INTRODUCTION

Nitrification proceeds in 2 steps, in which ammonia (dissolved form ammonium, NH$_4^+$) is oxidized to nitrite (NO$_2^-$) in the first step and NO$_2^-$ is oxidized to nitrate (NO$_3^-$) in the second. The capacity for ammonia oxidation was originally believed to be restricted to autotrophic bacteria that produce ammonia monooxygenase, the enzyme that is required to convert NH$_4^+$ to NO$_2^-$. Later, ammonia-oxidizing archaea (AOA) were discovered (Könneke et al. 2005), and once discovered, an increasing number of publications have reported that they are omnipresent in the environment (Erguder et al. 2009). Based on the information gathered using molecular tools, AOA thrive particularly in oligotrophic environments that were previously believed to be unsuitable for nitrification (Agogué et al. 2008). This may be because AOA have higher substrate affinities for NH$_4^+$ than do ammonia-oxidizing bacteria (AOB; Martens-Habbena et al. 2009). However, the presence of functional genes does not indicate whether nitrification

NOTE

Effect of nitrification inhibitors on the Baltic Sea ammonia-oxidizing community and precision of the denitrifier method

Helena Jäntti1*, Simo Jokinen2, Susanna Hietanen1

1University of Helsinki, Department of Environmental Sciences, Aquatic Sciences, 00014 University of Helsinki, Finland
2University of Eastern Finland, Department of Environmental Science, Biogeochemistry Research Group, 70211 Kuopio, Finland

ABSTRACT: Nitrification is a key process in nitrogen cycling. Several nitrification rate measurement techniques rely on the use of chemical inhibitors that effectively and specifically inhibit nitrifying bacteria. The discovery of ammonia-oxidizing archaea has raised the question of whether these inhibitors are also effective for archaea. The efficiency of 2 commonly used chemicals — allylthiourea (ATU) and nitrapyrin (commercial name N-serve) — in inhibiting nitrification was tested in natural seawater samples containing archaea. In addition, the effect of these inhibitors was tested in a pure culture of Pseudomonas chlororaphis, a bacterium that is used in the denitrifier method to reduce nitrate to nitrous oxide, whose isotopic composition can be analyzed with isotopic ratio mass spectrometers. This method is commonly used in stable isotope based nitrification rate measurements. ATU inhibited nitrification by 80% at a 100 μM concentration, whereas N-serve inhibited nitrification completely at a 150 μM concentration. Although the inhibition of nitrification by ATU was not complete for the natural seawater ammonia-oxidizing community, <100 μM concentration has been shown to be efficient. For N-serve, the previously found effective concentration (150 μM) for the natural ammonia-oxidizing community inhibited nitrification completely. Both ATU and N-serve reduced nitrous oxide production in the denitrifier method, but the 15N atom% values were not affected. The nitrification rates measured with inhibitors should be interpreted with caution because inhibitors can alter the functioning of bacterial methods used to analyze the nitrification rates.

KEY WORDS: Nitrification · ATU · N-serve · 15N · Denitrifier method · Archaea

INTRODUCTION

Nitrification proceeds in 2 steps, in which ammonia (dissolved form ammonium, NH$_4^+$) is oxidized to nitrite (NO$_2^-$) in the first step and NO$_2^-$ is oxidized to nitrate (NO$_3^-$) in the second. The capacity for ammonia oxidation was originally believed to be restricted to autotrophic bacteria that produce ammonia monooxygenase, the enzyme that is required to convert NH$_4^+$ to NO$_2^-$. Later, ammonia-oxidizing archaea (AOA) were discovered (Könneke et al. 2005), and once discovered, an increasing number of publications have reported that they are omnipresent in the environment (Erguder et al. 2009). Based on the information gathered using molecular tools, AOA thrive particularly in oligotrophic environments that were previously believed to be unsuitable for nitrification (Agogué et al. 2008). This may be because AOA have higher substrate affinities for NH$_4^+$ than do ammonia-oxidizing bacteria (AOB; Martens-Habbena et al. 2009). However, the presence of functional genes does not indicate whether nitrification
occurs or not, and consequently the functional role of AOA in most ecosystems is still unknown.

To assess the functional role of AOA, precise nitrification rate measurement techniques are required. Nitrification rates can be estimated by adding a substance that inhibits the nitrification process and then comparing the accumulation rate of NO₃⁻ or NH₄⁺ in treatments with and without the inhibitor. The difference in NO₃⁻ or NH₄⁺ accumulation is the nitrification rate. Some of the most common nitrification inhibitors are allylthiourea (ATU; Hall 1984) and nitrapyrin (commercial name N-serve; Goring 1962). Alternatively, the nitrification rates can be assessed using the ¹⁵NH₄⁺ tracer technique, in which ¹⁵NH₄⁺ is added to the sample and the production of ¹⁵NO₃⁻ is measured. The precision of the ¹⁵NH₄⁺ tracer technique (~ 0.8 pmol N) is approximately 100 times better than the precision of standard NO₃⁻ or NH₄⁺ concentration measurements (~50 to 150 pmol N; Grasshoff et al. 1983). The use of ¹⁵NH₄⁺ and inhibitors can also be combined (e.g. Sloth et al. 1992, Santoro et al. 2010). In such cases, the difference in the ¹⁵NO₃⁻ concentration with and without the inhibitor reflects the nitrification rate. In addition to nitrification rate measurements, nitrification inhibitors can also be used in studies in which the production of NH₄⁺ is measured (i.e. measurements of dissimilatory nitrate reduction to ammonium, DNRA) to ensure that the NH₄⁺ produced is not immediately taken up by nitrification, which would cause underestimation of the NH₄⁺ production rates (Lam et al. 2009).

If the nitrification rate is determined using the ¹⁵NH₄⁺ tracer technique, the ¹⁵N contents of the NO₃⁻ produced must be measured precisely. One common way to measure the ¹⁵N in NO₃⁻ is the denitrifier method (Sigman et al. 2001), in which cultured Pseudomonas chlororaphis lacking a nitrous oxide (N₂O) reductase, convert the NO₃⁻ and NO₂⁻ (noted as NOx from here on) present in the sample to N₂O. The isotopic composition of N₂O is then analyzed, using a gas chromatographic isotopic ratio mass spectrometer (GC-IRMS).

This study aimed to test 2 important factors in the nitrification measurements. First, we tested the effectiveness of ATU and N-serve at inhibiting nitrification in natural seawater samples containing both AOA (Labrenz et al. 2010) and AOB. Second, we evaluated the applicability of the denitrifier method for samples that were treated with ATU and N-serve, as the substances used to inhibit nitrification may also have a negative effect on the Pseudomonas chlororaphis utilized in the denitrifier method. Both N-serve (Henninger & Bollag 1976), and, to a lesser extent, ATU (Jensen. et al. 2007) inhibit denitrification, but the effect of these inhibitors specifically on the functioning of P. chlororaphis has not yet been investigated.

MATERIALS AND METHODS

Preparation of the standard samples

The suitability of the denitrifier method (Sigman et al. 2001) for samples treated with ATU and N-serve (both Sigma-Aldrich) was first tested with standard samples prepared from ultrapure MilliQ water (Millipore), potassium nitrate (KNO₃), ATU, and N-serve (Table 1). The inhibitor concentrations used, viz. 100 and 150 μM, respectively, inhibit nitrification effectively (Ginestet et al. 1998, Southwell et al. 2008). The water-insoluble N-serve was first dissolved in acetone, and the final acetone concentration in the standard solution was 4 % (vol/vol).

Sampling and incubation of the seawater samples

The samples for the nitrification measurements were collected on the RV ‘Pelagia’ in May 2011 from the Baltic Proper, at the Gotland Deep station (57° 19.21’ N, 20° 02.99’ E; depth 244 m), where Labrenz et al. (2010) showed dominance of archaea in the ammonia-oxidizing community in samples gathered in 2006. The sampling depth (128 m) was chosen as the depth at which O₂ was below the detection limit.

Table 1. Different treatments used in the study. For standard samples, the solution was ultrapure water (n = 3 per treatment). For seawater samples, the solution was water collected from the Baltic Sea redoxcline (n = 9 per treatment). In all samples, ¹⁵NOx content was analyzed after incubation.

<table>
<thead>
<tr>
<th>Sample</th>
<th>¹⁴NH₄⁺ (μM)</th>
<th>¹⁵NH₄⁺ (μM)</th>
<th>NOx (μM)</th>
<th>Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>None (control)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>100 μM ATU</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>150 μM N-serve</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>100 μM ATU + 150 μM N-serve</td>
<td></td>
</tr>
<tr>
<td>Seawater</td>
<td>0.03</td>
<td>5</td>
<td>4.54</td>
<td>None (control)</td>
</tr>
<tr>
<td>0.03</td>
<td>5</td>
<td>4.54</td>
<td>100 μM ATU</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>5</td>
<td>4.54</td>
<td>150 μM N-serve</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>5</td>
<td>4.54</td>
<td>100 μM ATU + 150 μM N-serve</td>
<td></td>
</tr>
</tbody>
</table>
The sensitivity of *Pseudomonas chlororaphis* to ATU and N-serve

The ANOVA indicated significant differences in the peak areas between the various treatments in both the seawater and standard samples. In the standard samples, the peak area of the control samples was 0.4% (vol/vol). The samples were then divided into 20 ml glass vials (n = 9 per treatment) that were sealed gas tight with butyl rubber stoppers and aluminum crimps and incubated in the dark at near in situ (~7°C) temperature. For each treatment, 3 replicate samples were filtered approximately every 3 to 4 h through pre-washed 0.2 μM syringe filters (polyethylsulfone membrane, VWR International) to terminate the incubation. The maximum incubation time of the samples was approximately 12 h.

15NO3− analyses

The samples were analyzed using the denitrifier method (Sigman et al. 2001) with small modifications. *Pseudomonas chlororaphis* (American Type Culture Collection 13985) was grown in an 800 ml liquid culture (containing tryptic soy broth [Fluka Analytical, Sigma-Aldrich Chemie], 10 mM KNO3, 1 mM ammonium sulfate [(NH4)2SO4], and 1 ml l−1 antifoaming agent [Dow Corning Antifoam RD emulsion, VWR International]) on a shaker table (150 rotations min−1) for 8 d in the dark at room temperature. Thereafter, the bacterial culture was concentrated 10-fold, and the concentrated culture was divided into 2 ml aliquots in 12 ml gastight glass vials (Exetainer, Labco). The vials were closed and purged with N2 for 5 h. A sample amount corresponding to 8 nmol NOx (0.8 ml for standard samples, 1.8 ml for the seawater samples) was injected into each vial, and after overnight incubation in the dark, 0.1 ml of 10 N NaOH was injected into each vial to lyse the bacteria and strip the carbon dioxide (CO2) from the head-space to the liquid. The 15N label in the N2O produced was analyzed with a GC-IRMS system (Thermo Finnigan Delta V plus with ConFlo IV; Thermo Fisher Scientific) with a trace gas pre-concentrator (PreCon, Thermo Fisher Scientific) in the Department of Environmental Science, University of Eastern Finland, Kuopio.

Calculations and statistical analyses

The nitrification rate was calculated by plotting the increase in NOx concentration against incubation time (see Fig. 2):

\[
\text{ΔNOx concentration} = \frac{\text{[NOx]} \times \left(\frac{\text{Atom}\% \text{ 15NOx}}{100} \right)}{\left(\frac{15\text{NH}_4\text{ added} + 15\text{NH}_4\text{ ambient}}{15\text{NH}_4\text{ added}} \right) \left(\frac{\text{15N-NOx}}{\text{14N-NOx}} \right) \text{atom% 15N-NOx}}
\]

where Δatom% 15NOx is the change in the atom% of 15N-NOx over incubation and [NOx] is the NOx concentration in the sample. The slope of the linear regression equation is the nitrification rate (including both 14NH4+ and 15NH4+ oxidation). During the seawater sample IRMS run, there were problems in some samples with the sample gas syringe in the continuous flow, and consequently some of the peak areas measured were very low. These outlier values (<50% of the average value in that treatment) were omitted from further calculations (total of 3 values, 1 from each inhibitor treatment).

The effect of the inhibitors on the results of the denitrifier method was determined in 2 ways. First, the peak area values (masses of 44N2O and 45N2O in voltage seconds), which reflect the amount of N2O produced by the denitrifying culture, were compared between the inhibitor and control treatments within the seawater and standard samples. The atom% values were then compared between the control and inhibitor treatments in the standard samples. The significant differences of the peak areas and atom% values between the various treatments were tested using analysis of variance (ANOVA) with a post hoc Dunnett’s test with PASW statistical software (IBM). The differences were deemed significant at p < 0.05.

RESULTS AND DISCUSSION

Sensitivity of *Pseudomonas chlororaphis* to ATU and N-serve

The ANOVA indicated significant differences in the peak areas between the various treatments in both the seawater and standard samples. In the standard samples, the peak area of the control samples
was significantly higher than in samples treated with ATU, N-serve, and ATU + N-serve combined. In seawater samples, there was a significant difference between the control samples and the samples treated with N-serve and ATU+N-serve combined (Fig. 1). It is unclear why ATU did not have a negative effect on *P. chlororaphis* in seawater samples. It may be that compounds present in the seawater react with ATU, decreasing its inhibitory effect on *P. chlororaphis*. However, to date no such reactions between ATU and seawater have been reported.

Denitrifying bacteria are inhibited at slightly higher N-serve concentrations (~215 μM; Henninger & Bollag 1976) and therefore our results are not surprising, although the effect of N-serve has never, to our knowledge, been tested specifically for *Pseudomonas chlororaphis* before. The acetone in which N-serve was dissolved can also affect denitrification but is stimulatory rather than inhibitory, since denitrifying bacteria can use acetone as their organic carbon source (Gross & Bremner 1992). ATU also inhibits denitrification, but less than N-serve (Jensen et al. 2007), which was also seen in our results.

Incomplete conversion of NO$_x$ to N$_2$O in the N-serve-treated samples can lead to isotopic fractionation (kinetic preference of 14N over 15N) causing lower 15N content in the N$_2$O than in complete conversion. Since the fractionation occurs at the per mill scale, it is a problem in those samples in which the 15N enrichment is at a similar scale (close to natural abundance). However, in samples that have been enriched above 0.6 atom%, any possible fractionation caused by incomplete conversion of NO$_3^-$ to N$_2$O is insignificant (Mathieu et al. 2007). Although the standard samples analyzed in the present study had 15N enrichment below 0.6 atom% and the peak areas indicated incomplete conversion of NO$_3^-$ to N$_2$O, it did not seem to cause noticeable fractionation since there was no significant difference between the atom% values between the different treatments (Fig. 1C).

The effect of fractionation in the atom% values measured in the seawater samples could not be determined because the fractionation factor could not be calculated from the standard samples, and consequently nitrification and fractionation cannot be separated from the measured 15NO$_3^-$ values. However, the effect of possible fractionation due to incomplete conversion of NO$_3^-$ to N$_2$O is likely to be small, particularly in the ATU-treated samples in which the peak areas did not significantly differ from the control samples. The theoretical underestimation of NO$_x$ production, assuming the maximum fractionation factor for incomplete conversion of NO$_3^-$ to N$_2$O ($\alpha = 1.024$; Mathieu et al. 2007), would be approximately ±0.65 nmol N per sampling point. Had fractionation this high occurred, it would have distorted the nitrification rate 1.27 to 3.13 nmol N l$^{-1}$ d$^{-1}$, which is low compared to the nitrification rate and standard deviation measured in the control samples (27.4 ± 12.4 nmol N l$^{-1}$ d$^{-1}$; Fig. 2).

![Fig. 1. Peak areas (mean ± SD) of (A) the standard samples (n = 3 per treatment) and (B) seawater samples (n = 9 per treatment), and (C) the atom% values (mean ± SD) of the standard samples. Vs: voltage second. *Significantly lower than the control (p < 0.05)](image-url)
We observed a significant linear increase in the NO_3^- concentration in the control samples and in the ATU-treated samples, but not in the samples that contained N-serve or ATU+N-serve (Fig. 2). The nitrification rate in ATU-treated samples was substantially lower (by 80%) when compared to the nitrification rate in the control samples (Fig. 2), although the ATU concentration used was higher (100 µM) than that effectively inhibiting nitrification in a previous study (86 µM ATU; Ginestet et al. 1998). The effective concentration in that study was determined using nitrifying culture mainly containing AOB, and apparently, the active nitrifying community in the Baltic Proper has a higher tolerance towards ATU than the culture used by Ginestet et al. (1998). A previous study has shown an almost complete dominance of a single archaeal clade, GD2, in the ammonia-oxidizing community in the sampling area (Labrenz et al. 2010), which probably contributes to the higher tolerance, since AOB and AOA have different hydroxylamine oxidoreductase complexes (Walker et al. 2010) and may therefore also have different sensitivities to inhibitory compounds. It may, however, be that higher ATU concentrations would inhibit nitrification completely, which should be investigated in future studies.

Unlike ATU, N-serve effectively inhibited nitrification of the seawater ammonia-oxidizing community. Acetone, as well as alternative solvents for N-serve, such as dimethyl sulfoxide, also has inhibitory effects on nitrification (Hall 1984, Southwell et al. 2008). Therefore, the effect of N-serve in inhibiting nitrification is partially caused by the solvent that is used to dissolve N-serve.

Nitrification inhibitors may also affect other nitrogen transformation processes, such as DNRA, but no data are available on such inhibitory effects. However, the negative effect of N-serve on the functioning of *Pseudomonas chlororaphis*, among other denitrifying bacteria (Henninger & Bollag 1976), suggests that NO_x reduction processes are also inhibited by some nitrification inhibitors. This should be taken into account in determining linkages between nitrogen-cycling processes.

CONCLUSIONS

The results of this experiment clearly show that ATU should not be used as a nitrification inhibitor in communities that may contain AOA. The inhibition of nitrate reduction bacteria that are used in the method to measure nitrification rates was negligible when ATU was used, particularly in seawater samples. N-serve effectively inhibits nitrification of both AOA and AOB, but it can also have an inhibiting
effect on NO$_3^-$-reducing bacteria. However, the atom% values measured with the denitrifier method did not seem to be affected by either of the inhibitors. While N-serve inhibition is a cost-efficient method for measuring nitrification, the results should be carefully interpreted because N-serve and the N-serve solvent used may affect the functioning of the entire microbial community. Alteration of the feedback mechanisms in the nitrogen cycle may, in the end, also bias the nitrification estimates.

Acknowledgements. We thank E. Röhr from the Department of Environmental Sciences, University of Helsinki, and the crew of the RV ‘Pelagia’ for all the help during the sample collection. We acknowledge the help of C. Biasi from the Department of Environmental Science, University of Eastern Finland, during the isotopic analyses. The research was funded by BONUS+ project HYPOxia mitigation for Baltic Sea Ecosystem Restoration (HYPER), Academy of Finland (139267), the Finnish doctoral program in Environmental Science and Technology (EnStE), the NIOZ Royal Netherlands Institute for Sea Research, and the Netherlands Organization for Scientific Research (NOW).

LITERATURE CITED

Goring CAI (1962) Control of nitrification by 2-chloro,6-(trichloromethyl)pyridine. Soil Sci 93:211–218

Editorial responsibility: Patricia Glibert, Cambridge, Maryland, USA

Submitted: April 15, 2013; Accepted: June 27, 2013
Proofs received from author(s): August 10, 2013