Spatial Factors Play a Major Role as Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva

Boieiro, Mario

2013-05-27

http://hdl.handle.net/10138/40115
https://doi.org/10.1371/journal.pone.0064591

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.
Spatial Factors Play a Major Role as Determinants of Endemic Ground Beetle Beta Diversity of Madeira Island Laurisilva

Mário Boieiro¹*, José C. Carvalho², Pedro Cardoso², Carlos A. S. Aguiar¹, Carla Rego², Israel de Faria e Silva¹, Isabel R. Amorim², Fernando Pereira², Eduardo B. Azevedo⁶, Paulo A. V. Borges², Artur R. M. Serrano¹

Abstract

The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (b_{repl} - species turnover and b_{rich} - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (b_{repl}) and 40.7% of species richness variation (b_{rich}) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: b_{repl} was influenced by climate, disturbance and soil organic matter content whilst b_{rich} was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both b_{repl} and b_{rich}, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles.

Editor: Peter Shaw, Roehampton University, United Kingdom

Received February 11, 2013; Accepted April 9, 2013; Published May 27, 2013

Copyright: © 2013 Boieiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Financial support was provided by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through projects PDCT/BIA-BDE/59202/2004 and PTDC/BIA-BEC/99138/2008 (http://www.fct.pt/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mboieiro@fc.ul.pt

Introduction

The variation in species richness and composition across space and/or time has long been a central issue in biogeography and macroecology. During the last decade this subject became a key research area where major efforts have been addressed to measure the degree of biological communities’ distinctness, to understand the underlying causes of compositional heterogeneity and to clarify the concepts and the methods used in this kind of studies [1–6]. The concept of beta diversity, originally defined as “The extent of change of community composition, or degree of community differentiation, in relation to a complex-gradient of environment, or a pattern of environments” [7], has been used to refer to a variety of phenomena that somehow translate the compositional heterogeneity of species assemblages among places [4]. Recently, Anderson et al. [6] provided a framework for the analysis of beta diversity taking in consideration a set of mission statements and proposed that two types of beta diversity should be considered - the change in community structure along a given gradient (turnover) and the variation in community structure among sampling units within a given area without reference to a particular gradient or direction. Independently of the perspective, beta diversity may be conceptualized as the result of two basic processes: i) the replacement of species, and ii) species richness differences among assemblages [8–14]. Therefore, it is useful to assess the relative role of each component in generating beta diversity and evaluate how different factors and scales determine their patterns. A number of ecological, evolutionary and historical factors are known to be determinant for species richness patterns and differences in species richness and composition between habitats. For instance, Nekola & White [15] identified two main causes for the increasing dissimilarity among assemblages along geographic distance. According to these authors, the decrease in environmental similarity with distance may be due to competitive
species sorting as a result of interspecific differences in physiologi-
cal/ecological requisites (the niche difference model). Further-
more, they argued that the decrease in similarity of species
assemblages along geographic distances may translate the dispersal
of organisms across landscapes, a process strongly influenced by
the spatial context and configuration of habitats together with time
(the model of temporal and spatial constraint). In the last few years
many studies have focused in disentangling the relative importance
of environmental and spatial factors in explaining the differences
in species richness and composition between sites and they have
also emphasized that the role played by each factor in structuring
communities is strongly associated with the scale of analysis [16–
20]. Spatial scale dependency of the factors driving beta diversity
has been clearly outlined in recent studies for a variety of
ecological and taxonomic groups (e.g. [20–22]).

Oceanic island ecosystems have proved to be very useful for
the understanding of the role of different phenomena in shaping
community assembly [23]. These ecosystems are, in general,
biologically simpler than mainland counterparts, well-defined
geographically and usually their history can be traced back to
their origin. As such, comprehensive studies on island biodiversity
have helped to clarify the role of ecological and evolutionary
phenomena in shaping spatial patterns of species richness and
composition (e.g. [24–27]). The Macaronesian archipelagos
harbour a unique type of laurel forest, the Laurisilva, which is a
relic of the subtropical forests that covered the west Mediterranean
area during the Tertiary [28]. Madeira Island comprises the most
pristine and largest continuous area of Laurisilva with a large
number of endemic species associated, particularly insects [29,30].

Beta diversity studies on forest insects are still scarce even for mainland
counterparts, well-defined
geographically and usually their history can be traced back to
their origin. As such, comprehensive studies on island biodiversity
have helped to clarify the role of ecological and evolutionary
phenomena in shaping spatial patterns of species richness and
composition (e.g. [24–27]). The Macaronesian archipelagos
harbour a unique type of laurel forest, the Laurisilva, which is a
relic of the subtropical forests that covered the west Mediterranean
area during the Tertiary [28]. Madeira Island comprises the most
pristine and largest continuous area of Laurisilva with a large
number of endemic species associated, particularly insects [29,30].

Beta diversity studies on forest insects are still scarce even for mainland
counterparts, well-defined
gеographically and usually their history can be traced back to
their origin. As such, comprehensive studies on island biodiversity
have helped to clarify the role of ecological and evolutionary
phenomena in shaping spatial patterns of species richness and
composition (e.g. [24–27]). The Macaronesian archipelagos
harbour a unique type of laurel forest, the Laurisilva, which is a
relic of the subtropical forests that covered the west Mediterranean
area during the Tertiary [28]. Madeira Island comprises the most
pristine and largest continuous area of Laurisilva with a large
number of endemic species associated, particularly insects [29,30].

In this study we examine the relative roles of species
replacement and species richness differences in generating beta
diversity patterns of ground beetles occurring in a relic forest, the
Madeira Laurisilva. We also assess the effects of environmental
and spatial variables on the two components of beta diversity and
the effect of spatial scale on the relative importance of those
variables on beta diversity patterns.

Materials and Methods

Ethics Statement

Permission to conduct fieldwork in Laurisilva was obtained from
the Madeira Natural Park and two nature wardens accompanied
the study. Field studies did not involve endangered or protected
species and were carried out in accordance with national and
international laws.

Study Area

Our study took place in Madeira, an oceanic island located
600 Km off the Atlantic coast of North Africa, with an area of 742
km² and a maximum altitude of 1861 m (at Pico Ruivo). Madeira
Island dates back to the late Miocene (~5.6 My) with the most
recent volcanic activity recorded 6,000–7,000 years ago. One
distinctive feature of Madeira landscape is the presence of a relic
subtropical forest - the Laurisilva - a vegetation type that originally
covered much of the Mediterranean Basin before climate became
much drier and harsher. The Laurisilva is a forest-type dominated
by sclerophyllous laurel tree species from the genera Apollonias,
Laurus, Os time and Persia, together with Clethra arborea, Hexa
peplo and Morella faya [28,36,37]. In Madeira, the Laurisilva is located
mainly in the northern part of the island usually between 300 and
1400 meters altitude, with the most pristine fragments being
generally found in areas of difficult access [28,36]. Madeiran
orography played a key role on the survival of Laurisilva by
hindering human settlement in many areas of the island. Aware of
the natural legacy of the island, local authorities created in 1981
the Natural Park of Madeira, a protected area covering about two-
thirds of Madeira Island and including almost the whole area of
Laurisilva. More recently, due to its outstanding natural value,
Madeira Laurisilva was included in the World Heritage List [30]
and the same reason has led to the inclusion of Madeira
archipelago in the Mediterranean biodiversity hotspot [39,40].

This study sampled 26 sites distributed throughout Madeira
Laurisilva (see details on sampling site locations in Appendix S1). Site
selection was constrained by the possibility of applying the
sampling protocol and aimed at sampling as extensively as possible
and to include isolated forest fragments. Furthermore, site
selection was restricted mostly to pristine or near pristine forest
fragments. The dominant tree species in the study areas were the
Macaronesian endemics Clethra arborea, Erica platyodon maderincola,
Laurus novocanaries, Os time foetens and Persia indica, and the native
Morella faya. A more detailed description of the geography and
floristic composition of the forest fragments where sampling took
place can be found in Neves et al. [36].

Ground Beetle Sampling

Ground beetles (Coleoptera, Carabidae) are a charismatic
beetle group frequently used as bioindicators in biodiversity and
conservation studies [41,42]. In spite of the large amount of
literature on European forest carabids, there is still a gap on the
knowledge on the assemblages associated with Laurisilva. We
sampled ground beetles by applying a standardized sampling
protocol developed for epigean invertebrates. This methodology
proved to be both efficient and effective in sampling ground
beetles in native laurel forest fragments in the Azorean islands,
where it has been repeatedly used in inventorying and monitoring
programs (e.g. [23,43,44]). In each site a linear transect of 30
pitfall traps (plastic cups with 4.2 cm diameter and 7.8 cm height)
between them by 5 meters was set. Pitfall traps were filled
either with ethylene glycol (10%) or Turquin solution [43],
together with some drops of detergent to reduce surface tension,
and were then set along a linear transect with the two solutions
disposed in an alternate way. The traps were covered with a plastic
cover (15 cm diameter) fixed 3–4 cm aboveground to prevent
flooding and loss of specimens due to heavy rain. The sampling
took place during May–June, a period when a high number of
ground beetle species is active, during two consecutive years: sites
1–20 were sampled in 2006 and sites 21–26 in 2007 (Appendix
S1). Traps were active in the field for a two-week period and then
the samples were brought to the lab, where the specimens were
sorted and identified to species level. All specimens were deposited
in the entomological collection of the Animal Biology Department
(Faculty of Sciences, University of Lisbon, Portugal).
captures of ground beetle species that have arboreal habits were not considered for the analysis.

Partitioning Beta Diversity
To quantify the variation in species composition between sites we performed a beta diversity partitioning analysis [12–14]. For a pairwise comparison of sites, the total number of species may be decomposed into three quantities: the number of species common to both sites (a), the number of species unique to each site, (b) and (c). This value, standardized to 0 mean and 1 SD to avoid scale effects. The final variables selected for the environmental matrix were: Litter, litter depth; NumSpp, number of dominant tree species; OrgMat, percentage of organic matter content in soil; Durb, nearest distance to urban areas; Disturb, percentage of landscape disturbance. Prior to the analysis, Disturb was log-transformed to improve normality. All variables were standardized to 0 mean and 1 SD to avoid scale effects. The final variables selected for the environmental matrix were: Litter, NumSpp, Soil_pH, OrgMat, Durb, Altitude, Slope, Climate_PC1, Climate_PC2 and Disturb (Table 1).

Environmental Variables
A number of environmental variables were collected during fieldwork to characterize sampling sites and such information was complemented by accessing a 100 m resolution GIS database for Madeira Island. In each study site we recorded the depth of forest litter (Litter), the number of dominant tree species (NumSpp) and we collected soil samples for pH (Soil_pH) and organic matter content (OrgMat) analyses. These variables were selected because they proved to play a role on the distribution and activity of forest ground dwelling arthropods in previous studies (e.g. [45–48]). Furthermore, the following climatic and physiographic variables were obtained from the GIS database for Madeira: nearest distance to urban areas (Durb), altitude (Altitude), average slope (Slope), annual precipitation, minimum and maximum relative humidity, and minimum and maximum annual temperature. Madeira Island local climate data was obtained from a model developed in a GIS environment following the methodology proposed by Azevedo [49] for island ecosystems. Due to the high correlation among the climatic variables, we combined them into two factors by principal component analysis (PCA). From the PCA, we extracted the first two principal component eigenvectors (PC1_climate and PC2_climate) that together explained 94.6% of the variability in climate data. The first factor (PC1_climate) explained 74.2% of the variability in climatic data (eigenvalue = 3.7123) and represented a gradient of increasing temperature (negative scores) against an increasing gradient of relative humidity (positive scores). The second factor (PC2_climate) explained 20.4% of the variability in climatic data (eigenvalue = 1.0186) and represented a gradient of increasing precipitation (positive scores) against higher values of temperature and relative humidity (negative scores).

A landscape disturbance variable (Disturb) was created following a recently proposed metric based on the attributes of landscape matrix [50]. This variable corresponds to a local index of disturbance by taking into account the level of disturbance in the surrounding areas. It was calculated, in a first instance, by attributing a score to each habitat type found in Madeira and taking in consideration the increasing level of disturbance detected among them. The scores were defined as follows: Natural forests = 0; Naturalized vegetation/Rocky areas = 1; Exotic forest = 2; Pastures = 3; Orchards = 4; Urban/Industrial = 5. Then, the landscape disturbance index of each 100×100 m grid cell was calculated using the following formula:

\[D_{ij} = \left(\frac{2I_{ij} + \sum_{a=1}^{r} \sum_{m=1}^{c} \frac{L_{a,m}}{d_{ij}(a,m)}}{2 \max \sum_{a=1}^{r} \sum_{m=1}^{c} \frac{\max b_{ij}(a,m)}{d_{ij}(a,m)}} \right) \times 100 \]

where:
- \(D \) = landscape disturbance of the cell;
- \(I \) = local disturbance of each cell;
- \(r \) = number of rows in the map;
- \(c \) = number of columns in the map;
- \(d \) = distance between two cells;
- \(max \) = maximum theoretical value of disturbance each cell may take (5 in the present case).

It is important to emphasize that the landscape disturbance index accounts for distance-dependent effects of disturbance, double weights the value of the focal cell compared with the adjacent ones and the values obtained fit in a 0 (no disturbance) to 100 (maximum disturbance) scale. Prior to the analysis, Disturb was log-transformed to improve normality. All variables were standardized to 0 mean and 1 SD to avoid scale effects. The final variables selected for the environmental matrix were: Litter, NumSpp, Soil_pH, OrgMat, Durb, Altitude, Slope, Climate_PC1, Climate_PC2 and Disturb (Table 1).

Spatial Variables
The spatial variation in our dataset was modeled using Moran’s Eigenvector Maps (MEM), following a data driven approach

| Table 1. Average (±S.D.) values of the selected environmental variables from the 26 study sites. |
|-----------------|-----------------|
| Variable | Average ± S.D. |
| Litter | 3.6 ± 1.2 cm |
| NumSpp | 3.7 ± 0.8 |
| Soil_pH | 5.4 ± 0.4 |
| OrgMat | 36.7 ± 13.4% |
| Durb | 216.7 ± 795.1 m |
| Altitude | 871.0 ± 197.3 m |
| Slope | 21.8 ± 13.6 |
| Precipitation | 1779.7 ± 547.6 mm |
| Relative humidity (maximum) | 97.5 ± 2.0% |
| Relative humidity (minimum) | 88.3 ± 7.1% |
| Temperature (maximum) | 15.9 ± 2.0°C |
| Temperature (minimum) | 10.4 ± 2.0°C |
| Disturb | 25.3 ± 3.4% |

Litter, litter depth; NumSpp, number of dominant tree species; OrgMat, percentage of organic matter content in soil; Durb, nearest distance to urban areas; Disturb, percentage of landscape disturbance.

doi:10.1371/journal.pone.0064591.t001

Ground Beetle Beta Diversity of Madeira Laurisilva
described in Dray et al. [51]. Basically, MEM allows obtaining a set of spatial descriptors (eigenvectors) from site coordinates, a network describing the connection between sites and a weighting scheme for the connections. We examined four ways of defining neighbour networks, corresponding to a hierarchy of increasing connectivity: minimum spanning tree, relative neighbourhood graph, Gabriel graph and Delaunay triangulation [32]. In order to weight the connections between sites we tested two different schemes: i) binary weights, in this case no spatial weights are required, sites are considered connected [1] or not [0]; and ii) weighting functions based on Euclidean distances among sites, assuming that a process influences local assemblages with an intensity decreasing with distance. Two weighting functions were tested: \(f1 = 1 / d \) and \(f2 = 1 - d / d_{\text{max}} \), where \(d \) represents the Euclidean distance between sites and \(d_{\text{max}} \), the maximum distance between two connected sites. In total we obtained 12 different spatial models. The positive eigenvectors of each model represent positive spatial correlation and were retained as explanatory spatial variables in subsequent analysis. All the procedures were carried out using the package spacomR [53] for the R language [54].

Data Analysis

We performed an analysis of biotic dissimilarity with geographic distance, which is the complement of distance-decay of similarity [15], by regressing the pairwise dissimilarity \(\beta_{\text{total}} \), \(\beta_{\text{repl}} \) and \(\beta_{\text{rich}} \) matrices against the Euclidean distances between sites. A Mantel test was then applied to assess the significance of the relationship between biotic dissimilarity and geographic distance [55]. Significance tests were performed by permutation (1000 permutations).

For the construction of the environmental and spatial models, the \(\beta_{\text{repl}} \) and \(\beta_{\text{rich}} \) dissimilarity matrices were regressed against environmental and spatial explanatory variables, using Canonical Analysis of Principal Coefficients (CAP). In order to construct the environmental model, we ran a forward selection procedure, using CAP, on the environmental dataset to select those variables with a significant contribution (P < 0.1 after 9999 random permutations) to explain variation in \(\beta_{\text{repl}} \) and \(\beta_{\text{rich}} \) dissimilarity matrices. We followed the recommendations proposed by Blanchet et al. [56] to avoid inflated Type I error and the overestimation of the amount of explained variance.

For modeling the spatial structure of \(\beta_{\text{repl}} \) and \(\beta_{\text{rich}} \) we used the procedure described in Dray et al. [51] to select the most parsimonious model from the initial set of 12 candidates. Briefly, we: i) calculated the positive MEM eigenvectors, representing positive spatial correlation; ii) used CAP scores to regress \(\beta_{\text{repl}} \) and \(\beta_{\text{rich}} \) against the MEM eigenvectors; iii) reordered the MEM eigenvectors according to their explanatory power; iv) entered MEM eigenvectors one by one into the model; and v) retained only the MEM eigenvectors that correspond to the regression model with the lowest corrected Akaike Information Criterion (AICc). When this procedure was done for all candidates, we retained the most parsimonious spatial model (lowest AICc).

Finally, we used variation partitioning to quantify the proportion of the variation in species replacement (\(\beta_{\text{repl}} \)) and richness differences (\(\beta_{\text{rich}} \)) explained by purely environmental, purely spatial and spatially structured environmental effects [57]. Partitioning was carried out through a series of partial CAP, using adjusted R\(^2\) values as suggested by Peres-Neto et al. [58]. The mantel tests, CAP and variation partitioning procedures were performed in the R statistical language [54] using the package ‘vegan’ [59].

Results

A total of 1025 individuals belonging to 31 ground beetle species were collected in this study. Endemic species were clearly dominant in all the assemblages, with a total of 25 species recorded, while native non-endemic and introduced species were found in much lower numbers, 4 and 2, respectively (see Appendix S2). The mean observed species richness per site was 4.9 (SD = 1.5), with a minimum of 3 species and a maximum of 8 species recorded in the 26 study sites.

Mean pairwise dissimilarity was 0.779 (SD = 0.170) for the \(\beta_{\text{total}} \) matrix, 0.573 (SD = 0.230) for the \(\beta_{\text{repl}} \) matrix and 0.206 (SD = 0.146) for the \(\beta_{\text{rich}} \) matrix. Moreover, overall dissimilarity \(\beta_{\text{total}} \) increased with geographic distance (intercept = 0.6848; slope = 0.0068; Mantel \(r = 0.3489 \); p = 0.001). However, by disentangling \(\beta_{\text{total}} \) in its two components, species replacement \(\beta_{\text{repl}} \) and richness differences \(\beta_{\text{rich}} \), we find contrasting results (Fig. 1). \(\beta_{\text{repl}} \) increases with geographic distance (intercept = 0.4545; slope = 0.0086; Mantel \(r = 0.3244 \); p < 0.001), whilst \(\beta_{\text{rich}} \) decreases (intercept = 0.2303; slope = -0.0017; Mantel \(r = -0.1039 \); p = 0.03).

Considering the influence of environmental variation over the species replacement component, the forward selection procedure selected four environmental variables: Disturb, OrgMet, climate_PC1 and climate_PC2. This model explained 15.5% of the variation in \(\beta_{\text{repl}} \), being climatic effects (climate_PC1 and climate_PC2) and the landscape disturbance index more important than organic matter (Fig. 2). To explain the spatial variation of \(\beta_{\text{repl}} \) the most parsimonious model was the one originating from a Gabriel connectivity network of sites, where links were weighted by the distance function. Three Moran’s eigenvectors (MEM 1, 3 and 11) were retained as spatial descriptors of spatial pattern of \(\beta_{\text{repl}} \) and explained 22.1% of its variation (Fig. 2). MEM 1 and 3 represented broad scale variation, whilst MEM 11 represented fine scale spatial structure (Fig. 3). From the three spatial structures, MEM 1 had the highest contribution to explain \(\beta_{\text{repl}} \) (10.4% of variation), representing the differentiation between western and eastern assemblages. Variation partitioning revealed that 31.9% of the variation of the \(\beta_{\text{repl}} \) can be explained by the environmental and the MEM variables in conjunction (Fig. 2).

The pure spatial component explained 16.4% of the variation, whilst 15.5% of the variation corresponds to environmental control (pure environmental = 9.8%; spatially structured environmental variation = 5.7%).

Regarding the environmental effects over the species richness differences component, the forward selection procedure selected two variables: Altitude and Slope. This model explains 24.6% of the variation in \(\beta_{\text{rich}} \), being Slope more important than Altitude (Fig. 2). To explain the spatial variation of \(\beta_{\text{rich}} \) the most parsimonious model was the one originating from a Delaunay connectivity network of sites, where links were weighted by the distance function. Two Moran’s eigenvectors were retained as spatial descriptors of spatial pattern of \(\beta_{\text{rich}} \) (MEM 8 and 9) explaining 28.4% of its variation. These eigenvectors model fine scale structures (Fig. 3). Variation partitioning revealed that 40.7% of the variation of \(\beta_{\text{rich}} \) can be explained by the environmental and spatial variables in conjunction. The pure spatial fraction corresponds to 16.1% while environmental control explains 24.6% (pure environmental = 12.3%; spatially structured environmental variation = 12.3%) of the variation in \(\beta_{\text{rich}} \) (Fig. 2).

Discussion

Madeira Island Laurisilva, as a whole, is still in a pristine condition, as revealed by the large proportion of endemic ground
beetles found in this study. In fact, 29 out of the 31 species recorded were native or endemic to Madeira with the remaining two species being considered introduced [29] and occurring in low abundance and frequency in Laurisilva. The local species richness was within the range expected for this habitat-type based on previous studies where the same sampling technique was applied [60,61]. These values show striking differences from those recorded in the Laurisilva fragments from the Azorean islands, where a much lower number of species and endemics were found [44]. The poor diversity in the Azores has been explained by island geological age, distance from the nearest source of propagules, geomorphology, forest structure and composition, and habitat disturbance [24,44,62].

A main finding of this study is that species replacement is more important than differences in species richness in structuring carabid beta diversity patterns. The low difference in species richness between sites may be a consequence of selecting sampling sites exclusively in pristine or near pristine forest patches, which presented similar woody vegetation structure and composition. Furthermore, the study took place in a relatively small range, with the largest distance between study sites being around 30 km. Thus, the combination of these sampling particularities may have contributed to target quite similar Laurisilva plant communities where large differences in carabid species richness are not expected to occur. A large number of studies on beta diversity, however, have focused on comparisons at much larger scales, encompassing a variety of habitat-types, ecoregions or even biomes, where large differences in species richness are known to occur [9,63–65]. For example, a recent study using also ground beetles as model organisms showed a clear latitudinal gradient of species richness across Europe, with larger southern countries having a much higher number of species than northern ones [66].

A significant positive trend of species composition dissimilarity with geographic distance was found for Madeira carabids with assemblages from closer sites showing higher affinities in species composition. The distance decay of similarity in ecological assemblages is well documented, but controversy still remains on the relative importance of its drivers and on how it varies across organisms and environments [67,68]. Furthermore, information on species traits, trophic level and dispersal capability proved to be important factors for the interpretation of distance decay patterns (e.g. [69]). The turnover among assemblages of Madeira Laurisilva ground beetles is jointly explained by pure environmental predictors, pure spatial variables and spatially structured environmental variation. Climatic variables together with soil organic matter content and landscape disturbance seem to play a role in ground beetle species replacement among forest patches. Climate variables have been frequently considered good predictors of variation in the composition of assemblages of diverse taxonomic groups since species differ on their performance under different environmental conditions and this may lead to species sorting according to spatial differences in climate [20,70,71]. The complex orography of Madeira Island plays a role on the genesis of the mosaic of local climatic conditions, which in turn provide a variety of conditions to living organisms leading to species sorting according to their ecological and physiological tolerances. A number of studies have shown the importance of climatic variables (e.g. temperature, relative humidity) in explaining ground beetle species’ distribution at different spatial scales and the occurrence of species segregation even at the microspatial level [44,66,72–74].

![Figure 1](https://example.com/figure1.png)

Figure 1. Distance decay in ground beetle assemblages’ dissimilarity. Distance dissimilarity plots representing the relationship between ground beetle assemblage dissimilarity and geographic distance. β_{repl}, β_{rich} and β_{rich} were used as measures of overall beta diversity, beta diversity due to species replacement and beta diversity due to richness differences, respectively.

doi:10.1371/journal.pone.0064591.g001

![Figure 2](https://example.com/figure2.png)

Figure 2. Variation of β_{repl} and β_{rich} dissimilarity explained by environmental and spatial variables and their shared effects. Venn diagrams showing the results of the variation partitioning procedure carried out on the forward selected environmental and spatial (Moran’s eigenvector maps) variables for both components of beta diversity: β_{repl} and β_{rich}.

doi:10.1371/journal.pone.0064591.g002
Other environmental variables, such as plant species composition, litter depth, soil pH and organic matter content are also known to be important in determining local species composition of forest ground beetles (e.g. [72,73]). Among these, only differences in soil organic matter content among sampling sites seemed to play a role in explaining variation in ground beetle assemblages’ composition in our study. This may be an indirect effect of prey availability since carabid prey (earthworms, snails, springtails, etc.) are intimately associated with soil properties. Thus, changes in soil characteristics may lead to differences in prey abundance and composition that can translate into compositional and structural changes on ground beetle assemblages as shown in several other studies [75,76]. Habitat matrix composition also influenced variation in ground beetle assemblages. Habitat fragmentation and isolation together with land use changes of surrounding habitats are known to influence forest beetle assemblages by leading to differentiation between patches due to species loss and turnover with non-typical forest species (e.g. [77,78]). In Madeira Island, many Laurisilva patches are still in a pristine condition but small and isolated fragments are more prone to species invasion from surrounding habitats. This is clearly illustrated by the case of the Rabacas fragment, where non-typical forest species – Harpalus attenuatus, Ocys harpaloides and Microlestes spp. – were recorded in small numbers together with typical forest species. In recent years,
a number of studies have highlighted the important role played by matrix habitat on the ecological dynamics of heterogeneous landscapes (see a review by [79]), including some reports using ground beetles as model organisms [80,81]. Although we acknowledge that our findings need a thorough support from studies specifically designed to account for the effects of landscape disturbance on ground beetle assemblages, we reinforce the need for the inclusion of those effects in ecological models if we aim to better understand the distribution and abundance of organisms.

Species richness differences among sites were mainly explained by Slope and Altitude, emphasizing the crucial role played by island geomorphology in structuring spatial patterns of diversity. These two variables influenced carabid assemblages in a direct way, but also indirectly by determining local environmental conditions. The upper limit of the Laurisilva had a slightly higher number of species than lower and intermediate altitudes since several ground beetle species were only found in locations above 900 m (e.g. _Bradymerus_ spp., _Calathus complanatus_, _Cymindis maderae_ and _Orthomus dilaticollis_). Several of these species can be found both in Laurisilva as well as in the transition of forest to alitudinal meadow suggesting that the increase in species richness at higher altitudes can result from the encounter of ground beetle assemblages with different environmental adaptations.

Pure spatial effects were found to play an important role in determining both species replacement and richness differences among sites. The spatial component may represent the signature of neutral and niche processes (e.g. dispersal limitation and biotic interactions) and also the effects of some unmeasured environmental variables that are spatially structured [2,82]. Most Madeira Island endemic ground beetle species are wingless or lack functional wings suggesting that dispersal limitation may play a key role in community structure, particularly if we take in consideration the complex orographic environment where these species occur. This fact, together with the historical dynamics of Madeira, that included repeated volcanic events, slumping episodes and climate and sea-level changes (e.g. [83]), are probably the main drivers of species differentiation in this island and may help us understand the restricted distribution of some endemic ground beetles, particularly within genera that radiated in Madeira Island (e.g. _Orthomus_ and _Trechus_ [30]. For instance, a distinctive feature of Madeira landscape that seems to have favored the differentiation of ground beetle communities in terms of species composition is the presence of deep valleys crossing the island from North to South that limited gene flow in organisms with low dispersal ability (Fig. 3). The geological, geographic and climatic historical dynamics of Madeira has been a key factor for the understanding of the high genetic and taxonomic diversity of the biota of this island and the observed high species turnover in different taxa [29,94–97]. For example, Cook [87] highlighted that Madeiran land snail diversity is, to a large extent, due to the fortuitous coincidence of rates of geological and climatic change and geographic isolation, which have produced a number of isolates where species differentiation took place. Historical processes are known to influence the spatial configuration of species assemblages and their effects seem to be most important for taxonomic groups with poor dispersal capabilities [88–91]. In fact, a number of studies came to the conclusion that the combined effects of dispersal limitation and historical processes may hamper many narrowly-ranged species in reaching equilibrium with their environmental niche [92–94].

In Madeira Laurisilva, spatial processes played an important role as determinants of ground beetle beta diversity, but operated at different scales in structuring communities by species turnover and species richness differences (Fig. 3). Differences in species composition were mainly determined by pure spatial effects operating at larger scales. For instance, the most important spatial structure in explaining species replacement was MEM 1, which corresponds to the differentiation of western and eastern side assemblages of Madeira, separated by deep valleys with N-S orientation. Whereas, differences in species richness among sites seem to be determined by pure spatial effects and spatially structured environmental variation (related with topography) acting at finer scales (local variation). This finding reinforces the conclusions from other studies where beta diversity patterns were found to be the result of different processes, operating at different scales in the two distinct components of beta diversity [13,14,95,96]. Overall, much of the observed variation in Madeira Laurisilva ground beetle communities remained unexplained. This may be due to methodological limitations of our study as well as to the so-called stochastic mechanisms and the effects of unmeasured environmental factors (e.g. microclimatic variables, structural habitat factors, abundance of competitors and predators). For instance, Judas et al. [97] have shown that several microclimatic variables may scale up to distributions at the landscape level for some ground beetle species. In conclusion, our findings suggest that beta diversity of Madeira Laurisilva ground beetles is mostly determined by changes in species composition (not richness) among sampling units. Spatial factors have a major role in explaining species replacement and variation in species richness between forest sites, suggesting that dispersal limitation and historical events are determinant factors in shaping patterns of biodiversity for this group of beetles. Furthermore, this study illustrates that a clearer interpretation of the role of drivers of beta diversity can only be achieved within a multi-scale framework where both components of beta diversity – species turnover and richness differences – are jointly assessed.

Supporting Information

Appendix S1 Detailed sampling site locations. List of sampling sites names and their geographic coordinates (in decimal degrees) and altitude (in meters).

Appendix S2 List of ground beetle species. List of ground beetle species found in 26 sites in Madeira Island Laurisilva, including information on their distribution status.

Acknowledgments

We thank the facilities provided by Serviço do Parque Natural da Madeira during fieldwork and we are especially indebted to its vice-director D. Menezes and the nature wardens H. Fernandes and M. Gomes for their valuable support. We are also grateful to the MacSIMAR (MAC/1/A089) and EstraMAR (MAC/3/C177) projects from the European Union MAC Transnational Program of Cooperation for supporting climatic modeling work of EBA.

Author Contributions

Conceived and designed the experiments: MB PAVB ARMS. Performed the experiments: MB PC CASA CR IRS IRA FP PAVB ARMS. Analyzed the data: JCC PC. Contributed reagents/materials/analysis tools: EBA. Wrote the paper: MB JCC PC PAVB ARMS.
References
