Bench-top X-ray microtomography complemented with spatially localized X-ray scattering experiments

Suuronen, Jussi-Petteri

2014

http://hdl.handle.net/10138/42767
https://doi.org/10.1107/S1600576713031105

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Bench-top X-ray microtomography complemented with spatially localized X-ray scattering experiments

Jussi-Petteri Suuronen, Aki Kallonen, Ville Hänninen, Merja Blomberg, Keijo Hämäläinen and Ritva Serimaa

Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
Bench-top X-ray microtomography complemented with spatially localized X-ray scattering experiments

Jussi-Petteri Suuronen,* Aki Kallonen, Ville Hänninen, Merja Blomberg, Keijo Hämäläinen and Ritva Serimaa

Department of Physics, University of Helsinki, PO Box 64, Helsinki, 00014, Finland. Correspondence e-mail: jussi-petteri.suuronen@helsinki.fi

This article describes a novel experimental setup that combines X-ray microtomography (XMT) scans with in situ X-ray scattering experiments in a laboratory setting. Combining these two methods allows the characterization of both the micrometre-scale morphology and the crystallographic properties of the sample without removing it from the setup. Precise control of the position of the sample allows an accurate choice of the scattering beam path through the sample and facilitates the performance of X-ray scattering experiments on submillimetre-sized samples. With the present setup, a voxel size of less than 0.5 μm is achievable in the XMT images, and scattering experiments can be carried out with a beam size of approximately 200 × 200 μm. The potential of this setup is illustrated with the analysis of micrometeorite crystal structure and diffraction tomographic imaging of a silver behenate phantom as example applications.

1. Introduction
Since its introduction in the late 1980s (Flannery et al., 1987), X-ray microtomography (XMT) has become a popular and powerful method for nondestructively evaluating material structures (Stock, 2008). When combined with more traditional analysis methods like X-ray diffraction (XRD), small-angle scattering (SAXS) or X-ray fluorescence spectroscopy, it extends the range of phenomena that can be observed with X-ray methods from the atomic to the micrometre scale, bridging the gap between scattering-based or spectroscopic methods and traditional X-ray imaging. Such multimodal studies incorporating both scattering and tomographic information have been applied to a wide range of problems, from biological materials like sea urchin teeth (Stock et al., 2002) or wood samples (e.g. Leppänen et al., 2011; Penttilä et al., 2013) to engineering issues like the effects of sulfate attack on Portland cement (Naik et al., 2005). All of these studies employed a bench-top XMT scanner in conjunction with a dedicated instrument for the scattering measurements.

Previously, the use of synchrotron radiation has allowed the two experiments to be performed sequentially at the same beamline and with higher temporal resolution (e.g. Pyykko et al., 2005) than is achievable with an X-ray tube source. Also possible with a synchrotron source are various types of diffraction or scattering contrast tomography, where the tomographic reconstruction is formed not on the basis of a projection radiograph, but using some quantity (crystal orientation, crystallinity, d spacing etc.) calculated from a large number of scattering patterns obtained with the pencil-beam (translate/rotate) imaging geometry (Álvarez-Murga et al., 2012; Voltolini et al., 2013). In addition, small-angle scattering contrast in the pencil-beam geometry has been reported (Schroer et al., 2006). Furthermore, high-brightness synchrotron radiation in combination with novel crystal analyzers enables even more exotic contrast mechanisms using molecular level spectroscopic information (Huotari et al., 2011). Two closely related imaging approaches particularly suited for grain mapping of polycrystalline material specimens are three-dimensional X-ray microscopy (3DXRD) and diffraction contrast tomography (DCT). Both techniques rely on identifying and sorting diffraction and/or extinction spots occurring when individual grains in the sample fulfill the Bragg condition. The 3DXRD method (see e.g. Poulsen, 2012) uses either a line beam or a parallel beam and two area detectors to record the diffraction patterns: a high-resolution detector near the sample yields spatial information on the grains, whereas a low-resolution detector further away is used for structural characterization. In the DCT setup (Ludwig et al., 2008; Johnson et al., 2008; Reischig et al., 2013), only one detector is used, but analysis similar to the 3DXRD method is incorporated with conventional absorption tomography.

While synchrotron-based laboratories will undoubtedly remain at the forefront of method development, incorporating these techniques into smaller-scale systems is crucial for their wider adoption in the scientific community. Recently, first steps have been taken in this direction, when the DCT method was implemented in an X-ray-tube-based setup by King et al. (2013).

In this work, we present a home laboratory setup that implements the pencil-beam approach, using a second X-ray tube and an area detector mounted around a commercial bench-top XMT scanner to complement X-ray microtomography scans with in situ X-ray scattering experiments. On the basis of the XMT reconstruction, a specific sub-volume of the sample can be selected for the scattering experiment with 200 μm resolution; this facilitates scattering experiments on submillimetre-sized samples and allows mapping of selected crystallographic properties within larger samples.

2. Experimental setup
2.1. System overview
The setup, presented in Fig. 1, is constructed around a custom-built high-resolution XMT scanner (Nanotom 180NF, Phoenix|x-ray...
The combined X-ray microtomography and scattering setup.

Figure 1

The X-ray source, i.e., the X-ray tube, is mounted on the top of the benchtop X-ray microtomography and X-ray scattering system. A key problem in utilizing the setup is correlating the X-ray scattering pattern with the illuminated sub-volume of the sample. This is achieved with a beam position phantom, consisting of a small silver bhenenate particle (~200 μm in diameter, approximately the same as the scattering beam) mounted on the tip of a steel needle. On the basis of an XMT reconstruction, the exact coordinates of the

Figure 2

Image of the diffracting beam 75 cm after the sample, pixel size 172 × 172 μm. At the sample, the horizontal width of the beam is approximately 200 μm. The structure seen in the beam is due to molybdenum Kα radiation being reflected to slightly different angles from the two mirrors in the optics. The vertical bar on the right is a gap between modules on the modular detector.
The intensity of the silver behenate 001 diffraction peak was determined from each scattering pattern and used as the projection variable for tomographic reconstruction with the standard filtered back-projection algorithm. Prior to reconstruction can be calculated with some elementary trigonometry.

3. Example experiments and results

3.1. X-ray diffraction tomography

The resolution of the X-ray scattering system was verified by performing an X-ray diffraction tomography (XDT) scan on a test sample consisting of two particles of silver behenate, both of approximately 300 μm in diameter and with approximately 200 μm separation between the particles. First-generation (translate–rotate) geometry was used with 12 angular steps from 0 to 165°, and 11 diffraction patterns were obtained with 200 μm separation at each projection angle. The intensity of the silver behenate 001 diffraction peak was determined from each scattering pattern and used as the projection variable for tomographic reconstruction with the standard filtered back-projection algorithm. Prior to reconstruction, the resulting sinogram was oversampled to 21 × 12 in order to obtain a smoother-looking reconstruction.

Fig. 3 illustrates this process and shows the resulting XDT reconstruction overlaid on a conventional XMT reconstruction of the same sample. Although the voxel size in the XDT reconstruction is much larger (100 × 100 × 100 μm versus 3.8 × 3.8 × 3.8 μm), the two particles are clearly resolved in both reconstructions. It should be noted that, since the particles are relatively small compared to the voxel size, the XDT reconstruction exhibits a significant partial volume effect, and one should not expect perfect agreement between the two. The XMT scan was performed with 60 kV X-ray tube voltage, 100 μA current and the focus mode with 900 nm detail detectability.

3.2. Micrometeorite crystal structure

There are several application fields where the combined X-ray scattering and tomography setup provides a significant advantage over having a separate setup dedicated for small- or wide-angle scattering experiments. One such example is in the study of micrometeorites, where XMT results can be used for accurate volume determination and analysis of their morphological characteristics and combined with XRD results to determine their mineralogical composition (Nakamura et al., 2008). In this case, the small size of the samples (200–600 μm in diameter) makes it difficult to position them for an XRD experiment with a dedicated instrument, especially since manual handling of the samples should be kept to a minimum to avoid losing the samples or contaminating them with external material. The combined setup provides a significant advantage when the two experiments can be performed sequentially without removing the sample from the setup. Using an X-ray-tube-based instrument eliminates the time lag from applying for synchrotron beam time months ahead of the experiment, while the XRD results can still be linked to specific features observed in the XMT reconstructions.

The results of such an experiment on two micrometeorites from the Atacama Desert are presented in Fig. 4. The meteorites were placed at the bottom of sealed polypropylene pipette heads, which were filled with cotton to avoid sample movement during the XMT scan. The XMT scans were carried out with an effective pixel size $x_p = 0.5 \mu m$, an 80 kV X-ray tube voltage and a 180 μA current. The largest focus mode was selected, as no blurring of the transmission images was observed in comparison with the finer focus modes. On the basis of the XMT reconstructions (Figs. 4a and 4c, voxel size 0.5 μm), two XRD measurements per sample were carried out over the q range of approximately 0.5–5 Å$^{-1}$, using the 111 diffraction peak from a silicon powder sample to determine the q scale. While XRD experiments revealed both meteorites to be of a primarily olivine composition, there is a significant difference in the degree of crystallite orientation within the samples: the scattering pattern of sample A (Fig. 4b) is indicative of a very well ordered material of high crystallinity, while sample B gives a powder-like diffraction pattern (Fig. 4d). When the XRD beam is directed through the large inclusion within sample B, scattering from the inclusion is seen superimposed on the powder pattern (Fig. 4e). Unfortunately, these reflections only contribute two peaks (at $q = 1.864 \text{ Å}^{-1}$ and $q = 1.961 \text{ Å}^{-1}$) to the integrated diffraction pattern (Fig. 4f), making mineral identification very difficult.

4. Conclusions

This work describes a unique home laboratory instrument that enables X-ray microtomography scans to be complemented with
spatially localized X-ray scattering experiments. Applicable to a wide range of sample types, it can be used to map the nanoscale structure, i.e., crystal structure information, crystallinity and crystal orientation within the sample, with the aid of a three-dimensional attenuation image of the sample at the micrometre scale. Targeting of the diffraction experiment with 200 μm precision is demonstrated by an X-ray diffraction tomography experiment on a silver behenate phantom, and the potential of the system in research applications is illustrated by examining the mineralogical composition of two submillimetre-sized micrometeorites.

The authors would like to express their gratitude to Dr Mika Torkkeli, Mr Pasi Lintunen and Dr Marko Peura for their assistance and discussions in the development of the system, Dr Tomas Kohout of the Division of Geophysics and Astronomy, University of Helsinki, and Dr Jérôme Gattacceca and Dr Pierre Rochette of the University of Aix-Marseille/CNRS for providing the micrometeorite samples and helpful discussions, and Ms Tia Svärd for assistance in constructing the scattering system. This work has been supported by the Academy of Finland (contract No. 1259526). JPS would like to acknowledge The National Doctoral Program for Materials Physics for financial support.

References

Figure 4
Combined XMT and XRD results on two micrometeorites. (a) XMT reconstruction of sample A, voxel size 0.5 × 0.5 × 0.5 μm. Green arrows indicate the beam paths for XRD measurements. Scale bar 200 μm. (b) Scattering pattern obtained from sample A, corresponding to the horizontal arrow in (a). (c) Vertical slice through the XMT reconstruction of sample B, voxel size 0.5 × 0.5 × 0.5 μm. Markings indicate XRD beam paths, with the beam coming out of the page at the location of the red circle. The dark round object at the bottom is an inclusion of less attenuating material within the micrometeorite. Scale bar 200 μm. (d) Scattering pattern corresponding to the red circle in (c). The scattering beam was perpendicular to the page, completely missing the inclusion. (e) Scattering pattern corresponding to the blue arrow in (c), where the beam passed through the inclusion in the micrometeorite. White arrows indicate reflections arising from the inclusion. (f) Integrated radial intensity profiles after background subtraction. The horizontal axis is scattering vector magnitude in units of Å⁻¹, and the vertical axes are intensities (integrated counts over 30 min). The green line at the top corresponds to sample A (average of the two measurements), the red and blue lines in the middle correspond to panels (d) and (e) (black arrows indicate two diffraction peaks arising from the inclusion), and the dashed black line at the bottom is a typical background intensity from the sample holder. The stem graph shows the expected peak positions and relative intensities of hortonolite, an intermediate member of the solid solution series between olivine minerals, fayalite and forsterite (data from Brown & Prewitt, 1973).

For clarity, only the reflections with relative intensity greater than 10% are shown.
