK).

4.3 DETECTION OF CAMPYLOBACTER IN POULTRY MEAT SAMPLES (I)

4.3.1 SAMPLE COLLECTION (I)

In study I, 194 raw chilled poultry (broiler and turkey) meat products were randomly collected between January and September 2006 from different local retail shops in a defined area in Western Finland (Table 2). All samples were kept at 4°C until being analysed within 24 h of purchase. Between January and June, 10 samples were analysed once a month and from July to September, 15 samples were analysed three times a month.

4.3.2 CULTURE METHOD FOR DETECTION OF CAMPYLOBACTER IN POULTRY MEAT SAMPLES (I)

In study I, microbiological analyses of the samples were based on a modified method of the Nordic Committee of Food Analyses (NCFA 2007). Each sample was aseptically removed from the package and placed in a Stomacher bag (Seward, Worthing, UK). Equal amounts of a weighed sample and Buffered Peptone Water (BPW; LabM, Lancashire, UK) were mixed with a minimum amount of 300 g of meat in 300 ml of BPW. The bag was shaken manually for 3 min. For enrichment, 25 ml of the suspension was re-suspended in 225 ml of Bolton broth (LabM) with 5% lysed horse blood and selective supplement (LabM), and incubated at 42°C for 24 h under microaerobic conditions generated by CampyGen (Oxoid, Basingstoke, UK). Sterile Bolton broth was used as a negative control. A loopful of the enrichment culture (10 μl) was streaked onto mCCDA prepared from Campylobacter Blood-Free Selective Agar Base (Oxoid) and CCDA Selective Supplement (Oxoid), and incubated at 42°C for 48 h under microaerobic conditions. Presumptive Campylobacter colonies on mCCDA were further identified according to the NCFA (2007) method. To test their ability to grow aerobically, the colonies were subcultured onto Casein-Peptone Soymeal-Peptone agar (CASO; Merck) with 5% bovine blood and incubated aerobically at 37°C for 24 h. Strains were stored at -80°C in Brucella broth containing 15% glycerol.
4.3.3 **PCR METHOD FOR DETECTION OF CAMPYLOBACTER IN POULTRY MEAT SAMPLES (I)**

For the PCR sample in study I, 1.5 ml of the rinsing fluid was centrifuged at 1,000 rpm for 8 min at 4°C. The middle aqueous layer was removed carefully to avoid any fat and placed into an unused Eppendorf tube. After centrifugation at 13,000 rpm for 8 min at 4°C, the supernatant was removed. For the PCR of the enriched sample, 1 ml of enrichment culture was collected after 24 h incubation. It was centrifuged at 13,000 rpm for 8 min at room temperature and the supernatant was removed. The pellets were frozen at -70°C.

DNA ISOLATION

DNA isolation from the frozen pellet was carried out using a DNA isolation kit, MagneSil KF Genomic System (Promega, Madison, WI, USA), with a Dynal MPC-S magnetic stand (Dynal Biotech, Oslo, Norway). The supplier’s instructions were modified and optimized for DNA isolation by hand using a magnetic stand. A 200 μl lysis buffer and 75 μl magnetic beads were added to an Eppendorf tube containing the pellet. The mixture was vortexed vigorously four times during a 5-min period at room temperature before placing the tube in a magnetic stand with the magnet for 30 s. The magnet was taken out after the liquid was removed from the tube. The particles were washed twice with 185 μl of salt washing buffer and twice with 200 μl of ethanol washing buffer. The tube was then placed in a 72°C heat block for 5 min with an open lid for ethanol dehydration. The particles were re-suspended in 100 μl of sterile water and replaced in a 72°C heat block for another 5 min with the lid closed. The tube was vortexed and placed in the magnetic stand for 30 s. The liquid was removed from the tube and frozen at -20°C.

PCR ASSAY AND AMPLIFICATION

The detection of *Campylobacter* in the samples was based on amplification of the 16S rRNA gene using two sets of oligonucleotide primers. The first set was a new combination of primers: C412F 5’-GGA TGA CAC TTT TCG GAG C-3’ (from Linton, Owen & Stanley 1996) and 16S rRNA-campR2 5’-GGC TTC ATG CTC TCG AGT T-3’ (from Lund et al. 2004). The strains used to validate the specificity of the C412F-16S rRNA-campR2 primer set are listed in Table 3. For testing the specificity of the primers used in the assay, DNA was isolated directly from the storage medium by centrifugation of 0.1 ml of the medium at 15,870 rpm for 7 min and then the pellet was subjected to DNA isolation as described before. The second set was MD16S1, 5’-ATC TAA TGG CTT AAC CAT TAA AC-3’ and MD16S2, 5’-GGA CGG TAA CTA GTT TAG TAT T-3’ as described by Denis et al. (1999). For detection of the internal control the set of primer YersF8 5’-CGA GGA GGA AGG GTT AAG TG-3’ and YersR10 5’-AAG GCA CCA AGG CAT CTC TG-3’ was used (Gibello et al. 1999). All primers were synthesized by Oligomer Oy (Helsinki, Finland).

The PCR conditions used are described by Lund et al. (2003) with a few modifications. Briefly, the PCR amplification was performed in 50 μl volumes containing 5 μl of the DNA, 25 μl of a PCR master mix (Promega, Madison, WI, USA), 1 μl of a 25mM MgCl₂ solution (Sigma-Aldrich, Saint Louis, MO, USA), 0.5 μl of a 10 mg/ml Bovine Serum Albumin (BSA) solution (Sigma-Aldrich), 20 pmol of each of the *Campylobacter* primers and 5 pmol of the internal control primers. The PCR was performed in a Peltier Thermal Cycler (PTC-200; MJ Research Inc., Watertown, MA, USA) and the conditions were one cycle of 95°C for 2 min, 58°C for 1 min,
72°C for 1 min, followed by 34 cycles of 95°C for 15 s, 58°C for 40 s and 72°C for 40 s. The last elongation step lasted 5 min. Strain EELA 49 (Table 4) was used as a positive control in the PCR assays and sterile water as a negative control. An internal control (DNA isolated from *Yersinia ruckeri*; obtained from Marianne Lund, National Veterinary Institute, Technical University of Denmark, Århus, Denmark) was also added to the PCR mastermix as in Lund et al. (2004) and Lund and Madsen (2006).

The PCR product was loaded onto a 2% agarose gel (1.35% SeaKem LE Agarose and 0.65% NuSieve GTG Agarose, Cambrex Bio Science, Rockland, ME, USA) containing 0.1 g/ml ethidium bromide. A DNA molecular weight marker 100 base pair (bp) low ladder (Sigma-Aldrich) was included in each gel. The gel was photographed under UV light (Alpha DigiDoc, Alpha Innotech, San Leandro, CA, USA). The PCR reaction for each sample was performed 1-3 times with each primer set and considered positive if both primer sets gave a distinct band of the right size (857 bp) or at least one primer set gave a positive reaction twice. Samples with no internal control band were run again using a tenfold dilution of DNA.

4.3.4 Comparison of the Detection Limit Between the Culture and PCR Method (I)

To compare the detection limit between the culture and PCR method in study I, a tenfold dilution series of a *C. jejuni* broth culture was used to determine the detection limit of the culture and the PCR method. For counting the cfu of the stock solution, 100 μl of each dilution from 10⁻¹ to 10⁻⁷ was plated out. Seven samples of 100 g broth meat slices and 42 g of plain marinade were placed in a Stomacher bag. One ml of each dilution of *C. jejuni* broth culture was mixed with 100 ml of BPW and this mixture was added to the samples. All samples were subjected to both direct and enrichment culture and PCR methods as described above. This procedure was repeated once.

4.4 Determination of the Effects of UV Irradiation to Reduce *C. jejuni* on Agar Plates and on Broiler Meat, Skin and Carcasses (II)

A *C. jejuni* strain E1 1347 was used in study II (Table 4). The cells from the frozen stock culture of the strain were plated onto mCCDA agar and incubated at 42°C for 24-48 h under microaerobic conditions obtained by GasPak EZ Campy Container System Sachets (260680, BD, NJ, USA). To determine the effects of UV irradiation to reduce the *C. jejuni* strain, the studies were conducted on the surfaces of agar plates and on broiler meat, skin and carcasses.

4.4.1 Agar Plates (II)

For preparation of agar plates in study II (Trypticase soy agar II with 5% horse blood; TSA, 212099, BD), the resulting growth of the *C. jejuni* strain used was first suspended into 10 ml physiological saline. One ml of this suspension was serially diluted in 9 ml of physiological saline (from 10⁻¹ to 10⁻⁶) and 12 separate TSA agar plates from each dilution were prepared by spreading 100 μl aliquots on the plates. Three of the 12 spread plates prepared from each dilu-
tion were not UV-treated (controls) and the other nine were subjected without a lid to the three different doses of UV light studied (three plates/dose). The UV doses studied were 9.4, 18.8 and 32.9 mWs/cm² based on the UV equipment manufacturers’ suggestion. The UV treatments of agar plates were conducted using an UV irradiator (BIOCID 72 IP67, Oy BIOCID Ltd, Vantaa, Finland) with four lamps generating 254 nm wavelength and 5.5 W UV effect per lamp. After treatments, the agar plates were incubated at 42°C for 48 h under microaerobic conditions. The reductions in single experiments on agar plates were calculated based on the average cfu/ml from the triplicate spread plates, without and after the UV treatments. The final log reductions were based on the averages from the results of the test replications and calculated by using the formula: log reduction = log₁₀ initial concentration – log₁₀ final concentration.

4.4.2 BROILER MEAT AND SKIN (II)

For broiler meat and skin sample preparation in study II (10 samples per experiment), the samples were aseptically cut into 2 x 2 cm pieces and placed flattened out on the bottom of small, sterile Petri dishes. Before inoculation the sample surfaces were flamed with a Bunsen burner for about 5 s and cooled for 5 min. For inoculation of the samples, the resulting growth of the *C. jejuni* strain used was first suspended into 10 ml physiological saline. Then the samples were inoculated by spreading a 100 μl aliquot of the suspension evenly over the entire surface of each sample and allowed to dry for 15 min. In each experiment with broiler meat or skin, five broiler meat or skin samples were not UV-treated (controls) and five were UV-treated using the same UV irradiator and doses as in the studies on agar plates. One dose was studied per experiment. After UV treatments to determine bacterial counts, each sample surface was swabbed with five sterile pre-moistened cotton swabs which were placed into 5 ml of physiological saline, allowed to soak for 5 min and then removed. One ml of the suspension from each sample was serially diluted in 9 ml of physiological saline and three spread plates (TSA agar) were prepared from each dilution. The final log reductions were calculated as described above. The tests on broiler meat or skin were replicated five times for each three UV doses. All broiler meat and skin samples (20 g of meat per package) of study II were determined to be free of *Campylobacter* by the enrichment PCR method as in study I.

4.4.3 BROILER CARCASSES (II)

For inoculation of broiler carcasses in study II, the resulting growth of the *C. jejuni* strain was first suspended into 10 ml BPW of which 1 ml was re-suspended into 99 ml sterile BPW. The 100 ml BPW bacterial suspensions were used for inoculations of broiler carcasses individually. The carcasses were shaken manually with the suspension for 3 min in a big Stomacher bag (BA6042, LabM), aseptically removed and allowed to dry for 15 min. In one experiment, eight broiler carcasses were used. Two of the carcasses were not UV-treated (controls) and the other six were subjected to the three doses of UV light studied (two carcasses/dose). The UV doses studied on broiler carcasses were 10.8, 18.0 and 32.4 mWs/cm² based on the UV equipment manufacturers’ suggestion. For the studies, a UV chamber (Fig. 2) was constructed by Oy BIOCID Ltd. Three UV irradiator units (BIOCID 110 IP55, Oy BIOCID Ltd) were mounted inside the chamber walls (made of stainless steel) so that the carcasses received UV light from three sides. Each of the units contained four lamps generating 254 nm wavelength and 16.5 W UV effect per lamp. The effects of UV irradiation on the survival of the *C. jejuni* strain on broiler carcasses were also studied in
combination with activated oxygen. For this, an active oxygen generator (BIOCID MX1800-E9-IC, Oy BIOCID Ltd) was placed in the chamber (Fig. 2). To determine the reductions in bacterial counts, the carcasses were separately manually massaged for 3 min in a big Stomacher bag with sterile 100 ml of BPW. One ml of the suspension from each sample was serially diluted in 9 ml of BPW and three spread plates (mCCDA agar) were prepared from each dilution. The final log reductions were calculated as above. The tests on broiler carcasses were replicated three times for each of the three UV doses studied. All broiler carcasses used in study II were determined to be *Campylobacter*-free by the enrichment PCR method as in study I (four neck skin samples (5 g each) were pooled together to create one sample).

![Figure 2. UV chamber with three UV irradiator units (BIOCID 110 IP55) and with an active oxygen generator (BIOCID MX1800-E9-IC) used in the studies on broiler carcasses.](image)

4.5 SENSORY ANALYSES OF BROILER MEAT SAMPLES AFTER UV TREATMENT (II)

The sensory analyses of study II were conducted in co-operation with the Finnish Meat Research Institute (Hämeenlinna, Finland) as an outsourced service. In the analyses, refrigerated fresh broiler meat fillets with or without skin were treated with UV alone or with UV in combination with activated oxygen in the UV chamber described above. Treatment times of 10 and 100 s were used (controls not treated). Each test series contained 12 broiler meat samples either with or without skin. After the treatments, the samples were packed in batches of two in vacuum bags were vacuum degassed and stored at 4°C. In the sensory analyses, the changes in colour and sensory quality, including the visual appearance and odour of the samples, were evaluated on days 0, 2, 5, 7, 9 and 12 after the treatments. The colour of the samples was analysed using a Minolta CR-200 colorimeter (Minolta Co. Ltd., Ramsey, NJ, USA). The fatty acid composition of the samples was measured on days 0, 5, 7 and 12 after the treatments and determined using Method LA0202 (2007) with a Hewlett Packard 5890 gas chromatograph (GMI Inc., Ramsey, MN, USA).
4.6 DETERMINATION OF THE EFFECTS OF WINES AND JUICES AS POTENTIAL ANTIMICROBIAL MARINADE INGREDIENTS TO REDUCE STRAINS OF CAMPYLOBACTER SPECIES (III)

4.6.1 INOCULATION OF WINES AND JUICES AND DETERMINATION OF BACTERIAL COUNTS (III)

For the experiments on wines and juices in study III, four Campylobacter strains were used separately (RefCJ, RetCJ29, RetCC27, SlaCJ26; Table 4). The liquid types studied are described in Table 5. As a control, the survival of all the Campylobacter strains studied was also determined in BHI broth (LabM; pH 7.36 ± 0.03). To prepare the suspensions used for inoculations, Campylobacter cells from the frozen stock cultures were first plated onto mCCDA agar and incubated at 42°C for 24-48 h under microaerobic conditions obtained by CampyGen. The growth were then suspended into 5 ml of pre-warmed (42°C) BHI broths which were incubated at 42°C for 24 h under microaerobic conditions. After incubation, the optical density of the suspensions at 600 nm (OD600) was adjusted to 0.1 (corresponds to log 8 cfu/ml) using 42°C BHI broth.

Table 5. Description of liquid types used in study III.

<table>
<thead>
<tr>
<th>Liquid type¹</th>
<th>Contents description</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>White wine²</td>
<td>13% alcohol, sulphites</td>
<td>3.20 (± 0.07)</td>
</tr>
<tr>
<td>Red wine³</td>
<td>13.5% alcohol, sulphites</td>
<td>3.79 (± 0.05)</td>
</tr>
<tr>
<td>Grape juice⁴</td>
<td>Grape juice, added vitamin C, aqua, no preservatives</td>
<td>3.62 (± 0.07)</td>
</tr>
<tr>
<td>Tomato juice⁵</td>
<td>Tomato juice, glucose-fructose syrup, sugar, salt, aqua, no preservatives</td>
<td>4.11 (± 0.07)</td>
</tr>
<tr>
<td>Commercial poultry meat marinade</td>
<td>Water, turnip, rapeseed oil, honey-apple wine vinegar, maltodextrin, glucose, spices, salt (1.0%), stabilizers (E451, E450, E452), yeast extract, flavour enhancer (E621), thickeners (E412, E415), aromas, preservatives (E211, E202), acidity regulator (E330)</td>
<td>4.16 (± 0.03)</td>
</tr>
</tbody>
</table>

¹ Wines and juices were purchased from local shops, the marinade was provided by a local poultry processor.
² Sauvignon Blanc, Gallo Family Vineyards 2006, Modesto, CA, USA.
³ Cabernet Sauvignon, Gallo Family Vineyards 2006.
⁴ Grape nectar (72% grape nectar juice made from juice concentrates), Valio Oy, Valio, Finland.
⁵ Natural tomato juice drink (100% tomato juice drink manufactured from juice concentrates), Oy Marli Ab, Turku, Finland.
To inoculate the wines and juices with high bacterial counts, 1 ml of the original suspension containing approximately 8 log cfu cells, was suspended into 9 ml of the liquid type studied to give a bacterial concentration of approximately 7 log cfu/ml. To inoculate the liquids with low bacterial counts, 1 ml from the 10^{-4} dilution tube (earlier used for counting the log cfu/ml of the original suspensions) containing approximately 4 log cfu cells was suspended into 9 ml of the liquid type studied to give a bacterial concentration of approximately 3 log cfu/ml. The inoculated samples were kept at room temperature for 3 h and then stored at 4°C. The survival of the Campylobacter strains in each liquid type was monitored at time-points of 0 min, < 1 min, 15 min, 30 min, 1 h, 3 h, 24 h and 48 h after inoculations. The bacterial counts were determined via the dilution plating method by using BHI broth and mCCDA agar. If the Campylobacter counts were below the detection limit (1 log cfu/ml), the cells were regarded as inactivated. The tests were replicated twice for each liquid type and the final results were averaged from the test replications.

4.6.2 INOCULATION AND PREPARATION OF BROILER MEAT SAMPLES AND DETERMINATION OF BACTERIAL COUNTS (III)

For the experiments on broiler meat, two Campylobacter strains (RefCJ and RetCC27) were used separately (Table 4). All the broiler meat samples used in study III were tested for the absence of Campylobacter according to ISO 10272-1:2006 (Anonymous 2006). For sample preparation, portions of 10 g of broiler meat were cut antiseptically, put into separate stomacher bags (Seward) and stored at -18°C until usage. Before inoculation, the samples were thawed for 60 min. To inoculate the meat samples with high bacterial counts, 100 μl of the original suspension containing approximately 7-8 log cfu/ml, was applied to the separate meat pieces. To inoculate the meat samples with low bacterial counts, 100 μl from the 10^{-3} dilution tube containing approximately 5 log cfu/ml was applied to the separate meat pieces. Inoculated meat pieces were kept at room temperature for 20 min to allow possible attachment and diffusion. To each inoculated meat sample, 10 ml of the corresponding liquid: white wine, red wine or Phosphate Buffered Saline (PBS, Oxoid), was added. The inoculated samples were kept at room temperature for 3 h and then stored at 4°C. The survival of the Campylobacter strains in each meat-liquid type was monitored at time-points of 0 min, 10 min, 15 min, 30 min, 1 h, 3 h, 24 h and 48 h after inoculations. The meat-liquid samples were homogenized in a lab blender (Stomacher 400 Circulator, Seward) before Campylobacter cell count and the bacterial counts were determined as above. If the Campylobacter counts were below the detection limit (2 log cfu/ml), the cells were regarded as inactivated. The tests were replicated three times for each meat-liquid sample and the final results were averaged from the test replications.

4.7 DETERMINATION OF THE EFFECTS OF SUBLETHAL AND LETHAL STRESSES FOR THE SURVIVAL OF A. BUTZLERI AND C. JEJUNI (IV)

Strains A. butzleri ATCC 49616 and C. jejuni NCTC 11168 were used in study IV separately (Table 4). The cells from the frozen stock cultures were plated onto Mueller-Hinton agar with Sheep Blood (MHSB; Oxoid) and incubated at 37°C for 48-72 h under microaerobic conditions obtained by CampyGen. To create the suspension used for inoculation, the growth was suspended into 5 ml of pre-warmed (37°C) BHI broth (Oxoid), which was then incubated at
37°C for 24 h under microaerobic conditions. After incubation, OD_{600} was adjusted to 0.1 using 37°C BHI broth. To determine sublethal stress adaptation conditions for the A. butzleri and C. jejuni strains used in study IV, their survival was studied individually at 48°C (heat stress), at 10°C (cold stress) and at pH 5.0 at 37°C (mild acid stress). In addition, to determine the lethal acid stress conditions, their survival was studied at pH 4.0 at 37°C. The conditions were chosen based on earlier survival studies conducted on A. butzleri and C. jejuni (Murphy et al. 2006, Cervenka 2007, Van Driessche, Houf 2008, Kjeldgaard et al. 2009, Jackson et al. 2009) and on own preliminary experiments (data not shown). For inoculation, 1 ml of the suspension containing about log 8 cfu cells was suspended into 9 ml of BHI broth resulting in an original bacterial concentration of approximately 7 log cfu/ml. Before inoculation with the bacterial suspension, BHI broth tubes had been adjusted to the different study temperatures (48°C, 10°C or 37°C) using incubators and to pH 5.0 or pH 4.0 with filter-sterilized (SLHA033SS, MILLEX-HA Filter Unit 0.45 μm, MILLIPORE, Carrigtwohill, Ireland) 15% (w/v) Tartaric acid (Sigma-Aldrich). In the cross-protection part of study IV, cells were first inoculated as described above and adapted individually to heat stress (2 h at 48°C), cold stress (24 h at 10°C) or mild acid stress (4 h at pH 5.0). After adaptations, survival of the bacterial strains was studied individually under mild or lethal acid stress conditions by inoculating 1 ml of the adapted cells into 9 ml of BHI broth with a pH of 5.0 or 4.0 (at 37°C), resulting in an original bacterial concentration of about log 6 cfu/ml. The bacterial counts in study IV were determined in each condition at time-points of 0 h, 1 h (at pH 4.0 only), 2 h, 4 h and 24 h after inoculation via the dilution plating method by using BHI broth and MHSB agar. If the bacterial counts were below the detection limit (1 log cfu/ml), the cells were interpreted as inactivated. In order to assure the reproducibility of the findings, the experiments were replicated at least four times for each study condition. More replicates were performed in the condition under which cross-protection was found likely, i.e., heat stress adapted A. butzleri (Table 9 and Fig. 4). Survival at pH 4.0 at 1 h for non-adapted A. butzleri was studied altogether 12 times and 16 times for heat stress adapted A. butzleri.

4.8 STATISTICAL ANALYSIS (I-IV)

For data management and calculations in study I, Microsoft Excel 97 SR 2 and SAS Systems vers. 8 (Cary, NC, USA) were used. The level of agreement according to precision was expressed as the kappa statistic, defined as the proportion of potential agreement beyond chance exhibited by two tests. Diagnostic specificity was calculated as: \(d/(b + d) \) where \(d \) is the number of samples negative both by PCR and by culture and \(b \) is the number of samples positive by PCR, but negative by culture. The level of agreement between two tests was calculated as: \((a + d)/n \), where \(a \) is the number of samples positive both by PCR and by culture, \(d \) is the number of samples negative by both methods and \(n \) is the total number of samples under examination.

In study II, the statistical differences between the effects of the three doses of UV irradiation on broiler meat and skin were determined by analyses of variance, where the initial concentration was used as a covariate. The statistical differences between the effects of the three doses of UV alone or of UV in combination with activated oxygen on broiler carcasses were determined by analyses of variance. All analyses were performed by means of SPSS 14.0 for Windows.

In study III, the data from each time-point and the statistical differences between the main effects of the bacterial strains and the liquid types were all determined separately. Because data were not normally distributed, the significances were determined by the nonparametric
Kruskal-Wallis Test. Analyses were performed by means of SPSS 16.0 for Windows statistical package.

In study IV, differences in the medians of viable bacteria counts of heat stress adapted *A. butzleri* strain and non-adapted *A. butzleri* strain at pH 4.0 were analysed using Wilcoxon rank sum test (R, Vienna, Austria). More precisely, the one-tailed version of the test was used to examine whether more bacteria that were viable resulted after heat stress adaptation than without adaptation at pH 4.0. The results of studies I-IV were considered to be statistically significant when $P < 0.05$.

5. RESULTS

5.1 CAMPYLOBACTER PREVALENCE IN FINNISH RETAIL POULTRY MEAT PRODUCTS (I)

The isolation rates of Campylobacter in different types of poultry meat products are shown in Table 6. Using either the conventional culture or PCR method, a total of 25 (12.9%) of the 194 samples investigated were Campylobacter positive. Out of 136 broiler and 56 turkey meat products, 20 (14.7%) and four (7.1%) samples respectively, were Campylobacter positive. One of the two mixed broiler and turkey meat samples tested positive for Campylobacter. Campylobacter was detected in 19.0% of the non-marinated and in 10.3% of the marinated poultry meat products. The occurrence of Campylobacter was 9.4% in poultry meat slices and barbecue sticks, 4.8% in breast fillets and 30.4% in products with skin and bone. Campylobacter was not detected in any of the 22 poultry products with meat of foreign origin.

Table 6. Types of Finnish retail poultry meat products and Campylobacter positive samples.

<table>
<thead>
<tr>
<th>Product type</th>
<th>No. of samples positive¹/ No. of samples tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slices and barbecue sticks</td>
</tr>
<tr>
<td>Non-marinated²</td>
<td>0/13</td>
</tr>
<tr>
<td>Marinated</td>
<td>8/72</td>
</tr>
<tr>
<td>Total samples</td>
<td>8/85</td>
</tr>
</tbody>
</table>

¹ No. of samples tested positive by microbiological method and/or PCR method.
² Natural, lightly salted or spiced products.

Between June-September, a peak in the Campylobacter prevalence was observed (data not shown). In August, the peak was highest, with 28.9% prevalence in the 45 samples investigated. Between January-May, Campylobacter was detected in only one of 50 samples studied.

5.2 COMPARISON OF THE CULTURE AND PCR METHOD (I)

Eighteen of 194 samples were positive using the conventional culturing method and 24 were positive using the PCR method for Campylobacter. One sample gave a positive result by culture, but was negative by PCR. Seven samples were positive by PCR, but culture negative. From five of these samples, approximately 400 bp of the PCR product was sequenced and all sequences were 99% or 100% equal to C. jejuni. The results of the culture and PCR were concordant in 186 samples, representing 96.4% of the samples. The diagnostic specificity for the comparison of the PCR to culture by selective enrichment was 0.96 with a level of agreement of 0.96. The detection
limit of both enrichment culture and enrichment PCR was less than 1 cfu/ml of sample rinse, while the detection limit of direct culture was 70 cfu/ml. For the direct PCR detection, the limit was 700 cfu/ml of sample rinse. When the specificity of the C412F-16S rRNA-campR2 primer set was tested against a panel of Campylobacter and non-Campylobacter DNA templates (Table 3), the PCR assay detected *C. jejuni*, *C. coli*, *C. lari*, *C. upsaliensis*, *C. helveticus*, and *C. hyointestinalis*, but none of the other Campylobacter species tested. No signal was observed for any of the Arcobacter, Helicobacter, or other non-Campylobacter species tested. A tendency was seen that this primer set captured more of the samples that were culture negative and negative with the MD16S1 and MD16S2 primers (data not shown). However, the differences were not statistically significant.

5.3 EFFECTS OF UV IRRADIATION TO REDUCE *C. JEJUNI* E1 1347 ON AGAR PLATES AND ON BROILER MEAT, SKIN AND CARCASSES (II)

In study II, in the tests conducted on agar plates, at least a 6.3 log cycle reduction in *C. jejuni* E1 1347 counts (99.9% inactivated) was observed with all the UV irradiation doses studied (data not shown). The maximum reduction in *C. jejuni* E1 1347 achieved with UV irradiation was 0.7 log cycles on broiler meat, 0.8 log cycles on broiler skin and 0.5 log cycles on broiler carcasses (Table 7). On broiler meat, there were statistically significant differences between the effects of the lowest and highest doses studied (P = 0.030), but on broiler skin and carcasses no such differences were found. On broiler meat, the effects of the three doses depended significantly on the initial concentration of *C. jejuni* E1 1347 inoculated (P = 0.029), which was variable throughout the test replications. The lower the initial concentration, the better the reducing capacity of UV irradiation was. On broiler skin and carcasses, the effects of UV irradiation did not significantly depend on the initial concentration of *C. jejuni* E1 1347, although it varied. When using UV irradiation in combination with activated oxygen on broiler carcasses, the effects in reducing *C. jejuni* E1 1347 counts did not increase (Table 7).

Table 7. The log counts (cfu/ml) of *C. jejuni* E1 1347 (mean ± SD) before and after treatment with UV irradiation on the surfaces of broiler meat (n = 5), broiler skin (n = 5) and broiler carcasses (n = 3).

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Low UV dose</th>
<th>Medium UV dose</th>
<th>High UV dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial counts</td>
<td>Final counts</td>
<td>Initial counts</td>
</tr>
<tr>
<td>Broiler meat</td>
<td>7.8 ± 0.2</td>
<td>7.3 ± 0.4</td>
<td>7.7 ± 0.4</td>
</tr>
<tr>
<td>Broiler skin</td>
<td>7.8 ± 0.3</td>
<td>7.0 ± 0.1</td>
<td>8.1 ± 0.1</td>
</tr>
<tr>
<td>Broiler carcasses</td>
<td>7.3 ± 0.8</td>
<td>7.0 ± 0.8</td>
<td>7.3 ± 0.8</td>
</tr>
<tr>
<td>Broiler carcasses</td>
<td>8.0 ± 0.3</td>
<td>7.7 ± 0.3</td>
<td>8.0 ± 0.3</td>
</tr>
</tbody>
</table>

1 9.4 mWs/cm² on broiler meat and skin and 10.8 mWs/cm² on broiler carcasses.
2 18.8 mWs/cm² on broiler meat and skin, and 18.0 mWs/cm² on broiler carcasses.
3 32.9 mWs/cm² on broiler meat and skin, and 32.4 mWs/cm² on broiler carcasses.
4 Effects of UV irradiation studied in combination with activated oxygen.
No significant differences were found in the colour, sensory quality or in the fatty acid compositions of the control broiler meat samples and the broiler meat samples treated with UV or with UV in combination with activated oxygen although minor differences in colour values were detected in a few individual samples (data not shown).

5.4 EFFECTS OF WINES AND JUICES AS ANTIMICROBIAL MARINADE INGREDIENTS TO REDUCE STRAINS OF CAMPYLOBACTER SPECIES (III)

Table 8 shows that of all the liquids used in study III, white wine had the strongest antibacterial effect on the survival of all four different Campylobacter strains studied. High counts of all strains were inactivated within 15 min and the low inoculum levels of RetCC27 and RefCJ were inactivated to undetectable numbers within < 1 min in white wine. In red wine, high counts of all Campylobacter strains were reduced to low counts within 30 min and inactivated within 1 h. Both grape and tomato juice were less bactericidal than the wines. In grape and tomato juice, the high inoculum levels of SlaCJ26, RetCJ29 and RefCJ were still detected after 48 h exposure. The low counts of the strains RefCJ and RetCJ29 in grape juice and of the strain RetCJ29 in tomato juice were still detected after 48 h exposure. In the commercial marinade, the high counts of most of the Campylobacter strains were inactivated within 48 h exposure and all the low counts were inactivated to undetectable numbers within 3 h (Table 8). In the BHI broth control solution, the counts of Campylobacter did not change significantly within 48 h (data not shown).

Figure 3 shows that both red and white wines reduced the counts of both Campylobacter strains inoculated on broiler meat moderately by approximately 1 log cfu/ml within 48 h. These Campylobacter strains were still detectable in fairly high numbers after 48 h exposure to the wines when inoculated on meat. The statistical differences between the effects of the different liquid types at each time-point were examined using the data acquired from the Campylobacter strains with both high and low inoculum levels. There were statistically significant differences (P ≤ 0.001) in the survival of Campylobacter strains in the different liquid types at every time-point, except at the 48 h time-point with the low inoculum levels. There were no statistically significant differences between the different Campylobacter strains in each of the liquid types studied with either of the inoculum levels or between the counts of Campylobacter in meat-wine samples to meat-PBS samples.
Table 8. Counts (log cfu/ml) of *Campylobacter* strains during various exposures to the liquids studied.

<table>
<thead>
<tr>
<th>Liquid type</th>
<th>Exposure time</th>
<th>RefCJ</th>
<th>RetCJ29</th>
<th>RetCC27</th>
<th>SlaCJ26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Red wine</td>
<td>0 min</td>
<td>7.2 ± 0.1</td>
<td>3.2 ± 0.1</td>
<td>7.0 ± 0.2</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>< 1 min</td>
<td>6.8 ± 0.5</td>
<td>2.6 ± 0.1</td>
<td>6.2 ± 0.4</td>
<td>2.3 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>15 min</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>3.0 ± 4.3</td>
<td>1.0 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>30 min</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>1.4 ± 2.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td></td>
<td>1 h</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>White wine</td>
<td>0 min</td>
<td>7.1 ± 0.3</td>
<td>3.1 ± 0.3</td>
<td>6.8 ± 0.2</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>< 1 min</td>
<td>2.2 ± 3.1</td>
<td>< 1.0</td>
<td>4.8 ± 1.6</td>
<td>1.1 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>15 min</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Grape juice</td>
<td>0 min</td>
<td>7.4 ± 0.1</td>
<td>3.4 ± 0.1</td>
<td>7.2 ± 0.0</td>
<td>3.2 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>6.4 ± 0.3</td>
<td>2.5 ± 0.1</td>
<td>6.5 ± 0.2</td>
<td>2.8 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>48 h</td>
<td>5.6 ± 0.0</td>
<td>1.0 ± 1.4</td>
<td>5.2 ± 0.6</td>
<td>1.3 ± 1.8</td>
</tr>
<tr>
<td>Tomato juice</td>
<td>0 min</td>
<td>7.2 ± 0.1</td>
<td>3.2 ± 0.1</td>
<td>7.1 ± 0.1</td>
<td>3.1 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>6.7 ± 0.4</td>
<td>2.0 ± 0.0</td>
<td>6.8 ± 0.3</td>
<td>2.5 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>48 h</td>
<td>5.9 ± 0.4</td>
<td>< 1.0</td>
<td>6.2 ± 0.8</td>
<td>1.1 ± 1.6</td>
</tr>
<tr>
<td>Marinade</td>
<td>0 min</td>
<td>7.2 ± 0.0</td>
<td>3.2 ± 0.0</td>
<td>7.1 ± 0.0</td>
<td>3.1 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>1 h</td>
<td>6.7 ± 0.1</td>
<td>3.0 ± 0.3</td>
<td>6.8 ± 0.0</td>
<td>2.8 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>3 h</td>
<td>5.5 ± 0.3</td>
<td>< 1.0</td>
<td>5.1 ± 0.5</td>
<td>< 1.0</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>3.7 ± 0.4</td>
<td>< 1.0</td>
<td>2.0 ± 0.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td></td>
<td>48 h</td>
<td>1.0 ± 1.4</td>
<td>< 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
</tbody>
</table>

1 Mean (n = 2) ± standard deviation. Detection limit was 1 log cfu/ml
5.5 SURVIVAL OF C. JEJUNI NCTC 11168 AND A. BUTZLERI ATCC 49616 IN STRESS CONDITIONS (IV)

In study IV, the counts of A. butzleri ATCC 49616 and C. jejuni NCTC 11168 decreased to undetectable numbers within 24 h at 48°C, but after 2 h, counts of both bacteria had decreased only moderately. A moderate decrease in the bacterial counts was also seen after 24 h at 10°C. Thus, sublethal heat and cold stress adaptations of the bacteria were determined to be conducted by incubating the cells for 2 h at 48°C or for 24 h at 10°C, respectively. The mild acid stress adaptations were chosen to be performed by incubating the bacteria for 4 h at pH 5.0, because their counts had moderately decreased after that. Incubation at pH 4.0 was chosen to represent the lethal acid stress condition, because there A. butzleri ATCC 49616 was inactivated to undetectable counts within 1 h and C. jejuni NCTC 11168 within 24 h (Table 9).

In the cross-protection part of study IV, heat or cold stress adaptations did not improve the survival of the bacteria at pH 5.0. This was also confirmed by the statistical analysis that did not find evidence for better survival after adaptation than without adaptation. For A. butzleri ATCC 49616, heat stress adaptation improved survival at the 1 h time-point at pH 4.0 (Table 9 and Fig. 4). The heat stress adapted A. butzleri ATCC 49616 cells were significantly (P < 0.01) more resistant to subsequent lethal acid stress than non-adapted cells at the 1 h time-point. Non-adapted A. butzleri ATCC 49616 cells did not survive at pH 4.0 in any of the study replications, whereas viable heat adapted cells were counted up to 10^4 cfu/ml at the 1 h time-point (Fig. 4). All non-adapted A. butzleri ATCC 49616 cells were inactivated to undetectable counts within 1 h at pH 4.0 (in 12 out of 12 study replications), whereas heat stress adapted cells were still detectable.
after 1 h at pH 4.0 in seven cases of the study replications (n=16; Fig. 4). Under any other condition studied, the statistical test showed no evidence for cross-protection. At later time-points at pH 4.0, no significant differences between the survival of heat stress adapted and non-adapted *A. butzleri* ATCC 49616 were observed. For *C. jejuni* NCTC 11168, heat stress adaptation did not improve survival of the bacteria at pH 4.0. For both bacteria, the mild acid or cold stress adaptations did not improve the survival of the bacteria at pH 4.0. Like non-adapted *A. butzleri* ATCC 49616 cells, the mild acid or cold stress adapted cells were inactivated to undetectable counts within 1 h at pH 4.0. For *C. jejuni* NCTC 11168, the cold or acid adaptations actually decreased the survival times in pH 4.0, because the adapted cells were inactivated to undetectable counts within 4 h (non-adapted within 24 h; Table 9).

Figure 4. Distributions of viable *A. butzleri* ATCC 49616 cell counts at pH 4.0 at the 1 h time-point without adaptation (column with stripes) and after heat stress adaptation (columns without stripes).
Table 9. Counts (log cfu/ml) of *A. butzleri* ATCC 49616 and *C. jejuni* NCTC 11168 during exposure at 48°C, 10°C, pH 5.0 and pH 4.0 without adaptation and after heat, acid or cold stress adaptations. The bold values indicate the comparison where cross-protection was observed. Detection limit was 1 log cfu/ml.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Exposure time (h)</th>
<th>C. jejuni</th>
<th>A. butzleri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non-adapted</td>
<td>Heat-adapted</td>
</tr>
<tr>
<td>48°C</td>
<td>0</td>
<td>7.6 ± 0.1</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.3 ± 0.3</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.2 ± 0.4</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>< 1.0</td>
<td>nd</td>
</tr>
<tr>
<td>10°C</td>
<td>0</td>
<td>7.6 ± 0.2</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.5 ± 0.3</td>
<td>nd</td>
</tr>
<tr>
<td>pH 5.0</td>
<td>0</td>
<td>7.5 ± 0.3</td>
<td>6.6 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.4 ± 0.2</td>
<td>6.4 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.3 ± 0.3</td>
<td>6.3 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.1 ± 0.3</td>
<td>3.4 ± 2.3</td>
</tr>
<tr>
<td>pH 4.0</td>
<td>0</td>
<td>7.7 ± 0.1</td>
<td>6.5 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.5 ± 0.1</td>
<td>6.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.9 ± 0.1</td>
<td>51 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.7 ± 0.8</td>
<td>0.6 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
</tbody>
</table>

^a Mean (n = 4) ± standard deviation.
^b Not determined.
^c Mean (n = 12) ± standard deviation.
^d Mean (n = 16) ± standard deviation.
^e P < 0.01
6. DISCUSSION

6.1 SURVIVAL OF CAMPYLOBACTER IN RETAIL POULTRY MEAT

The exact sources of human *Campylobacter* infections in Finland are not clear at the moment. A high percentage of the infections are considered to originate from travel abroad but in many of the cases the source is unknown. However, in the summer period the proportion of *Campylobacter* infections acquired in Finland is considerable and it has been estimated that almost one in three of these infections is associated with broilers (THL 2012, Zoonosis Centre 2012). In study I the *Campylobacter*-contamination status of both marinated and non-marinated broiler and turkey meat products in Finland was indicated to be rather low, which is consistent with earlier studies carried out in Finland (Hänninen et al. 2000, EFSA 2006). Compared with many other countries the prevalence of *Campylobacter* in Finnish poultry products seems to be relatively low (Suzuki, Yamamoto 2009). However, the results can not be directly compared because of the different detection methods used. The low occurrence of *Campylobacter* in Finnish retail poultry meat products probably reflects the low *Campylobacter* prevalence observed in the broiler slaughter batches in Finland, which, since 2004, has been 6.5% in all broiler flocks slaughtered between June-October on average (Zoonosis Centre 2012). Prevention of *Campylobacter* at the farm level by a high level of biosecurity control and hygiene are the probable reasons for the low prevalence in Finland (Perko-Mäkelä 2011). The higher prevalence indicated in the meat products compared with the prevalence in broiler flocks could however be speculated to be due to the possibility of negative flocks becoming contaminated at the slaughter process (Perko-Mäkelä et al. 2009). Still, it has been reported that *Campylobacter* contamination of poultry can occur at all stages of the production chain (Perko-Mäkelä 2011). Because *Campylobacter* were recovered from the retail poultry meat products used in study I, the results indicate that *Campylobacter* might be transmitted into the broiler meat production chain also in Finland during processing.

As expected, a seasonal variation observed in *Campylobacter* incidence in broiler flocks in Finland was also detected in the retail poultry meat products of study I. Boysen, Vige & Rosenquist (2011) found that season had a significant effect on the occurrence of *Campylobacter* in fresh, chilled, Danish broiler meat at the retail level, even though flock prevalence was also found to be a strong predictor for *Campylobacter* prevalence. The explanation for the direct effect of season was not, however, linked directly to broiler flock prevalence, but assumed to be found in the production line before the retail level (Boysen et al. 2011). In Finland, the exact reason for the seasonal variation remains unknown, but several factors are probably important. Mean temperature and rainfall, for example, and the higher and earlier *Campylobacter* infection pressure from outside the broiler house might affect the flock prevalence during the warmer months, whereas cold winters on the other hand might decrease the environmental load of *Campylobacter* (Hald et al. 2004, Rushton et al. 2009, Jore et al. 2010).
In study I, Campylobacter were detected also in marinated poultry meat products. Regarding this, it is important to be aware that most of the retail poultry meat sold today in Finland is marinated (Björkroth 2005). To exclude the effects of season on the Campylobacter prevalence in marinated poultry meat products, these products were included in the samples collected from the retail shops each month during the sampling period. Campylobacter has been detected in marinated poultry products in other studies, too (Atanossava et al. 2007, Lindmark et al. 2009, Baumgartner, Felleisen 2011). Baumgartner and Felleisen (2011), however, indicated low Campylobacter contamination rates in marinated broiler meat products. They speculated this to be because of meat processing, where Campylobacter were exposed to oxygen for longer times or where spices or acid components of marinades contributed to the reduction in Campylobacter counts. In contrast, Perko-Mäkelä et al. (2000) found no difference in the survival of Campylobacter between marinated and non-marinated broiler meat. Also in study I, Campylobacter was detected in both marinated and non-marinated poultry meat products, indicating that marinating meat might not affect the survival of Campylobacter.

The reason why Campylobacter was not detected in any of the poultry products with meat of foreign origin in study I could be that foreign meat is frozen when imported to Finland. Baumgartner and Felleisen (2011), for example, reported that the proportion of broiler meat samples contaminated with Campylobacter was significantly lower for deep frozen than for refrigerated material in their study. In study I, a relatively high Campylobacter prevalence was indicated in the poultry meat products with skin and bone, compared to the overall prevalence in the products. Correspondingly, studies have shown that the levels of Campylobacter surface contamination in broiler meat products are far larger than those of deep tissue contamination (Scherer et al. 2006, Luber, Bartelt 2007). Interestingly, Baumgartner and Felleisen (2011) reported that a combination of skinning and deep-freezing seemed to be highly effective to reduce the Campylobacter load on broiler meat.

Studies showing that the Campylobacter levels are high especially on the surfaces of contaminated broiler meat products suggest that cross-contamination from the meat surface is the risk for gaining the infection, rather than eating broiler that is perceived to be undercooked (Scherer et al. 2006, Luber, Bartelt 2007). Consumers are still responsible for the use of proper food handling techniques in domestic kitchens. In general, Campylobacter and also Arcobacter are rather easily inactivated by heat treatments. For example, study IV showed that C. jejuni NCTC 11168 and A. butzleri ATCC 49616 were inactivated within 24 h at 48ºC in broth, which corresponds to studies of Blankenship and Craven (1982), ICMSF (1996), Hilton et al. (2001), D'Sa and Harrison (2005), Habib et al. (2010) and Al Sakkaf and Jones (2012). It has been reported that approximately 25% of domestic refrigerators may have temperatures exceeding 10ºC (Laguerre et al. 2002). In study IV, only a moderate decrease in the C. jejuni NCTC 11168 and A. butzleri ATCC 49616 counts was seen after 24 h incubation at 10ºC in broth. Comparative results have been published by Phillips and Duggan (2002) and by Murphy et al. (2006). Kjeldgaard et al. (2009) reported growth of A. butzleri at 10ºC in CMJ. Chilling and freezing have been shown to maintain a small number of live Campylobacter in broiler meat, but to still reduce their counts rapidly (Solow et al. 2003, Bhaduri, Cottrell 2004, Georgsson et al. 2006, Pintar et al. 2007, El-Shibiny et al. 2009, Oyarzabal et al. 2010, Sampsers et al. 2010). Thus, it is highly recommended to store fresh broiler meat at temperatures lower than 10ºC. The maintenance of the refrigeration chain during transport should also be ensured.

The popularity of consumption of especially of marinated broiler and turkey meat has been increasing in Finland during recent years (http://www.siipi.net). In conclusion, study I indi-
cates that such products can be contaminated with *Campylobacter* with a low prevalence in Finland. In the summer, however, there is a high seasonal peak in the prevalence. *Campylo-

bacter* contamination might lead to human infection if the food is not handled properly by the consumer. The *Campylobacter* detection methods used in study I provided only information on the absence/presence of *Campylobacter* in the retail poultry meat products studied. Given the fact that the numbers of *Campylobacter* cells are highly important for the risk of human illness, quantitative methods should be used for the detection of the occurrence of *Campylobacter* in Finnish poultry meat products.

6.2 PCR ASSAY FOR THE DETECTION OF *CAMPYLOBACTER* IN MARINATED POULTRY MEAT PRODUCTS

The popularity and the variety of marinated poultry meat products in Finland are high, and thus reliable methods for the detection of *Campylobacter* in these products are of interest to laboratories in routine work and research. In study I, a PCR assay was compared with the conventional culture method for the detection of *Campylobacter* in the poultry meat products studied. Good correlation in the comparison between the PCR and the cultural detection by selective enrichment was found. In one sample, the result using culture method was positive, but in PCR the result was negative. This false-negative result may be explained by the fact that the size of the subsample used for the culture method was larger than in the PCR method. Seven samples gave a positive result with PCR after enrichment, whereas the culture result was negative. However, sequencing revealed five of the PCR products to be *C. jejuni*. PCR methods detect also dead or non-viable *Campylobacter*. This might have influenced the results, especially in samples which have been frozen or subjected to low pH marinades. The samples, however, had been taken from both marinated and non-marinated products (with or without skin), and none of the samples had been frozen. Another reason for the culture negative/PCR positive results might be the abundant growth of the background flora observed on mCCDA plates in 5% of all samples, which in some cases made *Campylobacter* detection impossible.

Susceptibility to inhibitory substances, which can be found in high levels in foods, is a great disadvantage of PCR. Lilja and Hänninen (2001), for example, reported problems in the preparation of marinated broiler samples prior to PCR analysis. In study I, an original DNA isolation kit protocol was modified to be performed especially on marinated poultry meat products. For this, a pre-centrifugation step was performed on the samples in order to exclude most of the lipids and fat from the marinade and the poultry meat skin. As DNA isolation was performed manually with a DNA isolation kit for automated DNA isolation, further optimization compared to the manufacturer’s instructions was necessary to make the manual DNA isolation as sensitive as the automated isolation. The most important step was found to be vigorous vortexing of the samples in lysis buffer. To optimize DNA isolation from marinated poultry products, one possibility could be to add fat digesting enzymes to the bacterial pellet just prior to DNA isolation.

In study I, to control the PCR reaction in the different samples studied, an internal control PCR was run simultaneously with the target DNA. In both PCR reactions, performed on DNA isolated directly from the samples and on DNA isolated from the enrichment media, the internal control gave a band of the same intensity showing no evidence of inhibition of the PCR reaction. However, the detection limit of the direct PCR was about 700 cfu/ml. This is high compared to other direct PCR assays for *Campylobacter*. Lund et al. (2003), for example, reported a detec-
tion limit of approximately 40 cfu/ml in faecal material. As inhibition of the PCR reaction does not seem to be the problem, it may also be possible that *Campylobacter* are preferably located in the fatty part of the sample and so many bacteria might be lost since this part is removed before DNA isolation. On the other hand, the fat and or protein still present in a sample after pre-treatment could interfere with DNA isolation. As the detection limit of the present direct PCR was too high compared to the normally quite low amount of *Campylobacter* in food and retail poultry samples, it was necessary to perform a combination of enrichment and PCR assay.

Traditional conventional culture methods include enrichment and plating steps followed by isolation of the bacterium and biochemical identification of the isolate. In conclusion, the PCR method used shortens time compared to these methods even though enrichment of the samples was necessary and could therefore be used for detection of *Campylobacter* in poultry meat products. The optimized DNA isolation method could be used in studies concerning marinated poultry meat products.

6.3 The Effects of Various Ingredients and Conditions in the Reduction of Strains of *Campylobacter* Species in Broiler Meat

Campylobacter constitutes a major public health problem worldwide and many efforts have been directed against finding appropriate intervention methods to control *Campylobacter* during all the steps of the broiler meat production chain. Despite the efforts, it has been shown that elevated levels of *Campylobacter* can be recovered from broiler carcasses at the slaughterhouse and transmitted into the food chain during further processing (EFSA 2010a). Rather than reducing *Campylobacter* prevalence in positive broiler flocks, it is thought the most effective way to control *Campylobacter* in broiler is to reduce their levels on carcasses after evisceration (Hermans et al. 2011). One potential decontamination technique could be to use UV irradiation to reduce the counts of *Campylobacter* in the contaminated broiler carcasses at the slaughterhouse.

In study II, it was shown that UV irradiation was very effective in reducing *C. jejuni* E1 1347 counts on agar plates. Other authors also found UV to be effective in reducing other bacteria such as *E. coli* or *Salmonella* spp. on the surfaces of agar plates (Stermer et al. 1987, Sumner et al. 1996, Wong et al. 1998, Kim et al. 2002, Yaun et al. 2004). UV treatment has been effective in reducing *C. jejuni* in liquid samples, too (Butler et al. 1987, Haughton et al. 2011). It seems that agar surfaces and liquids have properties that do not reduce the penetration ability of UV light. This could explain why UV is so effective on smooth surfaces (Lyon et al. 2007). However, on broiler meat and skin, UV irradiation was less effective in eliminating *C. jejuni* E1 1347 than on agar plates. The reductions achieved with UV irradiation in many earlier studies with other bacteria on meat have been more effective compared to this study (Stermer et al. 1987, Wong et al. 1998, Kim et al. 2002). Lyon et al. (2007), for example, showed reductions of about 2 log in *L. monocytogenes* on broiler breast fillets after UV treatment. However, Haughton et al. (2011) obtained a reduction of 0.76 log cfu/g in *C. jejuni* counts on raw broiler fillets following UV treatment of up to 0.192 joules per square centimetre (J/cm²), which concurred with the findings of this study. Chun et al. (2010) reported a 1.26 log cfu/g reduction of *C. jejuni* on skinless broiler breast following UV irradiation of 0.50 J/cm², which is a much greater dose compared to that used in study II (32.9 mW/s/cm² = 0.0329 J/cm²) and to the study of Haughton et al. (2011). This suggests that increasing the UV dose in study II might have improved the decontamination
potential of this technology for broiler meat. In study II, UV irradiation had no deleterious effects on the sensory quality of broiler meat which has been reported by Stermer et al. (1987), Wallner-Pendleton et al. (1994), Lyon et al. (2007), Chun et al. (2010), and Haughton et al. (2011), too. On broiler carcasses, UV irradiation was even less effective in reducing \textit{C. jejuni} E1 1347. A 61\% reduction in \textit{S. Typhimurium} counts on poultry carcasses was observed by Wallner-Pendleton et al. (1994), which is almost similar to the findings of our study with \textit{C. jejuni} E1 1347, where the maximum % reduction on broiler carcasses was 62.7\%. Using UV irradiation in combination with activated oxygen did not significantly increase the reducing effects of UV radiation on broiler carcasses. This could be due to the short treatment times used in this study (only up to 18 s). Overall, the modest reductions gained in study II could be because the cut edges in the meat and the uneven shape of carcasses probably created shadows and interfered with the penetration of UV radiation as observed by Lyon et al. (2007). Lower doses and shorter treatment times used in the present study, and the testing of other bacteria than \textit{C. jejuni} in the other studies, might also explain the differences compared to earlier studies. In addition, the initial concentration of the present \textit{Campylobacter} inoculants was higher than could be expected to occur on naturally contaminated broiler carcasses (EFSA 2010a). Furthermore, the effects of UV irradiation on \textit{C. jejuni} strains of different origin and at different growth stages might differ greatly (Yaun et al. 2003, Haughton et al. 2011). Study II was conducted using just one \textit{C. jejuni} strain. In future, in order to gain valid results for \textit{Campylobacter} in general, more strains of \textit{Campylobacter} species should be included in decontamination studies, for example, as a mixture.

Another potential technique to control \textit{Campylobacter} in broiler meat products could be the use of wines and juices as antimicrobial marinade ingredients. It would be a consumer-friendly \textit{Campylobacter} reduction strategy, which could be used in just prior to consumer handling. The antimicrobial property of wine against \textit{C. jejuni} was reported by Carneiro et al. (2008), who suggested that the immersion of food, for example, broiler meat, in wine as a marinade, leads to a reduction in the number of viable \textit{C. jejuni} cells eventually present, thus lowering the risk of cross-contamination of cooked foods. In study III, the red and white wines used had very high bactericidal effects against all the \textit{Campylobacter} strains studied. Other studies have also reported the antimicrobial effects of wines against \textit{Campylobacter}, but with differences in inactivation rates (Carneiro et al. 2008, Birk, Knochel 2009, Ganan et al. 2009). This might be due to differences in the bacterial strains and growth phases, cultivation media and study conditions, and variations in wine composition. Birk and Knochel (2009), for example, showed \textit{C. jejuni} to survive 15 min in red wine at 4°C, but when raising the marinating temperature to 42°C, the bacterium was not detectable after 1 min. Grape and tomato juices did not reduce the counts of the \textit{Campylobacter} strains studied as effectively as the wines in study III, even though previous studies have shown that the juices possess antimicrobial activity against different food-pathogens, such as \textit{Listeria} spp. and \textit{E. coli} (Harding, Maidment 1996, Eribo, Ashena 2003, Rhodes et al. 2006, Hakovirta 2008). Just and Daeschel (2003), however, also showed that bacteria survive longer in grape juice than in red wine. Since the juices and wines had quite similar pH values in their study and in our study III, it seems that besides the ethanol in wine, also the type of acid and the specific composition of the liquid play a significant role in survival of \textit{Campylobacter}. The commercial marinade in study III had bactericidal effects against all the \textit{Campylobacter} strains studied. This concurred with the results of Perko-Mäkelä et al. (2000), who found that \textit{C. jejuni} were inactivated within 48 h in a plain marinade.
In study III, when testing the antimicrobial effects of wines on the reduction in the *Campylobacter* strains inoculated on the surface of broiler meat, the effects were largely reduced. Correspondingly, Perko-Mäkelä et al. (2000), Björkroth (2005), Birk et al. (2007, 2010) all found the antibacterial effects of marinades or wines on *Campylobacter* less pronounced on broiler meat than the effects in liquid. They all speculated this to be due to the buffering capacity of the meat. In fact, after lowering the pH by adding organic acids onto the meat surface, Birk et al. (2010) observed a rapid rise in pH within a few minutes, which to some extent perhaps neutralized the antibacterial effect. In general, *Campylobacter* strains are recognized as being sensitive to low pH values (Jackson et al. 2009, Silva et al. 2011). The results of study IV also surprisingly indicate that *C. jejuni* NCTC 11168 seems to be slightly more acid-tolerant (at pH 4.0 and pH 5.0) than the close phylogenetic relative *A. butzleri* ATCC 49616. Earlier it has been reported that the responses of *Arcobacter* and *Campylobacter* to different pH values are quite comparable (Chaveerach et al. 2003; Jackson et al. 2009, Hilton et al. 2001, D’Sa, Harrison 2005, Cervenka 2007). However, in the pH studies, as also in the wine studies, the survival of bacteria depends not only on the pH value, but also on the specific composition of the test medium, i.e. the acid used (Cervenka 2007; Shaheen et al. 2007). The temperature used in studies regarding the antimicrobial effects of wines might also affect the results. Birk and Knochel (2009), for example, submerged pork meat medallions inoculated with *C. jejuni* in red wine at 4°C or in warm red wine at 42°C for 15 min prior to storage in red wine at 4°C and found that under these conditions, the viable counts of *C. jejuni* were reduced by approximately 3.5 log units or close to 6 log after 3 days of storage at 4°C, respectively. Increasing the temperature and exposure time of *Campylobacter*-inoculated broiler meat to wines over 48 h in study III might have also led to more effective results. Recently, Birk et al. (2010) succeeded in composing a marinade that had both an antimicrobial effect on *C. jejuni* on broiler meat and resulted in an acceptable taste of the prepared meat. This indicates that antimicrobial marinades might still be a potential strategy to control *Campylobacter* in broiler meat products, despite the results gained in study III.

In conclusion, due to the low infective dose of *C. jejuni* in humans (Black et al. 1988) and the modest reductions achieved in the strains of *Campylobacter* species studied, the use of UV irradiation or wines and juices as antimicrobial marinade ingredients cannot be recommended as the primary decontamination methods to control *Campylobacter* in broiler meat. They could, however, be used as part of a sequential risk reduction strategy, because a 2 log reduction in *Campylobacter* levels on broiler carcasses has been predicted to reduce the risk of human exposure and associated illness (Havelaar et al. 2007, Rosenquist et al. 2009, Haughton et al. 2011). Furthermore, Hermans et al. (2011) reported that a 1-, 2- or 3-log reduction in *Campylobacter* counts on carcasses could reduce the incidence by 48%, 85% and 96% respectively.

Specifically, UV is an effective decontamination method for reducing *C. jejuni* on packaging materials and food contact surfaces associated with the preparation of raw broiler meat for sale (Haughton et al. 2011). Wines could perhaps be used as antimicrobial ingredients in broiler meat marinades, together with the addition of further bactericidal agents to control *Campylobacter* in broiler meat. Marinades commonly contain other substances, such as spices, vinegar, etc., that might work synergistically with wines and increase the antimicrobial effects against *Campylobacter* in poultry meat preparations (Carneiro et al. 2008).
6.4 CROSS-PROTECTIVE EFFECT OF STRESS ADAPTATION IN A. BUTZLERI

The ability of Arcobacter and Campylobacter to persist and survive in the broiler production chain when exposed to multiple stress conditions is not fully understood (Humphrey et al. 2007, Collado, Figueras 2011). Adaptation of these bacteria to heat, cold or acid stresses might affect their survival in food processing environments and should be taken to account when designing new food preservation strategies that contain these conditions.

Study IV is the first time cross-protection is reported for A. butzleri ATCC 49616. Previously, specific adaptive responses and cross-protection against different stress conditions have been reported for C. jejuni (Murphy et al. 2003, Mihaljevic et al. 2007, Reid et al. 2008, Klančnik et al. 2009, Ma et al. 2009). However, other improvements in the bacterial survival after any adaptations were not found in study IV, except the one reported for A. butzleri ATCC 49616. Use of bacterial strains always from the same growth conditions and growth phase might explain why specific adaptive responses or more cross-protection were not found in this study. Murphy et al. (2003), for example, showed that the induction of an adaptive tolerance response in C. jejuni primarily depended on the growth phase of the cells. In addition, the growth of C. jejuni in different media can lead to different adaptive responses (Murphy et al. 2005). Furthermore, study IV was conducted using bacterial collection strains which had been subjected to multiple subcultivations. The survival of wild type strains might be significantly different. Thus, additional work using more bacterial strains from different sources, growth conditions and growth phases is needed. Moreover, the cross-protective effect reported should be studied further at gene expression levels. Interestingly, in study IV the heat stress adapted A. butzleri ATCC 49616 cells were more resistant to subsequent lethal acid stress than non-adapted cells only at the 1 h time-point. Ma et al. (2009) also reported that acid, acid and aerobic, or starvation adapted cells survived further acid stress more effectively than the non-adapted cells only in some C. jejuni strains used in the study. In addition, the stress-induced adaptive tolerance response in further acid stress was time dependent, i.e. detected only at certain time-points in their study (Ma et al. 2009). Also different periods and conditions of adaptations were used here, compared to earlier studies. Furthermore, in the pH studies, the survival of bacteria depends not only on the pH value, but also on the acid and the test medium used (Cervenka 2007; Shaheen et al. 2007).

In conclusion, heat stress adapted A. butzleri ATCC 49616 cells were shown to be more resistant to subsequent lethal acid stress than non-adapted cells at the 1 h time-point. This is the first time cross-protection is reported for A. butzleri. This should be taken into account when designing food preservation strategies containing these conditions. Moreover, the cross-protective effect found in A. butzleri ATCC 49616 should be investigated further at the gene expression level in order to elucidate the molecular mechanisms behind this phenomenon reported.
7. CONCLUSIONS

- *Campylobacter* prevalence in Finnish retail poultry meat products is low. A high seasonal peak is observed in the products in August. *Campylobacter* was detected in marinated poultry meat products also, which indicates that marinating meat might not affect the survival of *Campylobacter*.

- The PCR assay together with the optimized DNA isolation method used for the detection of *Campylobacter* in marinated and non-marinated retail poultry meat products is faster than microbiological analyses, even though enrichment of the samples is necessary. Thus, it could be used for *Campylobacter*-detection in these types of samples.

- UV irradiation reduced the counts of *C. jejuni* E11347 in broiler meat, skin or carcasses only modestly, but it did not affect the sensory quality of broiler meat.

- The exposure of the strains of *Campylobacter* species studied to wines significantly reduced the number of viable cells. However, the antimicrobial activity of wines was strongly reduced when testing their effects on the *Campylobacter* strains inoculated on broiler meat. Juices did not reduce the bacterial counts as effectively as the wines in liquid conditions.

- Due to the low infective dose of *C. jejuni* in humans and the modest reductions achieved for the strains of *Campylobacter* species studied, the use of UV irradiation or wines and juices as antimicrobial marinade ingredients cannot be recommended as the primary decontamination methods to control *Campylobacter* in broiler meat, but might be used as part of a sequential risk reduction strategy to reduce the counts of *Campylobacter*. UV irradiation might be used in combination with other decontamination techniques, together with proper processing plant sanitation and hygiene. Wines could be used as antimicrobial ingredients in broiler meat marinades, together with the addition of further bactericidal agents.

- Heat stress adapted *A. butzleri* ATCC 49616 cells were shown to be more resistant to subsequent lethal acid stress than non-adapted cells at the 1 h time-point. During this study, cross-protection is reported for *A. butzleri* for the first time. This phenomenon should be taken into account when designing food preservation strategies containing these conditions.

- To further evaluate the significance of poultry meat as a source of *Campylobacter* in Finland, their occurrence in the meat products should be quantified. Despite the attempts of this study, no sufficiently effective way to reduce the counts of *Campylobacter* in broiler meat was found. Thus, further decontamination methods should be studied in the future. Moreover, the cross-protective effect found in *A. butzleri* ATCC 49616 should be investigated further at the gene expression level in order to elucidate the molecular mechanisms behind this phenomenon reported.
8. REFERENCES

SURVIVAL AND REDUCTION OF STRAINS OF CAMPYLOBACTER SPECIES IN BROILER MEAT

PAULIINA ISOHANNI

Doorduyn, Y., Van Pelt, W., Siezen, C.L., Van Der Horst, F., Van Duynhoven, Y.T., Hoeebe, B. & Janssen, R. 2008, “Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases”, *Epidemiology and infection*, vol. 136, pp. 1225-1234.

EFSA Panel on Biological Hazards (BIOHAZ). 2011, “Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain”, *EFSA Journal*, vol. 9, 2105.

Vally, H., Hall, G., Scallan, E., Kirk, M.D. & Angulo, F.J. 2009, “Higher rate of culture-confirmed Campylobacter infections in Australia than in the USA: is this due to differences in healthcare-seeking behaviour or stool culture frequency?”, *Epidemiology and infection*, vol. 137, pp. 1751-1758.

