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1 Introduction
Computer networks, which form the critical infrastructure for our daily life,
have become exceedingly complex nowadays. There are a large number
of devices (e.g., switches and routers) and middleboxes (e.g., NAT, load
balancer, and firewalls) integrated with various network protocols to imple-
ment a variety of basic forwarding policies. As a result, configuration and
management of existing networks have become increasingly challenging. For
instance, to build a campus network with authentication and traffic manage-
ment on dozens of switches involves a large amount of manual configuration
with low-level parameters (e.g., IP address, MAC address) and device-based
interfaces, which is fault-prone and difficult to maintain.

Furthermore, the control logic for existing networks is integrated into
every underlying device. While this can be beneficial to construct a small
network with only one or two switches, it imposes a big problem for a
large-scale network with hundreds of switches and thousands of hosts. The
configuration is notably hard because nearly every device needs to be set up
separately, not to mention to update the whole network for some new global
policies. The integration of control logic and data forwarding also hinders
the innovation of computer networks. For legacy networks, there is nearly no
efficient way to experiment with new protocols in a real and large network
environment without affecting original traffic.

In response, researchers are working hard to develop new architectures
for networks, and Software-Defined Networking (SDN) is one of the emerging
solutions which attracts much interest. SDN suggests separating the data
and control plane with well defined programmable interfaces to provide a
centralized global view of network and enable an easier way to configure
and manage it. In SDN, network is managed by a central controller, and
devices are only responsible for simple packet forwarding. This shift of
network’s logical brain provides good solutions to problems we mentioned
at the beginning. First, it is easier to configure network policies by using
a centralized controller with programmable interfaces and global view of
the network, rather than setting up them on each underlying device with
low-level commands. Second, it is easier to introduce new ideas to an existing
physical infrastructure via software programs.

In this paper, we aim to present some basic architectures and practical
features of SDN. To enhance our understanding of SDN, this paper first
introduces some fundamental concepts and research projects like OpenFlow
and NOX, and then explains several new extensions to those fundamental
SDN solutions. In addition to the SDN principles, we also focus on wireless
and mobile SDN systems, and try to explore how SDN can work for a
better cellular and wireless network. The highlights of this paper could be
summarized as follows:
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• We introduce and explain some of latest SDN concepts and technologies,
especially those on architecture and controller design

• We analyze applications of SDN in wireless and mobile networks

The rest of this paper is organized as follows. Section 2 gives a brief
introduction on SDN, including the basic concepts and benefits. Section 3
describes some fundamental SDN systems and the typical architecture of
SDN. Some new SDN research areas are explained in Section 4. Section 5
introduces mobile and wireless SDN systems. In section 6 we present some
challenges and open questions to SDN, especially for cellular and wireless
SDN, and also propose some solutions and future research directions.

2 Overview of Software-Defined Networking

2.1 SDN in A Nut Shell

Software-Defined Networking (SDN) is a new networking architecture which
abstracts the logical part of computer networks to a centralized controller.
The idea came from the work first done at Stanford University and UC
Berkeley. It separates the control plane which decides where and how traffic
is sent from the underlying devices (data plane) which simply forward data
flows, and provides programmable interfaces to control network traffic.

Separating the control plane from the data plane is one of the most
characterizing properties of SDN. This decoupling simplifies network man-
agement and configuration because there is need for administrators to specify
hardware parameters in a low level. Programmability is another very impor-
tant feature of SDN: the complex control logic can be defined by software
programs, which is much easier to implement and maintain.

2.2 Motivation

In the early days of computers, people wrote programs using machine lan-
guages, which was extremely hard to understand and maintain because
there were lack of abstractions. Today modern programming languages
and operating systems have already overcome this difficulty by providing
high-level abstractions and modulations for organizing information and re-
sources. For example, you could use the logic name rather than MAC address
(e.g. "eth0", "eth1") to refer to a network interface on a Linux system. Ab-
straction facilitates programmers to solve complicated problems easily and
efficiently. However, networks are still configured and managed via low-level
components. Though we use layers to represent the networks in an abstract
way, we still need to know IP addresses or MAC addresses for setting up
forwarding policies. What we expect is a new abstraction view of networks,
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in which we could easily represent all underlying networking components
with human-readable notations and languages.

SDN can be considered as a new solution of abstraction for understanding
and managing a network. It separates the control plane and data plane of a
network, and provides a centralized software programmable controller with
high-level abstractions instead of low-level configuration parameters (e.g. IP
and MAC addresses). There are two main advantages of SDN:

• Independent evolution and deployment: By separating the control and
data plane, the network logic is no longer bound by the capability of the
software shipped with the hardware. Researchers can experiment with
new ideas by adding new programs in the controller without affecting
the underlying network structure, and administrators can easily deploy
new policies into existing physical infrastructures by only configuring
the controller.

• Control from high-level software program: Compared with the legacy
architecture, SDN is much easier to configure. Policies do not have to
be set up for every device with low-level device-dependent commands,
but instead they could be configured with high-level programs only in
the centralized controller.

2.3 SDN Architecture

SDN is a centralized paradigm where the logical brain of networks (control
plane) is decoupled from underlying devices. Underlying packet forwarding is
controlled by a global controller via programmable interfaces. A typical SDN
architecture is shown in Figure 1. Programmable devices are in underlying
networks as the data plane. Nowadays, OpenFlow is one of the most common
SDN programmable interfaces for controlling packet forwarding. The upper
SDN controller should provide an abstract and global view of resources and
networks, which can also be considered as an "operating system". There are a
variety of controllers, for example, NOX, Onix and Floodlight. The practical
control programs written in high-level abstract languages are running on the
network controller to implement different policies [9].

3 SDN Implementations and Applications

3.1 OpenFlow: A Widely Popular SDN Interface

As the network evolves with larger scale and new traffic patterns, it is realized
that the current network architecture has been a barrier for innovation and
network management. It is very difficult not only to experiment with new
network protocols on the existing network infrastructure, but also to configure
policies for nationwide facilities.
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Figure 1: Layers in Software-Defined Networks [9]

OpenFlow, considered as a short-term solution for the question and first
published in 2008 [13], has been widely discussed and experimented with.
It defines a protocol between the control plane and data plane in a SDN
manner. The basic idea of OpenFlow is straightforward: we can access
and manipulate the flowtables in Ethernet switches and routers to control
network forwarding.

In the traditional network, the control plane and the data plane are
coupled together within a switch (or a router), and the forwarding logic is
defined by internal software and protocols. In contrast, OpenFlow separates
this forwarding logic and move it to an external controller. Figure 2 shows
an OpenFlow-enabled switch and the controller via OpenFlow Protocol.

Usually, an OpenFlow Switch consists of at least three parts [1]:

1. Flow Table: An OpenFlow switch is required to have at least one
flow table to perform packet lookup and forwarding. Each flow ta-
ble contains a set of flow entries with associated counters and actions
indicating how to process defined flows. The flow table entry is like this:

Header Fields Counters Actions

2. A Secure Channel: The channel is used to connect a remote controller
and the switch. Controlling packets can be sent in the channel with
OpenFlow Protocol.

3. OpenFlow Protocol: The protocol is implemented between switches
and their controllers to provide a standard and programmable way for
the control plane and data plane to communicate.

Packets are processed by a OpenFlow switch according to its flow table:
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Figure 2: Structure of OpenFlow Network [1]

1. If a packet is matched to a flow entry, the actions for that entry will
be performed on this packet.

2. If no match is found, the switch will forward the packet to the controller
over the secure channel. The controller needs to determine how to
process the packet following a programmable way, and inform the
switch to update the flow table.

Figure 3 shows this process by using a flowchart.

3.2 NOX/POX: A Typical SDN Controller

NOX is a SDN controller ("SDN operating system") developed in C++ and
Python [7], and POX is a Python version of NOX for rapid development.
NOX presents networks with abstract and centralized views, and provides
high-level programming interfaces to manage underlying devices.

Figure 4 shows major components in a NOX network: a number of
OpenFlow switches and one NOX server running management applications
with a centralized view of the network. The network view is collected and
updated by using OpenFlow control channels, and different applications can
use parts of the up-to-date view for their own controlling purposes.

NOX provides a set of simple programming interfaces which revolve with
the concepts of events, network views and namespace abstractions.

• Events: NOX uses events to represent new or incoming changes hap-
pened in the whole system (e.g. users leave, links go up and down),
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Figure 3: Flowchart of OpenFlow [1]

Figure 4: Network consisting of OpenFlow(OF) switches and a NOX con-
troller [7]
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and introduces event handlers for coping with these changes. Similar
to the handlers used in Unix’s system calls, developers could register
specific handlers for particular events, and trigger certain control logic.
Events could be generated either from specific OpenFlow messages or
combination of some low-level events together.

• Namespace and Network View: NOX generates the centralized network
view and constructs mappings of high-level namespace to low-level
address, allowing developers to manage the network in a simple and
topology-independent manner.

• Control: NOX uses the OpenFlow protocol to control and manage
underlying devices. It can modify the flow tables of OpenFlow switches
and collects the state of underlying traffic. For efficient implementation
of common functions, NOX also provides a set of network libraries with
common functionalities (e.g. routing, DHCP, DNS and ACL module).

3.3 SDN Deployment for Campus Network

Figure 5: SDN Deployment Example in Georgia Tech [9]

Hyojoon Kim et.al [9] deploy Procera, a software-defined network control
framework, at Georgia Institute of Technology. Because of the dynamic envi-
ronment and complex policies in the campus network, Procera is considered
to be a good example of SDN deployment.
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As shown in Figure 5, there are three buildings connected with several
switches, wireless access points and an authentication system in this network.
To join into the campus network, Georgia Tech requires end hosts to first
perform an authentication with a legal pair of username and password. After
being successfully authenticated, the device needs to be scanned for possible
vulnerabilities. Finally, the device could obtain access to the network. The
campus network at Georgia Tech uses virtual LAN (VLAN) and several
middleboxes to separate registered and unregistered devices. For consistent
forwarding and management, switches in the campus network have to update
their VLAN tables from a central server constantly.

To implement this kind of network in traditional ways, designers and
administrators should set up all the network policies (e.g. VLAN, routing
tables) in terms of low-level and device-based configuration. However, Procera
simplifies the setting-up process by introducing SDN ideas: all the network
configuration policies are moved a central controller, and administrators use
software programs to dynamically control traffic forwarding and perform
VLAN separation on underlying OpenFlow-enabled switches. In addition
to traffic management, authentication has also been changed to a SDN
application running on the central controller.

This deployment shows that SDN is a feasible solution for reducing
complexity of network management by decoupling the control policies from
underlying devices.

4 Extending SDN
To have a better view of SDN, we start to introduce and explain some new
research areas and latest topics of SDN in this section.

4.1 Fabric: An Extended SDN Architecture

Although most of the current SDN techniques, taking OpenFlow as an
example, achieve flexibility by separating the control and data plane, they
are facing a main problem: core management applications running on central
controllers are still heavily affected by underlying devices. In other words,
current OpenFlow-based systems are far away from our desired networks
which fully abstract low-level components and interfaces. For example, if a
network starts to switch IPv4 addresses to IPv6 ones, all the matching rules
using IP addresses in OpenFlow controllers should to be upgraded.

Martin Casado et al. [5] propose an extension, called Fabric, for today’s
SDN structures to avoid the limitation of insufficient abstraction. The Fabric
architecture is shown in Figure 6. It divides the network into edge switches
and core fabric switches. The edge and fabric switches are managed by
different controllers. In this new topology, controllers are also distinguished
by different purposes: the fabric controllers are only responsible for core
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forwarding logic, while the edge ones are configured for more detailed policies.
To avoid influences caused by underlying changes (e.g.IP addresses changed),
fabric controllers could use non-detailed contexts for forwarding, and there
should also be some modules for mapping edge (using detailed address) and
fabric contexts. The researchers suggest to use MPLS mechanism (labels) to
map the edge and fabric context.

Figure 6: Basic Fabric Structure[5]

This two-level structure brings two main benefits. First, it allows the
core and edge control plane to evolve separately. For example, different and
more complex services such as security and mobility could be introduced
to the edge network without affecting the core forwarding policies. Second,
internal forwarding decisions are not dependent on specific addresses of the
edge network, which could bring more flexibility and simplicity to SDN.

4.2 Scalable Controller Design

The initial design and implementation of SDN (OpenFlow, NOX) push all the
control functionality to a centralized controller for simplicity and flexibility.
However, they did not adequately address issues of scalability and reliability
for networks. As the size of a network grows, it may be infeasible to use
only one central controller to handle all incoming requests. In addition, some
switches will encounter long latencies if they are far away from the center of
the network, which affects efficiency of the whole network.

For scaling the SDN, researchers have proposed some new SDN structures.
In this section we introduce and illustrate some of latest controlling structures
for the scaling purpose.

4.2.1 Distributed Controllers

HyperFlow: Distributed Controllers Sharing the Same Global
View of the Network HyperFlow [18] is a distributed implementation
for OpenFlow, which allows any number of controllers to be deployed in a
network. Every controller shares the same consistent network-wide view of
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the network and serves the incoming control requests for local switches to
offer both scalability and centralization to SDN.

The HyperFlow network consists of several NOX servers as the distributed
controllers, a set of OpenFlow switches as the data plane, and an event
propagation system for synchronization of the network-wide view. Each
controller uses the same controlling programs and parameters and runs as if
it controls the whole network. Switches are controlled by a nearest controller,
and if the controller crashes, they can be dynamically configured to another
controller nearby. Figure 7 shows the structure of a HyperFlow network.

Figure 7: HyperFlow Networks [18]

For synchronizing the global views of a network, HyperFlow uses a pub-
lish/subscribe messaging paradigm called WheelFS to propagate controlling
events. Here we briefly explain HyperFlow’s most featuring functions. Be-
sides the synchronization component, a module for health checking is also
added into the original NOX controller.

• Publishing events: the HyperFlow uses the NOX handler mechanism
to capture data plane events, and selectively publishes the ones which
are generated locally but will affect the global controlling view.

• Replaying events: for synchronizing the control states, a HyperFlow
controller replays the events published by other controllers and gener-
ates a consistent network-wide view.

• Health checking: the HyperFlow controller is required to send advertise-
ments periodically to indicate its state and condition. If one controller
does not publish itself for some intervals, it will be assumed to have
crashed, and the switches which it controlled will be redirected to other
healthy controllers.
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Kandoo: Hierarchical Controllers Kandoo [8] is a hierarchical SDN
controller for OpenFlow. It creates a two-level hierarchical SDN controlling
system, and distinguishes local controllers and management applications
from global ones. The local controllers manage a subset of switches and
execute applications which do not need network-wide views, whereas the
root controller is responsible for managing all the local controllers and
implementing global policies. Figure 8 illustrates this two-level system.

Figure 8: Kandoo’s Two Levels of Controllers [8]

By using this hierarchical structure, a network can easily scale by deploy-
ing new local controllers. Controllers, organized in the two-level structure,
are shield from too many management requests. In addition, the average
communication latency between OpenFlow switches and corresponding local
controllers can be reduced.

Soheil Hassas Yeganeh et al. evaluate Kandoo’s performance by simulat-
ing a two-layer hierarchical system with a slightly modified version of Mininet
[11]. To test the reduction of controlling interactions between the centralized
controller and underlying devices, they design some "elephant" flows which
need to be processed by the centralized controller instead of the local ones.
First they use a topology of depth 2 and fanout 6, and send hundreds of
UDP flows concurrently. The result is shown in Figure 9(a), where we can
see a sharp drop of traffic to and from the central controller. Then they fix
the ratio of the elephant flows at 20%, and test the controller’s traffic with
different numbers of fanouts. The result is displayed in Figure 9(b).

Onix: A Mixed Extension Onix [10] is another distributed control
platform of SDN developed in C++, which introduces a distributed data
structure called Network Information Base (NIB) to record the whole network
graph. In NIB, each network element is represented as a specific entry (a
set of key-value pairs, like port, link-speed, etc.) with a globally unique
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(a) Average Load of Controller for Different
Flows

(b) Average Load of Controller for Different
Fanouts

Figure 9: Control Plane Load of Kandoo [8]

identifier. The NIB is a bit similar to the shared network view mentioned
in HyperFlow. However, it also supports hierarchical topologies as Kandoo.
There could be several controllers in an Onix network, and the control logic is
distributed by using consistent distributed NIB records. Network applications
are implemented by reading and modifying the NIB.

The initial aim of designing Onix is trying to provide a distributed SDN
controller with better scalability. For this object, Onix uses some special
mechanisms:

• Partitioning: For simplifying the control logic and reduce the redun-
dancy, a specific Onix controller only keeps a subset of the latest NIB in
memory. Each controller is only responsible for a part of the network,
so it just maintains the NIB information of corresponding network
elements.

• Aggregation: Onix supports to expose a collection of network devices
in its NIB as one aggregated element to other Onix controllers. This is
quite useful to simplify the NIB for hierarchical systems. For example,
in a campus network with several controllers, each controller manages
a couple of switches. For simplicity, the controller exposes this subset
of switches as one switch to upper-level Onix controllers.

As a distributed SDN platform, one of the key points in Onix is to
maintain a consistent NIB for the whole network. Based on the observation
that different applications often have various requirements on consistency,
the researchers design two kinds of mechanisms with different update speeds
and consistency types. For applications with low changing frequency, Onix
could implement a transactional consistent database by using a duplicated
state server for sending required states with SQL-like APIs. For networks
with high update rates, Onix provides an eventually-consistent DHT system.
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So far, we have reviewed and introduced some SDN controllers. In Table
1, we summarize some key points of these SDN controllers and compare them
with each other.

4.2.2 Datapath Extensions

DevoFlow and DIFANE DevoFlow [6] is a modification of OpenFlow,
which extends functionalities of the data plane. It introduces new mechanisms
to allow switches to make local forwarding decisions for some flows and
provides efficient statistical methods to lower switch-controller interactions.

For devolving control to a switch, DevoFlow introduces rule cloning and
local actions to a switch:

• Rule cloning: OpenFlow uses a wildcard rule to match a specific set of
flows to reduce the number of flow table entries. However, this would
aggregate all the flows of a given set into one group with the same
counter and actions. In DevoFlow, the switch can locally clone the
wildcard rule and replace the common fields with values of specific flows.
By creating local rules, the switch can collect statistics for specific
flows by only using one wildcard rule.

• Local actions: In DevoFlow, the switch can take a set of local actions
without communicating with the controller.

In addition to the control logic, DevoFlow provides three new ways to
lower the cost of statistics collection.

• Sampling: DevoFlow allows the switches to only collect the head info
of the flows at a specific rate (e.g. 1/1000 packets).

• Triggers and reports: When a trigger condition is met, the switch will
send a statistic message to the controller. A trigger condition can be a
combination of some threshold values for specific flows or packets.

• Approximate counters: This is designed for wildcard rules. DevoFlow
switches can count the top-k largest flows in a specific group based on
rule cloning.

DIFANE [23] is another datapath extension system which follows a
similar design idea as we mentioned in DevoFlow. It tries to use some special
switches, called authority switches, to assist the centralized controllers to
make forwarding decisions.
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4.3 SDN and Middlebox

Middleboxes have been a crucial part of today’s network for providing
a variety of functionalities and improving global performance. However,
current management mechanisms of middleboxes are clumsy and complex.
Administrators have to carefully plan the topology and set up different
policies manually, which is fault-prone and difficult to update.

Recently some researchers attempt to integrate middleboxes into a
software-defined network to simplify deployment and management. Since
middleboxes may modify flow contexts, and have strong internal logic for
high-level policies, existing SDN platforms and mechanisms are not very suit-
able for deploying them directly. The modifications caused by middleboxes
make it difficult for SDN controllers to separate flows with desired policies.
Here we introduce two solutions for deploying and managing middleboxes in
a SDN system.

4.3.1 SIMPLE: A Middlebox Enforcement SDN

SIMPLE [14], an SDN-based enforcement layer for middleboxes, is designed
to help SDN controllers to configure middleboxes and translate high-level
policies into the data plane parameters efficiently.

Figure 10 shows the overall architecture of SIMPLE. It processes middle-
box policy with high-level dataflow abstraction. The administrators do not
need to worry about the middlebox location and the routing policies, they
just specify the control logic. For example, they can first indicate the policy
class like this: {src = prefix1, dst = prefix2, dstport = 80, proto = T CP},
and then specify the policy chain {NAT, Firewall}. To translate the logical
policy to specific physical devices, SIMPLE maintains mappings which indi-
cate the locations and capacities of each middlebox. Furthermore, because
resources in a network are limited (e.g. device CPU, memory, bandwidth,
available rules in OpenFlow switches), SIMPLE also designs algorithms for
efficiently utilizing those constrained resources.

As shown in Figure 10 with red blocks, there are three main components
in SIMPLE:

• Resource Manager: this component translates logical policies into spe-
cific requirements by taking into account both the resource constraints
and the network topology.

• Dynamics Handler: since middleboxes may modify the header or the
context of a packet, SIMPLE uses a lightweight correlation algorithm
to map incoming and outgoing packets of one middlebox to provide a
consistent view of the network.

• Rule Generator: this module generates the final configuration for the
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Figure 10: Architecture of SIMPLE [14]

data plane to forward flows via different middleboxes in right the
sequence.

4.3.2 FlowTags

FlowTags [15] is an extension to current existing SDN architectures like
OpenFlow. It mainly focuses on providing global visibility and management
to middleboxes. FlowTags adds contextual information of middleboxes
in terms of tags inside OpenFlow packet headers. All the downstream
middleboxes in SDN can use these tags to make consistent decisions on
packet forwarding and traffic statistics.

The key idea of FlowTags is to add tag info to the packets with middlebox
context. Switches and middleboxes in FlowTags add or modify tags in the
packet headers, and handle those packets with tag-related actions indicated
by the controller. Because of header-size constraints, tags are encoded
compactly in FlowTags.

4.4 SDN and Cloud

Have being attracted by the potential benefits of SDN on large-scale network
management, some researchers try to apply SDN architectures into datacen-
ters and integrating them with cloud services. For example, Arsalan Tavakoli
et al. [17] demonstrated that NOX can provide a variety of datacenter func-
tionalities. Google has already deployed OpenFlow in their datacenter [16].
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To have a detailed understanding of SDN and the cloud, here we introduce a
SDN platform called Meridian.

Meridian [4] is a SDN platform proposed for cloud network services. It
aims to provide common service models and programming interfaces to cloud
controllers and managers.

Figure 11: Meridian Architecture [4]

As shown in Figure 11, it is organized with three main logical layers:
network abstraction, network orchestration, and network driver layer. The
cloud applications and managers are at the top of the network abstraction
layer. The abstract layer represents underlying networks in terms of logical
topologies and provides interactive APIs to upper applications. The network
orchestration layer performs a logical-to-physical translation and offers global
views of underlying networks. The lowest layer of Meridian can be considered
as the "drivers" of the underlying devices to provide unified control logic. For
example, it can use OpenFlow to manage switches to create desired virtual
networks.

5 SDN and Cellular Networks
Nowadays, more and more researchers start to focus on centralized control of
wireless networks: a central controller manages a set of wireless access points
for non-overlapping channel allocating, consistent user authentication and
interference avoiding. Compared with legacy distributed wireless networks,
a centralized system has better consistency since the controller has a global
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view of the network. For example, a mobile user can switch between different
access points without changing the IP address in a centralized campus
network, or forward messages across different wireless technologies (e.g. 3G,
LTE, and WiFi). In this section, we move our attention to SDN and wireless
network and introduce some of the latest work in this area.

5.1 OpenRoads: Wireless OpenFlow

OpenRoads [20] is an early attempt to develop a wireless SDN platform with
OpenFlow and NOX by Stanford University. It separates the control plane
from the datapath, and produces network slices by using FlowVisor to isolate
different flows. The underlying infrastructure (e.g. power levels, wireless
channels, and interface states) is configured with SNMPVisor, a command
line interface for setting up datapath elements with the SNMP protocol. In
other words, OpenRoads allows several different experiments and services to
run simultaneously over one physical network.

In OpenRoads, the researchers add OpenFlow to WiFi access points
and WiMAX base stations for traffic controlling, and use NOX as the
network controller which can communicate with OpenFlow devices and
provide global views of the network. FlowVisor can be considered as a
transparent proxy for OpenFlow. It slices the network by selectively rewriting
or dropping OpenFlow Messages to delegate control of different flows with
different controllers. The basic structure of OpenRoads is shown in Figure 12:
OpenRoads could successfully separated different users’ traffic with different
forwarding policies.

The researchers use 30 WiFi APs running Linux, 2 WiMAX base stations
and 5 Gigabit Openflow-enabled switches in the initial deployment, and have
created a software-defined network where different experiments can run in
parallel in the same physical infrastructure.

5.2 SoftRAN

Currently the radio access network uses distributed algorithms to manage
limited spectrum and enact handovers. While the decision in a sparse
environment with few base stations could be straightforward to make, it
would be more difficult to quickly choose the best candidate when the
deployment scales. To handle growing mobile traffic and dense deployments
of base stations, some researchers proposed SoftRAN [2], a centralized
software-defined radio access network, for efficiently performing handovers
and allocating spectrum resources as well as setting up transmit power values.

In SoftRAN, LTE networks are controlled in a centralized way: all the
base stations are abstracted as a virtual element and managed by the logically
central controller. The controller maintains the global states of the network
and makes logical decisions. There are defined APIs for the control plane to
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Figure 12: OpenRoads Architecture [19]

communicate with radio elements to update the global view of the network
and configure every base station.

Figure 13 shows the architecture of SoftRAN. It collects states of base
stations periodically and updates the global view within a database. The
information stored in the database is utilized by the controller modules for
future radio resource management.

For handling the inherent delay between the centralized controller and
different base stations, some control tasks which are based on local network
parameters could be moved to specific individual radio elements. SoftRAN
has two main principles for separating the control plane. First, the control
decisions affected by neighbouring radio elements should be made at the
centralized controller, e.g. handovers, transmit powers setting. Second,
decisions depending on rapidly varying parameters should be made locally
by base stations preferably, e.g. resource block allocation.

5.3 SoftCell: Hierarchical SDN for Cellular Networks

Compared with wired networks, cellular networks have some unique features
and face significant scalability challenges. For example, because users are
always moving in cellular networks, there will be a large number of state
updates generated from the data plane, which would create big pressure on
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Figure 13: Architecture of SoftRAN [2]

a central controller. In addition, the average response latency would also
increase sharply when a set of base stations communicate with one remote
controller concurrently.

Li Erran Li et al. [12] propose a SDN architecture with local control
agents, which is designed for handling this problem. This local software
control agent can make simple decisions for a single base station. The
cellular SDN architecture is illustrated in Figure 14. In addition to the
local controller, traffic policies and cellular resources are represented with
high-level abstraction rather than IP addresses or physical identities in
SoftCell.

Figure 14: Cellular SDN With Local Agents [12]

In Table 2, we summarize some key points of cellular SDN architectures
and compare the three techniques mentioned before.
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6 SDN-enabled Dynamic Mobile Traffic Manage-
ment

6.1 Framework

After reviewing and introducing some SDN systems, we can easily find that
current cellular network architectures are facing several challenges of openness
and simplicity. The network infrastructure is close to innovation: each
equipment inside the network has vendor-dependent controlling interfaces,
which are difficult to configure and manage. As shown in Figure 15, the
control plane and the data plane are coupled together in the current cellular
network. For setting up such a system, administrators need to configure all
the equipments separately.

Figure 15: Architecture of Legacy Cellular Networks [12]

As we mentioned in Section 5, recent work has recognized the problems
of the architecture coupled with the data and control plane and suggested
some new systems for a cellular network. Inspired by SoftRAN and SoftCell,
we hope to develop a new SDN cellular platform for innovation, and plan to
use a two-level hierarchical structure to solve the inherent delay between the
central controller and the radio elements in the data plane.

• the local controller performs simple local actions and measurement

• the centralized controller has a global view of the network and uses
some high-level abstract policies to manage all the elements in the
network

Integrating hierarchical SDN controllers into wireless networks also raises
many interesting research problems and open questions:

• How to partition functionalities between local and central controllers:
the hierarchical two-layer SDN architecture could reduce the average
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Figure 16: Architecture of Our Proposed System
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workload and request latency of each controller. However, how to divide
policies into different levels is still an open question today. SoftRAN
and SoftCell have made some discussion about it, but do not explore
it to all kinds of applications. Aurojit Panda et al. [3] analyze the
problem in theory, but not in practical work. We plan to explore the
hierarchical structure and local partition techniques in our future work.

• How many controllers do we need and where to place them: besides
partitioning, we also plan to explore this practical question about
deployment based on testing and simulation.

• Interaction between multiple types of access technologies (e.g. cellular,
wifi): one of our goals is to use SDN techniques to implement seamless
mobility between different wireless access technologies (e.g. 3G, LTE,
WiFi), which requires a large amount of work in centralized controlling,
mobility prediction and billing.

• Consistency: with the increasing of controllers, consistent management
and update will also be challenging in the SDN system. Since there
have already been several projects in this area, we will try to utilize
previous works, like HotSwap, and apply them in our framework.

• Smart usage of context from mobile users’ devices: nowadays, we are
experiencing an explosion of mobile apps and services, which generate a
large amount of user data (e.g., sensing context, WiFi-related data and
GPS info) that could be used to identify traffic patterns and predict
user and environment status. SDN leads to a very good opportunity
to utilize these data because of its more powerful monitoring tools and
high-level network views. However, there is still no standard mechanism
for using these contexts in a software-defined system.

6.2 Monitoring

While many researchers have focused on network controller and management
of SDN, few efforts are put into monitoring and measurement of software-
defined network. Existing methods, such as OpenFlow, are not suitable for
large-scale measurement tasks. They are constrained by limited hardware
memory and communication overhead. Compared with wired networks, it
could be more difficult to monitor wireless and cellular networks because
users and traffic patterns are always changing.

FlowSense [21] is one of the latest proposals to monitor SDN. It uses the
controller to analyze and estimate traffic utilization. The devices in the data
plane are only responsible for sending necessary information messages for
new and expired flows, but not collecting the counter. FlowSense can reduce
the workload of the data plane, and the overhead for controlling. However,
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it does not fully utilize switches and equipments in underlying networks.
OpenSketch [22] is another new SDN-based measurement solution which
separates the measurement control from basic measurement functionalities
in the data plane. It provides flexible programming interfaces for a variety
of monitoring tasks, but is a bit heavy-weight for some simple measurement
jobs.

In our future work, we plan to explore some of the latest SDN mea-
surement solutions, like OpenSketch, and extend them for cellular networks.
The monitoring tool should be accurate and lightweight with fewer resource
constraints. The main challenge is to handle radio resources and mobility
in cellular network. Two-level hierarchical system should be a good choice
to reduce the overhead and workload to each controller, but we need to
design solutions for handling frequent changes of states in a highly dynamical
network with users moving.

6.3 Prediction

As one of the hottest topics in wireless and cellular networks, predicting user
mobility and traffic patterns has been studied for over a decade, and several
different algorithms are developed and published in this area. However,
few of these algorithms are deployed in practical network because of the
complexity of both the algorithms and real mobile users.

In our future work, we plan to utilize and extend previous work in
network prediction for wireless SDN framework. Thanks to global views and
efficient monitoring tools of SDN, we may have an opportunity to improve
the reliability and availability of existing predicting solutions. However, how
to accurately predict is still a big challenging problem.

6.4 Management

6.4.1 Resource Management

Because of the centralized control of network equipments, a SDN controller
could have a global view of the network, which is very beneficial and effi-
cient to allocate limited resources (e.g., wireless radio spectrum). However,
management solutions based on flow table in OpenFlow switches are not
suitable for controlling radio resources. We need some new abstracted way
to represent traffic policies for wireless networks. In our future work, we
plan to extend our platform for efficient management of cellular and wireless
resources, including radio spectrum, transmission power and traffic flows.

6.4.2 Mobility

Today’s cellular network does not provide optimal mechanisms for handover
across different wireless technologies (e.g., 3G, WiFI and LTE). It is complex
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and prone to lead to higher packet loss rate and longer latency if users always
switch among different technologies. However, SDN would be a good way to
control and perform seamless handover across different protocols because of
its global view of the network. Although some researchers suggest this will
be a promising research area, we do not see practical implementations on
different-protocol handover. We plan to explore this area and try to design
some new algorithms to make mobility management much easier in our SDN
platform. This work is also partially dependent on the prediction algorithms.

6.4.3 Run-time Adaptive Configuration

As mentioned before, we hope to develop some prediction algorithms for
wireless traffic and user mobility with the help of SDN measurement, and the
prediction result, therefore, could be used to reconfigure cellular networks
in run time. Besides load balance, it is possible to design some mechanisms
for better utilization of the wireless resources. As far as we are concerned,
there is still no application or implementation integrating SDN prediction
and dynamical configuration for mobile networks.
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